Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,402)

Search Parameters:
Keywords = cracked beams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 28656 KiB  
Article
Experimental Study and FEM Analysis on the Strengthening of Masonry Brick Walls Using Expanded Steel Plates and Shotcrete with and Without Glass Fiber Reinforcement
by Zeynep Yaman, Alper Cumhur, Elif Ağcakoca, Muhammet Zeki Özyurt, Muhammed Maraşlı, Mohammad Saber Sadid, Abdulsalam Akrami and Azizullah Rasuly
Buildings 2025, 15(15), 2781; https://doi.org/10.3390/buildings15152781 - 6 Aug 2025
Abstract
In this study, an effective strengthening method was investigated to improve the seismic performance of masonry brick walls. The strengthening method comprised the use of shotcrete, which was applied in both glass fiber-reinforced and unreinforced forms for steel plates and tie rods. Thirteen [...] Read more.
In this study, an effective strengthening method was investigated to improve the seismic performance of masonry brick walls. The strengthening method comprised the use of shotcrete, which was applied in both glass fiber-reinforced and unreinforced forms for steel plates and tie rods. Thirteen wall specimens constructed with vertical perforated masonry block bricks were tested under diagonal compression in accordance with ASTM E519 (2010). Reinforcement plates with different thicknesses (1.5 mm, 2 mm, and 3 mm) were anchored using 6 mm diameter tie rods. A specially designed steel frame and an experimental loading program with controlled deformation increments were employed to simulate the effects of reinforced concrete beam frame system on walls under the effect of diagonal loads caused by seismic loads. In addition, numerical simulations were conducted using three-dimensional finite element models in Abaqus Explicit software to validate the experimental results. The findings demonstrated that increasing the number of tie rods enhanced the shear strength and overall behavior of the walls. Steel plates effectively absorbed tensile stresses and limited crack propagation, while the fiber reinforcement in the shotcrete further improved wall strength and ductility. Overall, the proposed strengthening techniques provided significant improvements in the seismic resistance and energy absorption capacity of masonry walls, offering practical and reliable solutions to enhance the safety and durability of existing masonry structures. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

20 pages, 1890 KiB  
Review
Laser Surface Hardening of Carburized Steels: A Review of Process Parameters and Application in Gear Manufacturing
by Janusz Kluczyński, Katarzyna Jasik, Jakub Łuszczek and Jakub Pokropek
Materials 2025, 18(15), 3623; https://doi.org/10.3390/ma18153623 - 1 Aug 2025
Viewed by 243
Abstract
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion [...] Read more.
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion speed, spot size, and focusing distance—on surface microhardness, hardening depth, and microstructure development. The findings indicate that the energy density is the dominant factor that affects the outcomes of LHT. Optimal results, in the form of a high surface microhardness and a sufficient depth of hardening, were achieved within the energy density range of 80–130 J/mm2, allowing for martensitic transformation while avoiding defects such as melting or cracking. At densities below 50 J/mm2, incomplete hardening occurred with minimal microhardness improvement. On the contrary, densities exceeding 150–180 J/mm2 caused surface overheating and degradation. For carburized 21NiCrMo2 steel, the most effective parameters included 450–1050 W laser power, 1.7–2.5 mm/s scanning speed, and 2.0–2.3 mm beam diameter. The review confirms that process control through energy-based parameters allows for reliable prediction and optimization of LHT for industrial applications, particularly in components exposed to cyclic loads. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

