Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (646)

Search Parameters:
Keywords = cradle-to-cradle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

33 pages, 3561 KiB  
Article
A Robust Analytical Network Process for Biocomposites Supply Chain Design: Integrating Sustainability Dimensions into Feedstock Pre-Processing Decisions
by Niloofar Akbarian-Saravi, Taraneh Sowlati and Abbas S. Milani
Sustainability 2025, 17(15), 7004; https://doi.org/10.3390/su17157004 (registering DOI) - 1 Aug 2025
Abstract
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria [...] Read more.
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria decision-making framework for selecting pre-processing equipment configurations within a hemp-based biocomposite SC. Using a cradle-to-gate system boundary, four alternative configurations combining balers (square vs. round) and hammer mills (full-screen vs. half-screen) are evaluated. The analytical network process (ANP) model is used to evaluate alternative SC configurations while capturing the interdependencies among environmental, economic, social, and technical sustainability criteria. These criteria are further refined with the inclusion of sub-criteria, resulting in a list of 11 key performance indicators (KPIs). To evaluate ranking robustness, a non-linear programming (NLP)-based sensitivity model is developed, which minimizes the weight perturbations required to trigger rank reversals, using an IPOPT solver. The results indicated that the Half-Round setup provides the most balanced sustainability performance, while Full-Square performs best in economic and environmental terms but ranks lower socially and technically. Also, the ranking was most sensitive to the weight of the system reliability and product quality criteria, with up to a 100% shift being required to change the top choice under the ANP model, indicating strong robustness. Overall, the proposed framework enables decision-makers to incorporate uncertainty, interdependencies, and sustainability-related KPIs into the early-stage SC design of bio-based composite materials. Full article
(This article belongs to the Special Issue Sustainable Enterprise Operation and Supply Chain Management)
Show Figures

Figure 1

24 pages, 5968 KiB  
Article
Life Cycle Assessment of a Digital Tool for Reducing Environmental Burdens in the European Milk Supply Chain
by Yuan Zhang, Junzhang Wu, Haida Wasim, Doris Yicun Wu, Filippo Zuliani and Alessandro Manzardo
Appl. Sci. 2025, 15(15), 8506; https://doi.org/10.3390/app15158506 (registering DOI) - 31 Jul 2025
Viewed by 46
Abstract
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A [...] Read more.
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A cradle-to-grave life cycle assessment (LCA) was used to quantify both the additional environmental burdens from RFID (tag production, usage, and disposal) and the avoided burdens due to reduced milk losses in the farm, processing, and distribution stages. Within the EU’s fresh milk supply chain, the implementation of digital tools could result in annual net reductions of up to 80,000 tonnes of CO2-equivalent greenhouse gas emissions, 81,083 tonnes of PM2.5-equivalent particulate matter, 84,326 tonnes of land use–related carbon deficit, and 80,000 cubic meters of freshwater-equivalent consumption. Spatial analysis indicates that regions with historically high spoilage rates, particularly in Southern and Eastern Europe, see the greatest benefits from RFID enabled digital-decision support tools. These environmental savings are most pronounced during the peak months of milk production. Overall, the study demonstrates that despite the environmental footprint of RFID systems, their integration into the EU’S dairy supply chain enhances transparency, reduces waste, and improves resource efficiency—supporting their strategic value. Full article
(This article belongs to the Special Issue Artificial Intelligence and Numerical Simulation in Food Engineering)
Show Figures