21 pages, 5609 KiB  
Article
Carbonation and Corrosion Durability Assessment of Reinforced Concrete Beam in Heavy-Haul Railways by Multi-Physics Coupling-Based Analytical Method
by Wu-Tong Yan, Lei Yuan, Yong-Hua Su, Long-Biao Yan and Zi-Wei Song
Materials 2025, 18(15), 3622; https://doi.org/10.3390/ma18153622 - 1 Aug 2025
Viewed by 259
Abstract
The operation of heavy-haul railway trains with large loads results in significant cracking issues in reinforced concrete beams. Atmospheric carbon dioxide, oxygen, and moisture from the atmosphere penetrate into the beam interior through these cracks, accelerating the carbonation of the concrete and the [...] Read more.
The operation of heavy-haul railway trains with large loads results in significant cracking issues in reinforced concrete beams. Atmospheric carbon dioxide, oxygen, and moisture from the atmosphere penetrate into the beam interior through these cracks, accelerating the carbonation of the concrete and the corrosion of the steel bars. The rust-induced expansion of steel bars further exacerbates the cracking of the beam. The interaction between environmental factors and beam cracks leads to a rapid decline in the durability of the beam. To address this issue, a multi-physics field coupling durability assessment method was proposed, considering concrete beam cracking, concrete carbonation, and steel bar corrosion. The interaction among these three factors is achieved through sequential coupling, using crack width, carbonation passivation time, and steel bar corrosion rate as interaction parameters. Using this method, the deterioration morphology and stiffness degradation laws of 8 m reinforced concrete beams under different load conditions, including those of heavy and light trains in heavy-haul railways, are compared and assessed. The analysis reveals that within a 100-year service cycle, the maximum relative stiffness reduction for beams on the heavy train line is 20.0%, whereas for the light train line, it is only 7.4%. The degree of structural stiffness degradation is closely related to operational load levels, and beam cracking plays a critical role in this difference. Full article
Show Figures

Figure 1

16 pages, 3072 KiB  
Article
Process Development to Repair Aluminum Components, Using EHLA and Laser-Powder DED Techniques
by Adrienn Matis, Min-Uh Ko, Richard Kraft and Nicolae Balc
J. Manuf. Mater. Process. 2025, 9(8), 255; https://doi.org/10.3390/jmmp9080255 - 31 Jul 2025
Viewed by 246
Abstract
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. [...] Read more.
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. To optimize the process parameters, single-track depositions were analyzed for both laser-powder DED (feed rate of 2 m/min) and EHLA (feed rate 20 m/min) for AlSi10Mg and Al6061 powders. The cross-sections of single tracks revealed the bonding characteristics and provided laser-powder DED, a suitable parameter selection for the repair. Three damage types were identified on the Al component to define the specification of the repair process and to highlight the capabilities of laser-powder DED and EHLA in repairing intricate surface scratches and dents. Our research is based on variation of the powder mass flow and beam power, studying the influence of these parameters on the weld bead geometry and bonding quality. The evaluation criteria include bonding defects, crack formation, porosity, and dilution zone depth. The bidirectional path planning strategy was applied with a fly-in and fly-out path for the hatching adjustment and acceleration distance. Samples were etched for a qualitative microstructure analysis, and the HV hardness was tested. The novelty of the paper is the new process parameters for laser-powder DED and EHLA deposition strategies to repair large Al components (6061 T6), using AlSi10Mg and Al6061 powder. Our experimental research tested the defect-free deposition and the compatibility of AlSi10Mg on the Al6061 substrate. The readers could replicate the method presented in this article to repair by laser-powder DED/EHLA large Al parts and avoid the replacement of Al components with new ones. Full article
Show Figures

Figure 1

13 pages, 7189 KiB  
Communication
Influence of Fission Product Distribution in Medium-Burnup UO2 Fuel on Cracking Behavior
by Dongsheng Xie, Chuanbao Tang, Tong Fu, Jiaxuan Si, Changqing Teng and Lu Wu
Materials 2025, 18(15), 3571; https://doi.org/10.3390/ma18153571 - 30 Jul 2025
Viewed by 230
Abstract
This investigation employs focused ion beam (FIB) and transmission electron microscopy (TEM) techniques to systematically analyze the distribution characteristics of fission products in medium-burnup (40.6 GWd/tU) UO2 fuel and their impact on fuel cracking behavior. The findings indicate that grain boundary embrittlement [...] Read more.
This investigation employs focused ion beam (FIB) and transmission electron microscopy (TEM) techniques to systematically analyze the distribution characteristics of fission products in medium-burnup (40.6 GWd/tU) UO2 fuel and their impact on fuel cracking behavior. The findings indicate that grain boundary embrittlement is predominantly attributed to the accumulation of spherical particles of solid fission products, including Mo, Ru, Rh, and Pd, which preferentially segregate around impurity particles, leading to localized stress concentration. Intragranular cracks are associated with the strip-like segregation of fission elements and the amorphization process. It also reveals that the size and number density of intragranular Xe bubbles are ~6.24 ± 0.24 nm and 5.2 × 1022 m−3, respectively, while Xe did not, under the analyzed conditions, significantly influence crack nucleation. This research elucidates the correlation mechanism between fission product distribution and fuel cracking behavior at medium burn up, offering experimental evidence to enhance the reliability and safety of nuclear fuel assemblies. Full article
(This article belongs to the Special Issue Key Materials in Nuclear Reactors)
Show Figures

Figure 1

17 pages, 4992 KiB  
Article
Effect of Heat Treatments and Related Microstructural Modifications on High-Cycle Fatigue Behavior of Powder Bed Fusion–Laser Beam-Fabricated Ti-6Al-2Sn-4Zr-6Mo Alloy
by Gianluca Pirro, Alessandro Morri, Alessandra Martucci, Mariangela Lombardi and Lorella Ceschini
Metals 2025, 15(8), 849; https://doi.org/10.3390/met15080849 - 29 Jul 2025
Viewed by 133
Abstract
The study investigates the influence of microstructures on fatigue behavior and failure mechanisms of the α-β titanium alloy Ti6246, fabricated via Powder Bed Fusion-Laser Beam (PBF-LB). In particular, the investigation assesses the effect of two post-processing heat treatments, namely α-β annealing at 875 [...] Read more.
The study investigates the influence of microstructures on fatigue behavior and failure mechanisms of the α-β titanium alloy Ti6246, fabricated via Powder Bed Fusion-Laser Beam (PBF-LB). In particular, the investigation assesses the effect of two post-processing heat treatments, namely α-β annealing at 875 °C (AN875) and solution treatment at 825 °C followed by aging at 500 °C (STA825), on the alloy’s rotating and bending fatigue behavior. The results indicate that the STA825 condition provides superior fatigue resistance (+25%) compared to AN875, due to the presence of a finer bilamellar microstructure, characterized by thinner primary α lamellae (αp) and a more homogeneous distribution of secondary α lamellae (αs) within the β matrix. Additionally, an investigation conducted using the Kitagawa–Takahashi (KT) approach and the El-Haddad model, based on the relationship between the fatigue limit and defect sensitivity, revealed improved crack propagation resistance from pre-existing defects (ΔKth) for the STA825 condition compared to AN875. Notably, the presence of fine αs after aging for STA825 is effective in delaying crack nucleation and propagation at early stages, while refined αp contributes to hindering macrocrack growth. The fatigue behavior of the STA825-treated Ti6246 alloy was even superior to that of the PBF-LB-processed Ti64, representing a viable alternative for the production of high-performance components in the automotive and aerospace sectors. Full article
Show Figures