Figure 1

34 pages, 11148 KiB  
Article
Research on Construction of Suzhou’s Historical Architectural Heritage Corridors and Cultural Relics-Themed Trails Based on Current Effective Conductance (CEC) Model
by Yao Wu, Yonglan Wu, Mingrui Miao, Muxian Wang, Xiaobin Li and Antonio Candeias
Buildings 2025, 15(15), 2605; https://doi.org/10.3390/buildings15152605 - 23 Jul 2025
Viewed by 287
Abstract
As the cradle of Jiangnan culture, Suzhou is home to a dense concentration of historical architectural heritage that is currently facing existential threats from rapid urbanization. This study aims to develop a spatial heritage corridor network for conservation and sustainable utilization. Using kernel [...] Read more.
As the cradle of Jiangnan culture, Suzhou is home to a dense concentration of historical architectural heritage that is currently facing existential threats from rapid urbanization. This study aims to develop a spatial heritage corridor network for conservation and sustainable utilization. Using kernel density estimation, this study identifies 15 kernel density groups, along with the Analytic Hierarchy Process (AHP), to pinpoint clusters of historical architectural heritage and assess the involved resistance factors. Current Effective Conductance (CEC) theory is further applied to model spatial flow relationships among heritage nodes, leading to the delineation of 27 heritage corridors and revealing a spatial structure characterized by one primary core, one secondary core, and multiple peripheral zones. Based on 15 source points, six cultural relics-themed routes are proposed—three land-based and three waterfront routes—connecting historical sites, towns, and ecological areas. The study further recommends a resource management strategy centered on departmental collaboration, digital integration, and community co-governance. By integrating historical architectural types, settlement forms, and ecological patterns, the research builds a multi-scale narrative and experience system that addresses fragmentation while improving coordination and sustainability. This framework delivers practical advice on heritage conservation and cultural tourism development in Suzhou and the broader Jiangnan region. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

36 pages, 8968 KiB  
Article
Stabilization of High-Volume Circulating Fluidized Bed Fly Ash Composite Gravels via Gypsum-Enhanced Pressurized Flue Gas Heat Curing
by Nuo Xu, Rentuoya Sa, Yuqing He, Jun Guo, Yiheng Chen, Nana Wang, Yuchuan Feng and Suxia Ma
Materials 2025, 18(15), 3436; https://doi.org/10.3390/ma18153436 - 22 Jul 2025
Viewed by 176
Abstract
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional [...] Read more.
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional cementitious products. Here, we presents a pressurized flue gas heat curing (FHC) route to bridge this scientific deficit, converting up to 85 wt% CFBFA into structural lightweight gravel. The gypsum dosage was optimized, and a 1:16 (gypsum/CFBFA) ratio delivered the best compromise between early ettringite nucleation and CO2-uptake capacity, yielding the highest overall quality. The optimal mix reaches 9.13 MPa 28-day crushing strength, 4.27% in situ CO2 uptake, 1.75 g cm−3 bulk density, and 3.59% water absorption. Multi-technique analyses (SEM, XRD, FTIR, TG-DTG, and MIP) show that FHC rapidly consumes expansive phases, suppresses undesirable granular-ettringite formation, and produces a dense calcite/needle-AFt skeleton. The FHC-treated CFBFA composite gravel demonstrates 30.43% higher crushing strength than JTG/TF20-2015 standards, accompanied by a water absorption rate 28.2% lower than recent studies. Its superior strength and durability highlight its potential as a low-carbon lightweight aggregate for structural engineering. A life-cycle inventory gives a cradle-to-gate energy demand of 1128 MJ t−1 and a process GWP of 226 kg CO2-eq t−1. Consequently, higher point-source emissions paired with immediate mineral sequestration translate into a low overall climate footprint and eliminate the need for CFBFA landfilling. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

25 pages, 528 KiB  
Review
Life Cycle Assessment and Environmental Load Management in the Cement Industry
by Qiang Su, Ruslan Latypov, Shuyi Chen, Lei Zhu, Lixin Liu, Xiaolu Guo and Chunxiang Qian
Systems 2025, 13(7), 611; https://doi.org/10.3390/systems13070611 - 20 Jul 2025
Viewed by 454
Abstract
The cement industry is a significant contributor to global environmental impacts, and Life Cycle Assessment (LCA) has emerged as a critical tool for evaluating and managing these burdens. This review uniquely synthesizes recent advancements in the LCA methodology and provides a detailed comparison [...] Read more.
The cement industry is a significant contributor to global environmental impacts, and Life Cycle Assessment (LCA) has emerged as a critical tool for evaluating and managing these burdens. This review uniquely synthesizes recent advancements in the LCA methodology and provides a detailed comparison of cement production impacts across major producing regions, notably highlighting China’s role as the largest global emitter. It covers the core LCA phases, including goal and scope definition, inventory analysis, impact assessment, and interpretation, and emphasizes the role of LCA in quantifying cradle-to-gate impacts (typically around 0.9–1.0 t CO2 per ton of cement), evaluating the emissions reductions provided by alternative cement types (such as ~30–45% lower emissions using limestone calcined clay cements), informing policy frameworks like emissions trading schemes, and guiding sustainability certifications. Strategies for environmental load reduction in cement manufacturing are quantitatively examined, including technological innovations (e.g., carbon capture technologies potentially cutting plant emissions by up to ~90%) and material substitutions. Persistent methodological challenges—such as data quality issues, scope limitations, and the limited real-world integration of LCA findings—are critically discussed. Finally, specific future research priorities are identified, including developing country-specific LCI databases, integrating techno-economic assessment into LCA frameworks, and creating user-friendly digital tools to enhance the practical implementation of LCA-driven strategies in the cement industry. Full article
Show Figures