Graphical abstract

26 pages, 23183 KiB  
Article
Fracture Behaviour of Basalt Fibre-Reinforced Lightweight Geopolymer Concrete: A Multidimensional Analysis
by Jutao Tao, Mingxia Jing, Qingshun Yang and Feng Liang
Materials 2025, 18(15), 3549; https://doi.org/10.3390/ma18153549 - 29 Jul 2025
Viewed by 282
Abstract
This study introduced basalt fibres as a reinforcing material and employed notched beam three-point bending tests combined with digital image correlation (DIC) technology to comprehensively evaluate key fracture parameters—namely, initial fracture toughness, unstable fracture toughness, fracture energy, and ductility index—of expanded polystyrene (EPS)-based [...] Read more.
This study introduced basalt fibres as a reinforcing material and employed notched beam three-point bending tests combined with digital image correlation (DIC) technology to comprehensively evaluate key fracture parameters—namely, initial fracture toughness, unstable fracture toughness, fracture energy, and ductility index—of expanded polystyrene (EPS)-based geopolymer concrete with different mix proportions. The results demonstrate that the optimal fracture performance was achieved when the basalt fibre volume content was 0.4% and the EPS content was 20%, resulting in respective increases of 12.07%, 28.73%, 98.92%, and 111.27% in the above parameters. To investigate the toughening mechanisms, scanning electron microscopy was used to observe the fibre–matrix interfacial bonding and crack morphology, while X-ray micro-computed tomography enabled detailed three-dimensional visualisation of internal porosity and crack development, confirming the crack-bridging and energy-dissipating roles of basalt fibres. Furthermore, the crack propagation process was simulated using the extended finite element method, and the evolution of fracture-related parameters was quantitatively analysed using a linear superposition progressive assumption. A simplified predictive model was proposed to estimate fracture toughness and fracture energy based on the initial cracking load, peak load, and compressive strength. The findings provide theoretical support and practical guidance for the engineering application of basalt fibre-reinforced EPS-based geopolymer lightweight concrete. Full article
Show Figures

Figure 1

23 pages, 7839 KiB  
Article
Automated Identification and Analysis of Cracks and Damage in Historical Buildings Using Advanced YOLO-Based Machine Vision Technology
by Kui Gao, Li Chen, Zhiyong Li and Zhifeng Wu
Buildings 2025, 15(15), 2675; https://doi.org/10.3390/buildings15152675 - 29 Jul 2025
Viewed by 202
Abstract
Structural cracks significantly threaten the safety and longevity of historical buildings, which are essential parts of cultural heritage. Conventional inspection techniques, which depend heavily on manual visual evaluations, tend to be inefficient and subjective. This research introduces an automated framework for crack and [...] Read more.
Structural cracks significantly threaten the safety and longevity of historical buildings, which are essential parts of cultural heritage. Conventional inspection techniques, which depend heavily on manual visual evaluations, tend to be inefficient and subjective. This research introduces an automated framework for crack and damage detection using advanced YOLO (You Only Look Once) models, aiming to improve both the accuracy and efficiency of monitoring heritage structures. A dataset comprising 2500 high-resolution images was gathered from historical buildings and categorized into four levels of damage: no damage, minor, moderate, and severe. Following preprocessing and data augmentation, a total of 5000 labeled images were utilized to train and evaluate four YOLO variants: YOLOv5, YOLOv8, YOLOv10, and YOLOv11. The models’ performances were measured using metrics such as precision, recall, mAP@50, mAP@50–95, as well as losses related to bounding box regression, classification, and distribution. Experimental findings reveal that YOLOv10 surpasses other models in multi-target detection and identifying minor damage, achieving higher localization accuracy and faster inference speeds. YOLOv8 and YOLOv11 demonstrate consistent performance and strong adaptability, whereas YOLOv5 converges rapidly but shows weaker validation results. Further testing confirms YOLOv10’s effectiveness across different structural components, including walls, beams, and ceilings. This study highlights the practicality of deep learning-based crack detection methods for preserving building heritage. Future advancements could include combining semantic segmentation networks (e.g., U-Net) with attention mechanisms to further refine detection accuracy in complex scenarios. Full article
(This article belongs to the Special Issue Structural Safety Evaluation and Health Monitoring)
Show Figures