Figure 1

26 pages, 2472 KiB  
Article
Incorporating Recyclates Derived from Household Waste into Flexible Food Packaging Applications: An Environmental Sustainability Assessment
by Trang T. Nhu, Anna-Sophie Haslinger, Sophie Huysveld and Jo Dewulf
Recycling 2025, 10(4), 142; https://doi.org/10.3390/recycling10040142 - 17 Jul 2025
Viewed by 311
Abstract
Integrating recyclates into food packaging is key towards circularity while meeting functionality and safety requirements; however, associated environmental impacts remain underexplored. This gap was addressed through a cradle-to-gate life cycle assessment, using the Environmental Footprint method, along with substitution and cut-off approaches for [...] Read more.
Integrating recyclates into food packaging is key towards circularity while meeting functionality and safety requirements; however, associated environmental impacts remain underexplored. This gap was addressed through a cradle-to-gate life cycle assessment, using the Environmental Footprint method, along with substitution and cut-off approaches for handling the multifunctionality of recycling. Recyclates were derived from polyethylene (PE)-rich household food packaging waste, purified via delamination-deinking. Firstly, results show that shifting from virgin multi-material to mono-material multilayer structures with or without recyclates, while maintaining functionality, offers environmental benefits. Secondly, recyclates should sufficiently substitute virgin materials in quantity and quality, decreasing the need for primary plastics and avoiding recyclate incorporation without functionality. Otherwise, thicker laminates are obtained, increasing processability challenges and environmental impacts, e.g., 12% for particulate matter, and 14% for mineral-metal resource use when the recycle content rises from 34 to 50%. Thirdly, a fully closed loop for flexible food packaging is not yet feasible. Key improvements lie in reducing residues generated during recycling, especially in delamination-deinking, lowering energy use in recompounding, and using more efficient transport modes for waste collection. Further research is essential to optimise the innovative technologies studied for flexible food packaging and refine them for broader applications. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Plastic Waste Management)
Show Figures

Figure 1

18 pages, 1067 KiB  
Article
Legacy Datasets and Their Impacts: Analysing Ecoinvent’s Influence on Wool and Polyester LCA Outcomes
by Mitali Nautiyal, Donna Cleveland, Amabel Hunting and Amanda Smith
Sustainability 2025, 17(14), 6513; https://doi.org/10.3390/su17146513 - 16 Jul 2025
Viewed by 428
Abstract
Accurate and transparent Life Cycle Assessment (LCA) datasets are essential for reliable sustainability evaluations, particularly in the complex and varied textile industry. Historically, the ecoinvent database has been a foundational source for LCA studies in the textile sector. This paper critically examines the [...] Read more.
Accurate and transparent Life Cycle Assessment (LCA) datasets are essential for reliable sustainability evaluations, particularly in the complex and varied textile industry. Historically, the ecoinvent database has been a foundational source for LCA studies in the textile sector. This paper critically examines the limitations of the ecoinvent v3.7 dataset, which is widely used in academic research, industry tools, and policymaking. While newer versions, such as v3.11, released in 2024, have addressed many issues, including enhanced geographical representation and updated emission profiles for chemicals, this study emphasises the historical implications of earlier data versions. By comparing the cradle-to-gate Global Warming Potential (GWP) of wool and polyester jumpers, this research reveals how aggregated and outdated data underestimated the polyester’s environmental impact while overestimating that of wool. These discrepancies have shaped fibre certification, eco-labelling, and consumer perceptions for years. Understanding the legacy of these datasets is vital for re-evaluating past LCA-based decisions and guiding future assessments toward greater regional relevance and transparency. Full article
Show Figures

Figure 1

14 pages, 285 KiB  
Review
Is ‘Green’ Gold and Silver Nanoparticle Synthesis Environmentally Friendly?
by Lucas Reijnders
Nanomaterials 2025, 15(14), 1095; https://doi.org/10.3390/nano15141095 - 14 Jul 2025
Viewed by 284
Abstract
In scientific literature biosynthesis of gold and silver nanoparticles and synthesis of these nanoparticles using small organic molecules such as citrate have been called: ‘green’. It has also been often stated that ‘green’ synthesis of gold and silver nanoparticle is environment(ally) friendly or [...] Read more.
In scientific literature biosynthesis of gold and silver nanoparticles and synthesis of these nanoparticles using small organic molecules such as citrate have been called: ‘green’. It has also been often stated that ‘green’ synthesis of gold and silver nanoparticle is environment(ally) friendly or ecofriendly. The characterization environment(ally) friendly or ecofriendly is commonly comparative. The comparison is between ‘green’ and ‘chemical’ synthesis. The few available comparative life cycle assessments addressing the environmental impacts of ‘green synthesis’ of Ag and Au nanoparticles, if compared with ’chemical’ synthesis, strongly suggest that a ‘green’ synthesis should not be equated with being environment(ally) friendly or ecofriendly. The term ‘green’ for Au and Ag nanoparticles obtained by ‘green’ synthesis is a misnomer. There is a case for only using the terms ecofriendly or environment(ally) friendly for nanoparticle synthesis when there is a firm basis for such characterization in comprehensive comparative cradle-to-nanoparticle life cycle assessment, taking into account the uncertainties of outcomes. Full article
Show Figures

Graphical abstract

36 pages, 1973 KiB  
Article
A Comparative Life Cycle Assessment of an Electric and a Conventional Mid-Segment Car: Evaluating the Role of Critical Raw Materials in Potential Abiotic Resource Depletion
by Andrea Cappelli, Nicola Stefano Trimarchi, Simone Marzeddu, Riccardo Paoli and Francesco Romagnoli
Energies 2025, 18(14), 3698; https://doi.org/10.3390/en18143698 - 13 Jul 2025
Viewed by 568
Abstract
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) [...] Read more.
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) extraction throughout its life cycle. The intensive use of CRMs raises environmental, economic, social, and geopolitical concerns. These materials are scarce and are concentrated in a few politically sensitive regions, leaving the EU highly dependent on external suppliers. The extraction, transport, and refining of CRMs and battery production are high-emission processes that contribute to climate change and pose risks to ecosystems and human health. A Life Cycle Assessment (LCA) was conducted, using OpenLCA software and the Ecoinvent 3.10 database, comparing a Peugeot 308 in its diesel and electric versions. This study adopts a cradle-to-grave approach, analyzing three phases: production, utilization, and end-of-life treatment. Key indicators included Global Warming Potential (GWP100) and Abiotic Resource Depletion Potential (ADP) to assess CO2 emissions and mineral resource consumption. Technological advancements could mitigate mineral depletion concerns. Li-ion battery recycling is still underdeveloped, but has high recovery potential, with the sector expected to expand significantly. Moreover, repurposing used Li-ion batteries for stationary energy storage in renewable energy systems can extend their lifespan by over a decade, decreasing the demand for new batteries. Such innovations underscore the potential for a more sustainable electric vehicle industry. Full article
Show Figures