Figure 1

21 pages, 3633 KiB  
Article
Shear Mechanism of Precast Segmental Concrete Beam Prestressed with Unbonded Tendons
by Wu-Tong Yan, Lei Yuan, Yong-Hua Su and Zi-Wei Song
Buildings 2025, 15(15), 2668; https://doi.org/10.3390/buildings15152668 - 28 Jul 2025
Viewed by 233
Abstract
The shear tests are conducted on six precast segmental concrete beams (PSCBs) in this paper. A new specimen design scheme is presented to compare the effects of segmental joints on the shear performance of PSCBs. The failure modes, shear strength, structural deflection, stirrup [...] Read more.
The shear tests are conducted on six precast segmental concrete beams (PSCBs) in this paper. A new specimen design scheme is presented to compare the effects of segmental joints on the shear performance of PSCBs. The failure modes, shear strength, structural deflection, stirrup strain, and tendon stress are recorded. The factors of shear span ratio, the position of segmental joints, and hybrid tendon ratio are focused on, and their effects on the shear behaviors are compared. Based on the measured responses, the shear contribution proportions of concrete segments, prestressed tendons, and stirrups are decomposed and quantified. With the observed failure modes, the truss–arch model is employed to clarify the shear mechanism of PSCBs, and simplified equations are further developed for predicting the shear strength. Using the collected test results of 30 specimens, the validity of the proposed equations is verified with a mean ratio of calculated-to-test values of 0.96 and a standard deviation of 0.11. Furthermore, the influence mechanism of shear span ratio, segmental joints, prestressing force, and hybrid tendon ratio on the shear strength is clarified. The increasing shear span ratio decreases the inclined angle of the arch ribs, thereby reducing the shear resistance contribution of the arch action. The open joints reduce the number of stirrups passing through the diagonal cracks, lowering the shear contribution of the truss action. The prestressing force can reduce the inclination of diagonal cracks, improving the contribution of truss action. The external unbonded tendon will decrease the height of the arch rib due to the second-order effects, causing lower shear strength than PSCBs with internal tendons. Full article
(This article belongs to the Special Issue Advances in Steel-Concrete Composite Structure—2nd Edition)
Show Figures

Figure 1

19 pages, 4126 KiB  
Article
Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region
by Lei Cao, Deng Zhang, Dan Zeng, Jin Zhang, Youjie Zhang, Zhe Zhang and Rong Zhan
Buildings 2025, 15(15), 2652; https://doi.org/10.3390/buildings15152652 - 27 Jul 2025
Viewed by 419
Abstract
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC [...] Read more.
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC composite beams in the hogging moment region is determined through a three-point loading test method. Their failure modes and mechanisms, crack propagation and distribution characteristics are analyzed considering the influence of the reinforcement ratio. The variation of the law of mid-span displacement, maximum crack width, strains and interface slip with load are discussed. Calculation methods for the cracking load and ultimate bearing capacity of steel–GFRP strips–UHPC composite beams are proposed. The results show that with the increase of the reinforcement ratio, the cracking load and ultimate bending capacity are improved by 11.1% and 6.0%, respectively. However, the development of cracks is inhibited, as the crack width, average crack spacing and strain of the reinforcement bars are reduced as the reinforcement ratio increases. The maximum crack width changes linearly with the load as it is less than 0.2 mm. The theoretical cracking load and ultimate bearing capacity of the composite beams considering the tensile contribution of UHPC achieve good agreement with the experimental values. Full article
Show Figures

Figure 1

25 pages, 9220 KiB  
Article
Investigation of Stress Intensity Factors in Welds of Steel Girders Within Steel–Concrete Composite Structures
by Da Wang, Pengxin Zhao, Yuxin Shao, Wenping Peng, Junxin Yang, Chenggong Zhao and Benkun Tan
Buildings 2025, 15(15), 2653; https://doi.org/10.3390/buildings15152653 - 27 Jul 2025
Viewed by 348
Abstract
Fatigue damage in steel–concrete composite structures frequently initiates at welded joints due to stress concentrations and inherent defects. This study investigates the stress intensity factors (SIFs) associated with fatigue cracks in the welds of steel longitudinal beams, employing the FRANC3D–ABAQUS interactive technique. A [...] Read more.
Fatigue damage in steel–concrete composite structures frequently initiates at welded joints due to stress concentrations and inherent defects. This study investigates the stress intensity factors (SIFs) associated with fatigue cracks in the welds of steel longitudinal beams, employing the FRANC3D–ABAQUS interactive technique. A finite element model was developed and validated against experimental data, followed by the insertion of cracks at both the weld root and weld toe. The influences of stud spacing, initial crack size, crack shape, and lack-of-penetration defects on Mode I SIFs were systematically analyzed. Results show that both weld root and weld toe cracks are predominantly Mode I in nature, with the toe cracks exhibiting higher SIF values. Increasing the stud spacing, crack depth, or crack aspect ratio significantly raises the SIFs. Lack of penetration defects further amplifies the SIFs, especially at the weld root. Based on the computed SIFs, fatigue life predictions were conducted using a crack propagation approach. These findings highlight the critical roles of crack geometry and welding quality in fatigue performance, providing a numerical foundation for optimizing welded joint design in composite structures. Full article
Show Figures