Figure 1

42 pages, 1835 KiB  
Article
Social Life Cycle Assessment of Multifunctional Bioenergy Systems: Social and Socioeconomic Impacts of Hydrothermal Treatment of Wet Biogenic Residues into Intermediate Bioenergy Carriers and Sustainable Solid Biofuels
by Marco Ugolini, Lucia Recchia, Ciro Avolio and Cristina Barragan Yebra
Energies 2025, 18(14), 3695; https://doi.org/10.3390/en18143695 - 12 Jul 2025
Viewed by 266
Abstract
This study presents a social life cycle assessment (S-LCA) of the F-CUBED Production System (FPS), an innovative process that converts wet biogenic residues—specifically paper biosludge, virgin olive pomace, and fruit and vegetable residues—into intermediate bioenergy carriers via hydrothermal treatment (TORWASH®), pelletization, [...] Read more.
This study presents a social life cycle assessment (S-LCA) of the F-CUBED Production System (FPS), an innovative process that converts wet biogenic residues—specifically paper biosludge, virgin olive pomace, and fruit and vegetable residues—into intermediate bioenergy carriers via hydrothermal treatment (TORWASH®), pelletization, and anaerobic digestion. The hydrothermal carbonization of these low-grade, moisture-rich biogenic residues enhances the flexibility and reliability of renewable energy systems while also offering the potential to reduce environmental burdens compared to conventional disposal methods. Through this S-LCA, the study aims to evaluate the cradle-to-gate socioeconomic impacts of the FPS in three European contexts—Sweden, Italy, and Spain—using the 2020 UNEP Guidelines and the Social Hotspots Database (SHDB) and applying quantitative modeling via SimaPro. The functional unit is defined as 1 kWh of electricity produced. The assessment combines SHDB-based modeling with primary data from stakeholder surveys conducted in the three countries. Impact categories are harmonized between SHDB and UNEP typologies, and the results are reported in medium-risk-hour equivalents (mrheq). The results show a heterogeneous social impact profile across case studies. In Sweden, the treatment of paper biosludge delivers substantial benefits with minimal risk. In Spain (orange peel), the introduction of the FPS demonstrated a strong social benefit, particularly in health and safety and labor rights, indicating high institutional performance and good integration with local industry. Conversely, in Italy (olive pomace), the FPS revealed significant social risks, especially in the biopellet production and electricity generation sectors, reflecting regional vulnerabilities in labor conditions and governance. This suggests that targeted mitigation strategies are recommended in contexts like Southern Italy. These findings highlight that the social sustainability of emerging bioenergy technologies is context-dependent and sensitive to sectoral and regional socioeconomic conditions. This S-LCA complements prior environmental assessments and emphasizes the importance of integrating social performance considerations in the deployment and scaling of innovative bioenergy systems. Full article
(This article belongs to the Special Issue Advances in Bioenergy and Waste-to-Energy Technologies)
Show Figures

Figure 1

18 pages, 2344 KiB  
Article
Life Cycle Assessment of Key Mediterranean Agricultural Products at the Farm Level Using GHG Measurements
by Georgios Bartzas, Maria Doula and Konstantinos Komnitsas
Agriculture 2025, 15(14), 1494; https://doi.org/10.3390/agriculture15141494 - 11 Jul 2025
Viewed by 248
Abstract
Agricultural greenhouse gas (GHG) emissions contribute significantly to climate change and underline the importance of reliable measurements and mitigation strategies. This life cycle assessment (LCA)-based study evaluates the environmental impacts of four key Mediterranean agricultural products, namely olives, sweet potatoes, corn, and grapes [...] Read more.
Agricultural greenhouse gas (GHG) emissions contribute significantly to climate change and underline the importance of reliable measurements and mitigation strategies. This life cycle assessment (LCA)-based study evaluates the environmental impacts of four key Mediterranean agricultural products, namely olives, sweet potatoes, corn, and grapes using GHG measurements at four pilot fields located in different regions of Greece. With the use of a cradle-to-gate approach six environmental impact categories, more specifically acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ozone depletion potential (ODP), photochemical ozone creation potential (POCP), and cumulative energy demand (CED) as energy-based indicator are assessed. The functional unit used is 1 ha of cultivated land. Any potential carbon offsets from mitigation practices are assessed through an integrated low-carbon certification framework and the use of innovative, site-specific technologies. In this context, the present study evaluates three life cycle inventory (LCI)-based scenarios: Baseline (BS), which represents a 3-year crop production period; Field-based (FS), which includes on-site CO2 and CH4 measurements to assess the effects of mitigation practices; and Inventoried (IS), which relies on comprehensive datasets. The adoption of carbon mitigation practices under the FS scenario resulted in considerable reductions in environmental impacts for all pilot fields assessed, with average improvements of 8% for olive, 5.7% for sweet potato, 4.5% for corn, and 6.5% for grape production compared to the BS scenario. The uncertainty analysis indicates that among the LCI-based scenarios evaluated, the IS scenario exhibits the lowest variability, with coefficient of variation (CV) values ranging from 0.5% to 7.3%. In contrast, the FS scenario shows slightly higher uncertainty, with CVs reaching up to 15.7% for AP and 14.7% for EP impact categories in corn production. The incorporation of on-site GHG measurements improves the precision of environmental performance and supports the development of site-specific LCI data. This benchmark study has a noticeable transferability potential and contributes to the adoption of sustainable practices in other regions with similar characteristics. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Graphical abstract