Figure 1

14 pages, 2594 KiB  
Article
Low-Temperature Performance and Thermal Control of Asphalt Modified with Microencapsulated Phase-Change Materials
by Liming Zhang, Junmao Wang, Jinhua Wu, Ran Zhang, Yinchuan Guo, Hongbo Shen, Xinghua Liu and Kuncan Li
Coatings 2025, 15(8), 879; https://doi.org/10.3390/coatings15080879 - 26 Jul 2025
Viewed by 376
Abstract
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs [...] Read more.
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs were incorporated into asphalt through physical blending at various concentrations. The physical, thermal, and rheological properties of the asphalt were then systematically evaluated. Tests included penetration, softening point, ductility, thermogravimetric analysis (TGA), and dynamic shear rheometer (DSR). The addition of MPCMs increased penetration and ductility. It slightly reduced the softening point and viscosity. These changes suggest improved flexibility and workability at low temperatures. Rheological tests showed reductions in rutting and fatigue factors. This indicates better resistance to thermal and mechanical stresses. Bending Beam Rheometer (BBR) results further confirmed that MPCMs lowered creep stiffness and increased the m-value. These findings demonstrate improved crack resistance under cold conditions. Thermal cycling tests also showed that MPCMs delayed the cooling process and reduced temperature fluctuations. This highlights their potential to enhance both energy efficiency and the durability of asphalt pavements in cold regions. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

23 pages, 4918 KiB  
Article
Meso-Scale Numerical Analysis of the Torsional Size Effect of RC Beams Reinforced with CFRP Sheets Under Combined Bending and Torsion
by Dong Li, Minghai Wang, Yishuai He, Jiangxing Zhang, Liu Jin and Xiuli Du
Buildings 2025, 15(15), 2641; https://doi.org/10.3390/buildings15152641 - 26 Jul 2025
Viewed by 216
Abstract
In practical engineering, buildings are predominantly subjected to combined forces, and reinforced concrete (RC) beams serve as the primary load-bearing components of buildings. However, there is a paucity of research on the torsional effects of RC beams, particularly concerning the torsional failure mechanisms [...] Read more.
In practical engineering, buildings are predominantly subjected to combined forces, and reinforced concrete (RC) beams serve as the primary load-bearing components of buildings. However, there is a paucity of research on the torsional effects of RC beams, particularly concerning the torsional failure mechanisms of large-size beams. To address this gap, this paper establishes a meso-scale numerical analysis model for RC beams reinforced with Carbon Fiber Reinforced Polymer (CFRP) sheets under combined bending and torsion pressures. The research analyzes how the fiber ratio and torsion-bending ratio govern torsion-induced failure characteristics and size effects in CFRP-strengthened RC beams. The results indicate that an increase in the fiber ratio leads to accumulated damage distribution in the RC beam, a gradual decrease in CFRP sheet strain, and an increase in peak load and peak torque, albeit with diminishing amplitudes; as the torsion-bending ratio increases, crack distribution becomes more concentrated, the angle between cracks and the horizontal direction decreases, overall peak load decreases, peak torque increases, and CFRP sheet strain increases; and the nominal torsional capacity of CFRP-strengthened RC beams declines with increasing size, exhibiting a reduction of 24.1% to 35.6%, which distinctly demonstrates the torsional size effect under bending–torsion coupling conditions. A modified Torque Size Effect Law is formulated, characterizing in quantitative terms the dependence of the fiber ratio and the torsion-bending ratio. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 2206 KiB  
Article
Numerical Simulation Study on the Fracture Process of CFRP-Reinforced Concrete
by Xiangqian Fan, Jueding Liu, Li Zou and Juan Wang
Buildings 2025, 15(15), 2636; https://doi.org/10.3390/buildings15152636 - 25 Jul 2025
Viewed by 194
Abstract
To investigate the crack extension mechanism in CFRP-reinforced concrete, this paper derives analytical expressions for the external load and crack opening displacement in the fracture process of CFRP concrete beams based on the crack emergence toughness criterion and the Paris displacement formula as [...] Read more.
To investigate the crack extension mechanism in CFRP-reinforced concrete, this paper derives analytical expressions for the external load and crack opening displacement in the fracture process of CFRP concrete beams based on the crack emergence toughness criterion and the Paris displacement formula as the theoretical basis. A numerical iterative method was used to computationally simulate the fracture process of CFRP-reinforced concrete beams and to analyze the effect of different initial crack lengths on the fracture process. The research results indicate that the numerical simulation results of the crack initiation load are in good agreement with the test results, and the crack propagation curves and the test results are basically consistent before the CFRP-concrete interface peels off. The numerical results of ultimate load are lower than the test results, but it is safe for fracture prediction in actual engineering. With the increase in the initial crack length, the effect of the initial crack length on the critical effective crack propagation length is more obvious. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 3663 KiB  
Article
A Study on the Road Performance of the Self-Healing Microcapsule for Asphalt Pavement
by Pei Li, Rongyi Ji, Chenlong Zhang, Jinghan Xu, Mulian Zheng and Xinghan Song
Materials 2025, 18(15), 3483; https://doi.org/10.3390/ma18153483 - 25 Jul 2025
Viewed by 343
Abstract
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the [...] Read more.
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the microcapsule wrapped with a repair agent is pre-mixed into the asphalt mixture. When the crack occurs and spreads to the surface of the microcapsule, the microcapsule ruptures and the healing agent flows out to realize the self-healing of the crack. Current microcapsules are mostly prepared with healing agents and bio-oil as core materials, and their high-temperature resistance to rutting is poor. While the epoxy resin contains a three-membered cyclic ether, it can undergo ring-opening polymerization to bond and repair the asphalt matrix. In addition, research on microcapsules mainly focuses on the self-healing properties of microcapsule-modified asphalt. In fact, before adding microcapsules to asphalt to improve its self-healing performance, it is necessary to ensure that the asphalt has a good road performance. On this basis, the self-healing performance of asphalt is improved, thereby extending the service life of asphalt pavement. Therefore, two-component epoxy self-healing microcapsules (E-mic and G-mic) were first prepared in this paper. Then, a temperature scanning test, rheological test of bending beams, and linear amplitude scanning test were, respectively, conducted for the microcapsule/asphalt to evaluate its road performance, including the high-temperature performance, low-temperature crack resistance, and fatigue performance. Finally, the self-healing performance of microcapsules/asphalt was tested. The results showed that the self-developed epoxy self-healing microcapsules were well encapsulated and presented as spherical micron-sized particles. The average particle size of the E-mic was approximately 23.582 μm, while the average particle size of the G-mic was approximately 22.440 μm, exhibiting a good normal distribution. In addition, they can remain intact and unbroken under high-temperature conditions. The results of road performance tests indicated that the microcapsule/asphalt mixture exhibits an excellent high-temperature resistance to permanent deformation, low-temperature crack resistance, and fatigue resistance. The self-healing test demonstrated that the microcapsule/asphalt exhibited an excellent self-healing performance. When the microcapsule content was 4%, the self-healing rate reached its optimal level of 67.8%, which was 149.2% higher than that of the base asphalt. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

Back to TopTop