18 pages, 1316 KiB  
Article
Economy-Wide Material Flow Accounting: Application in the Italian Glass Industry
by Salik Ahmed, Marco Ciro Liscio, Andrea Pelaggi, Paolo Sospiro, Irene Voukkali and Antonis A. Zorpas
Sustainability 2025, 17(13), 6180; https://doi.org/10.3390/su17136180 - 5 Jul 2025
Viewed by 498
Abstract
Italy supplies about one-seventh of the European Union’s total glass production, and the sector’s sizeable resource demands make it a linchpin of national industrial strategy. With growing environmental regulations and the push for resource efficiency, Material Flow Accounting has become essential for companies [...] Read more.
Italy supplies about one-seventh of the European Union’s total glass production, and the sector’s sizeable resource demands make it a linchpin of national industrial strategy. With growing environmental regulations and the push for resource efficiency, Material Flow Accounting has become essential for companies to stay compliant and advance sustainability. The investigation concentrates on Italy’s glass industry to clarify its material requirements, ecological footprint, and overall sustainability performance. STAN software v2, combined with an Economy-Wide Material Flow Accounting (EW-MFA) framework, models the national economy as a single integrated input–output system. By tracking each material stream from initial extraction to end-of-life, the analysis delivers a cradle-to-grave picture of the sector’s environmental impacts. During the 2021 production year, Italy’s glass makers drew on a total of 10.5 million tonnes (Mt) of material inputs, supplied 76% (7.9 Mt) from domestic quarries, and 24% (2.6 Mt) via imports. Outbound trade in finished glass removed 1.0 Mt, leaving 9.5 Mt recorded as Domestic Material Consumption (DMC). Within that balance, 6.6 Mt (63%) was locked into long-lived stock, whereas 2.9 Mt (28%) left the system as waste streams and airborne releases, including roughly 2.1 Mt of CO2. At present, the post-consumer cult substitutes only one-third of the furnace batch, signalling considerable scope for improved circularity. When benchmarked against EU-27 aggregates for 2021, Italy registers a NAS/DMI ratio of 0.63 (EU median 0.55) and a DPO/DMI ratio of 0.28 (EU 0.31), indicating a higher share of material retained in stock and slightly lower waste generated per ton of input. A detailed analysis of glass production identifies critical stages, environmental challenges, and areas for improvement. Quantitative data on material use, waste generation, and recycling rates reveal the industry’s environmental footprint. The findings emphasise Economy-Wide Material Flow Accounting’s value in evaluating and improving sustainability efforts, offering insights for policymakers and industry leaders to drive resource efficiency and sustainable resource management. Results help scholars and policymakers in the analysis of the Italian glass industry context, supporting in the data gathering, while also in the use of this methodology for other sectors. Full article
(This article belongs to the Collection Waste Management towards a Circular Economy Transition)
Show Figures

Figure 1

14 pages, 1187 KiB  
Review
Towards the Rational Use of Plastic Packaging to Reduce Microplastic Pollution: A Mini Review
by Evmorfia Athanasopoulou, Deborah M. Power, Emmanouil Flemetakis and Theofania Tsironi
J. Mar. Sci. Eng. 2025, 13(7), 1245; https://doi.org/10.3390/jmse13071245 - 28 Jun 2025
Viewed by 587
Abstract
Plastic pollution has been recognized as an emerging risk for the aquatic environment. Shifting from the prevailing linear “take-make-dispose” model to a “circular” economy framework is essential for mitigating the environmental impact of plastics. Microplastics (MPs) in the natural environment are formed when [...] Read more.
Plastic pollution has been recognized as an emerging risk for the aquatic environment. Shifting from the prevailing linear “take-make-dispose” model to a “circular” economy framework is essential for mitigating the environmental impact of plastics. Microplastics (MPs) in the natural environment are formed when synthetic polymers are fragmented and micronized to a size ≤ 5 mm. MPs are a global environmental problem, particularly within aquatic ecosystems, due to their persistence, accumulation, and uncertain long-term effects. This review examines the degradation pathways of polymers that result in MP formulation, their rate and distribution across ecosystems, and their potential entry into food systems. Key challenges include a lack of standardized detection methods, specifically for nanoparticles; limited evidence of long-term toxicity; and the inefficiency of current waste management frameworks. Emphasis is placed on the cradle-to-grave lifecycle of plastic materials, highlighting how poor design, excessive packaging, and inadequate post-consumer treatment contribute to MP release. The transition from Directive 94/62/EC to the new Regulation (EU) 2025/40 marks a significant policy shift towards stronger preventive measures. In line with the waste hierarchy and reduction in unnecessary packaging and plastic use, effective recycling must be supported by appropriate collection systems, improved separation processes, and citizen education to prevent waste and improve recycling rates to minimize the accumulation of MPs in the environment and reduce health impacts. This review identifies critical gaps in current knowledge and suggests crucial approaches in order to mitigate MP pollution and protect marine biodiversity and public health. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

31 pages, 3525 KiB  
Article
A Whole-Life Carbon Assessment of a Single-Family House in North India Using BIM-LCA Integration
by Deepak Kumar, Kranti Kumar Maurya, Shailendra K. Mandal, Nandini Halder, Basit Afaq Mir, Anissa Nurdiawati and Sami G. Al-Ghamdi
Buildings 2025, 15(13), 2195; https://doi.org/10.3390/buildings15132195 - 23 Jun 2025
Viewed by 510
Abstract
As the population increases, the growing demand for residential housing escalates construction activities, significantly impacting global warming by contributing 42% of primary energy use and 39% of global greenhouse gas (GHG) emissions. This study addresses a gap in research on lifecycle assessment (LCA) [...] Read more.
As the population increases, the growing demand for residential housing escalates construction activities, significantly impacting global warming by contributing 42% of primary energy use and 39% of global greenhouse gas (GHG) emissions. This study addresses a gap in research on lifecycle assessment (LCA) for Indian residential buildings by evaluating the full cradle-to-grave carbon footprint of a typical single-family house in Northern India. A BIM-based LCA framework was applied to a 110 m2 single-family dwelling over a 60-year life span. Operational use performance and climate analysis was evaluated via cove tool. The total carbon footprint over a 60-year lifespan was approximately 5884 kg CO2e, with operational energy use accounting for about 87% and embodied carbon approximately 11%. Additional impacts came from maintenance and replacements. Energy usage was calculated as 71.76 kWh/m2/year and water usage as 232.2 m3/year. Energy consumption was the biggest driver of emissions, but substantial impacts also stemmed from material production. Cement-based components and steel were the largest embodied carbon contributors. Under the business-as-usual (BAU) scenario, the operational emissions reach approximately 668,000 kg CO2e with HVAC and 482,000 kg CO2e without HVAC. The findings highlight the necessity of integrating embodied carbon considerations alongside operational energy efficiency in India’s building codes, emphasizing reductions in energy consumption and the adoption of low-carbon materials to mitigate the environmental impact of residential buildings. Future work should focus on the dynamic modeling of electricity decarbonization, improved regional datasets, and scenario-based LCA to better support India’s transition to net-zero emissions by 2070. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop