Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (228)

Search Parameters:
Keywords = crack development degree

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5072 KiB  
Article
Study on the Mechanical Properties of Optimal Water-Containing Basalt Fiber-Reinforced Concrete Under Triaxial Stress Conditions
by Kaide Liu, Songxin Zhao, Yaru Guo, Wenping Yue, Chaowei Sun, Yu Xia, Qiyu Wang and Xinping Wang
Materials 2025, 18(14), 3358; https://doi.org/10.3390/ma18143358 - 17 Jul 2025
Viewed by 204
Abstract
In response to the high-performance requirements of concrete materials under complex triaxial stress states and water-containing environments in marine engineering, this study focuses on water-containing basalt fiber-reinforced concrete (BFRC). Uniaxial compression and splitting tensile tests were conducted on specimens with different fiber contents [...] Read more.
In response to the high-performance requirements of concrete materials under complex triaxial stress states and water-containing environments in marine engineering, this study focuses on water-containing basalt fiber-reinforced concrete (BFRC). Uniaxial compression and splitting tensile tests were conducted on specimens with different fiber contents (0.0%, 0.05%, 0.10%, 0.15%, and 0.20%) to determine the optimal fiber content of 0.1%. The compressive strength of the concrete with this fiber content increased by 13.5% compared to the control group without fiber, reaching 36.90 MPa, while the tensile strength increased by 15.9%, reaching 2.33 MPa. Subsequently, NMR and SEM techniques were employed to analyze the internal pore structure and micro-morphology of BFRC. It was found that an appropriate amount of basalt fiber (content of 0.1%) can optimize the pore structure and form a reticular three-dimensional structure. The pore grading was also improved, with the total porosity decreasing from 7.48% to 7.43%, the proportion of harmless pores increasing from 4.03% to 4.87%, and the proportion of harmful pores decreasing from 1.67% to 1.42%, thereby significantly enhancing the strength of the concrete. Further triaxial compression tests were conducted to investigate the mechanical properties of BFRC under different confining pressures (0, 3, and 6 MPa) and water contents (0%, 1%, 2%, and 4.16%). The results showed that the stress–strain curves primarily underwent four stages: initial crack compaction, elastic deformation, yielding, and failure. In terms of mechanical properties, when the confining pressure increased from 0 MPa to 6 MPa, taking dry sandstone as an example, the peak stress increased by 54.0%, the elastic modulus increased by 15.7%, the peak strain increased by 37.0%, and the peak volumetric strain increased by 80.0%. In contrast, when the water content increased from 0% to 4.16%, taking a confining pressure of 0 MPa as an example, the peak stress decreased by 27.4%, the elastic modulus decreased by 43.2%, the peak strain decreased by 59.3%, and the peak volumetric strain decreased by 106.7%. Regarding failure characteristics, the failure mode shifted from longitudinal splitting under no confining pressure to diagonal shear under confining pressure. Moreover, as the confining pressure increased, the degree of failure became more severe, with more extensive cracks. However, when the water content increased, the failure degree was relatively mild, but it gradually worsened with further increases in water content. Based on the CDP model, a numerical model for simulating the triaxial compression behavior of BFRC was developed. The simulation results exhibited strong consistency with the experimental data, thereby validating the accuracy and applicability of the model. Full article
Show Figures

Figure 1

23 pages, 8675 KiB  
Article
Research on the Deterioration Mechanism of PPF Mortar-Masonry Stone Structures Under Freeze–Thaw Conditions
by Jie Dong, Hongfeng Zhang, Zhenhuan Jiao, Zhao Yang, Shaohui Chu, Jinfei Chai, Song Zhang, Lunkai Gong and Hongyu Cui
Buildings 2025, 15(14), 2468; https://doi.org/10.3390/buildings15142468 - 14 Jul 2025
Viewed by 293
Abstract
Significant progress has been made in the low-temperature toughness and crack resistance of polypropylene fiber-reinforced composites. However, there is still a gap in the research on damage evolution under freeze–thaw cycles and complex stress ratios. To solve the problem of durability degradation of [...] Read more.
Significant progress has been made in the low-temperature toughness and crack resistance of polypropylene fiber-reinforced composites. However, there is still a gap in the research on damage evolution under freeze–thaw cycles and complex stress ratios. To solve the problem of durability degradation of traditional rubble masonry in cold regions, this paper focuses on the study of polypropylene fiber-mortar-masonry blocks with different fiber contents. Using acoustic emission and digital image technology, the paper conducts a series of tests on the scaled-down polypropylene fiber-mortar-masonry structure, including uniaxial compressive tests, three-point bending tests, freeze–thaw cycle tests, and tests with different stress ratios. Based on the Kupfer criterion, a biaxial failure criterion for polypropylene fiber mortar-masonry stone (PPF-MMS) was established under different freeze–thaw cycles. A freeze–thaw damage evolution model was also developed under different stress ratios. The failure mechanism of PPF-MMS structures was analyzed using normalized average deviation (NAD), RA-AF, and other parameters. The results show that when the dosage of PPF is 0.9–1.1 kg/m3, it is the optimal content. The vertical stress shows a trend of increasing first and then decreasing with the increase in the stress ratio, and when α = 0.5, the degree of strength increase reaches the maximum. However, the freeze–thaw cycle has an adverse effect on the internal structure of the specimens. Under the same number of freeze–thaw cycles, the strength of the specimens without fiber addition decreases more rapidly than that with fiber addition. The NAD evolution rate exhibits significant fluctuations during the middle loading period and near the damage failure, which can be considered precursors to specimen cracking and failure. RA-AF results showed that the specimens mainly exhibited tensile failure, but the occurrence of tensile failure gradually decreased as the stress ratio increased. Full article
Show Figures

Figure 1

11 pages, 1586 KiB  
Article
Quantification of Sensitization in Aluminum–Magnesium Alloys Through Frequency-Dependent Ultrasonic Attenuation
by Songwei Wang and Haiying Huang
Sensors 2025, 25(13), 3983; https://doi.org/10.3390/s25133983 - 26 Jun 2025
Viewed by 304
Abstract
Aluminum–Magnesium (Al–Mg) alloys undergo sensitization, i.e., the precipitations of β-phase (Al2Mg3) at the grain boundaries, when exposed to elevated temperature. This microstructural change increases the susceptibility of Al–Mg alloys to intergranular corrosion, exfoliation, and stress corrosion cracking. This study [...] Read more.
Aluminum–Magnesium (Al–Mg) alloys undergo sensitization, i.e., the precipitations of β-phase (Al2Mg3) at the grain boundaries, when exposed to elevated temperature. This microstructural change increases the susceptibility of Al–Mg alloys to intergranular corrosion, exfoliation, and stress corrosion cracking. This study introduces a time-frequency analysis (TFA) technique to determine the frequency-dependent ultrasonic attenuation parameter and correlate the frequency-attenuation slope to the Degree of Sensitization (DoS) developed in heat-treated Al–Mg alloy samples. Broadband pitch-catch signal was generated using a laser ultrasonic testing (LUT) system, from which the narrowband pitch-catch signal at different frequencies can be digitally generated. The attenuation parameters of sensitized Al–Mg samples were determined from these narrowband pitch-catch signals using the primary pulse-first echo (PP-FE) method. By identifying the frequency range within which the attenuation parameter is linearly proportional to the frequency, the slopes of the frequency-attenuation relationship were determined and correlated with the DoS values of the sample plates. The experimental results validate that the frequency-attenuation slope has a higher sensitivity and lower scattering as compared to other conventional ultrasonic attenuation measurement techniques. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

22 pages, 3320 KiB  
Article
Permeability Characteristics and Strength Degradation Mechanisms of Drilling Fluid Invading Bedding-Shale Fluid
by Guiquan Wang, Fenfen Li, Yu Suo, Cuilong Kong, Xiaoguang Wang and Lingzhi Zhou
Symmetry 2025, 17(7), 981; https://doi.org/10.3390/sym17070981 - 21 Jun 2025
Viewed by 570
Abstract
The development of shale bedding and fractures exacerbates the invasion of drilling fluid, leading to significant reservoir damage. This article elucidates the strength degradation behavior of shale with bedding orientations of 0° and 90° under drilling fluid immersion, as determined through triaxial compression [...] Read more.
The development of shale bedding and fractures exacerbates the invasion of drilling fluid, leading to significant reservoir damage. This article elucidates the strength degradation behavior of shale with bedding orientations of 0° and 90° under drilling fluid immersion, as determined through triaxial compression experiments. An improved Hooke–Brown anisotropic strength criterion has been established to quantitatively characterize the degradation effects. Additionally, a dynamic mechanism of pore pressure accumulation was simulated. The research findings indicate the following: (1) As the intrusion pressure increases from 6 MPa to 8 MPa, the penetration depth significantly increases. In the horizontal bedding direction (0°), cracks dominate the flow mode, resulting in a sudden drop in strength; (2) An increase in bedding density or opening exacerbates the degree of invasion and strength degradation in the horizontal bedding direction, with a degradation rate exceeding 40%. In contrast, the vertical bedding direction is influenced by permeability anisotropy and crack blockage, leading to limited seepage and minimal degradation. By optimizing the dosage of emulsifiers and other treatment agents through orthogonal experiments, a low-viscosity, high-shear-strength plugging oil-based drilling fluid system was developed, effectively reducing the invasion depth of the drilling fluid by over 30%. The primary innovations of this article include the establishment of a quantitative model for Reynolds number degradation for the first time, which elucidates the mechanism of accelerated crack propagation during turbulent transition (when the Reynolds number exceeds the critical value of 10). Additionally, a novel method for synergistic control between sealing and rheology is introduced, significantly decreasing the degradation rate of horizontal bedding. Furthermore, the development of the Darcy–Forchheimer partitioning algorithm addresses the issue of prediction bias exceeding 15% in high-Reynolds-number regions (Re > 30). The research findings provide a crucial theoretical foundation and data support for the optimized design of drilling fluids. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

17 pages, 8153 KiB  
Article
Numerical Simulation of Freezing-Induced Crack Propagation in Fractured Rock Masses Under Water–Ice Phase Change Using Discrete Element Method
by Hesi Xu, Brian Putsikai, Shuyang Yu, Jun Yu, Yifei Li and Pingping Gu
Buildings 2025, 15(12), 2055; https://doi.org/10.3390/buildings15122055 - 15 Jun 2025
Viewed by 361
Abstract
In cold-region rock engineering, freeze–thaw cycle-induced crack propagation in fractured rock masses serves as a major cause of disasters such as slope instability. Existing studies primarily focus on the influence of individual fissure parameters, yet lack a systematic analysis of the crack propagation [...] Read more.
In cold-region rock engineering, freeze–thaw cycle-induced crack propagation in fractured rock masses serves as a major cause of disasters such as slope instability. Existing studies primarily focus on the influence of individual fissure parameters, yet lack a systematic analysis of the crack propagation mechanisms under the coupled action of multiple parameters. To address this, we establish three groups of slope models with different rock bridge distances (d), rock bridge angles (α), and fissure angles (β) based on the PFC2D discrete element method. Frost heave loads are simulated by incorporating the volumetric expansion during water–ice phase change. The Parallel Bond Model (PBM) is used to capture the mechanical behavior between particles and the bond fracture process. This reveals the crack evolution laws under freeze–thaw cycles. The results show that, at a short rock bridge distance of d = 60 m, stress concentrates in the fracture zone. This easily leads to the rapid penetration of main cracks and triggers sudden instability. At a long rock bridge distance where d ≥ 100 m, the degree of stress concentration decreases. Meanwhile, the stress distribution range expands, promoting multiple crack initiation points and the development of branch cracks. The number of cracks increases as the rock bridge distance grows. In cases where the rock bridge angle is α ≤ 60°, stress is more likely to concentrate in the fracture zone. The crack propagation exhibits strong synergy, easily forming a penetration surface. When α = 75°, the stress concentration areas become dispersed and their distribution range expands. Cracks initiate earliest at this angle, with the largest number of cracks forming. Cumulative damage is significant under this condition. When the fissure angle is β = 60°, stress concentration areas gather around the fissures. Their distribution range expands, making cracks easier to propagate. Crack propagation becomes more dispersed in this case. When β = 30°, the main crack rapidly penetrates due to stress concentration, inhibiting the development of branch cracks, and the number of cracks is the smallest after freeze–thaw cycles. When β = 75°, the freeze–thaw stress dispersion leads to insufficient driving force, and the number of cracks is 623. The research findings provide a theoretical foundation for assessing freeze–thaw damage in fractured rock masses of cold regions and for guiding engineering stability control from a multi-parameter perspective. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

19 pages, 4770 KiB  
Article
In-Depth Analysis of Shut-In Time Using Post-Fracturing Flowback Fluid Data—Shale of the Longmaxi Formation in the Luzhou Basin and Weiyuan Basin of China as an Example
by Lingdong Li, Xinqun Ye, Zehao Lyu, Xiaoning Zhang, Wenhua Yu, Tianhao Huang, Xinxin Yu and Wenhai Yu
Processes 2025, 13(6), 1832; https://doi.org/10.3390/pr13061832 - 10 Jun 2025
Viewed by 448
Abstract
The development of shale gas relies on hydraulic fracturing technology and requires the injection of a large amount of fracturing fluid. The well shut-off period after fracturing can promote water infiltration and suction. Optimizing the well shut-off time is crucial for enhancing the [...] Read more.
The development of shale gas relies on hydraulic fracturing technology and requires the injection of a large amount of fracturing fluid. The well shut-off period after fracturing can promote water infiltration and suction. Optimizing the well shut-off time is crucial for enhancing the recovery rate. Among existing methods, the dimensionless time model is widely used, but it has limitations because it does not represent the length of on-site scale features. In this study, we focused on the shut-in time for a deep shale gas well (Lu-A) in Luzhou and a medium-deep shale gas well (Wei-B) in Weiyuan. By integrating the spontaneous seepage and aspiration experiments in the laboratory and the post-pressure backflow data (including mineralization degree, liquid volume recovery rate, etc.), a multi-scale well shutdown time prediction model considering the characteristic length was established. The experimental results show that the spontaneous resorption characteristic times of Lu-A and Wei-B are 3 h and 22 h, respectively. Based on the inversion of crack monitoring data, the key parameters such as the weighted average crack width (1.73/1.30 mm) and crack spacing (0.20/0.32 m) of Lu-A and Wei-B were obtained. Through the scale upgrade calculation of the feature length (0.10/0.16 m), the system determined that the optimal well shutdown times for the two wells were 14.5 days and 16.7 days, respectively. The optimization method based on a multi-parameter analysis of backflow fluid proposed in this study not only solves the limitations of the traditional dimensionless time model in characterizing the feature length but also provides a theoretical basis for the formulation of the well shutdown system and nozzle control strategy of shale gas wells. Full article
Show Figures

Figure 1

15 pages, 1952 KiB  
Article
Influence of Geometric Non-Linearities on the Mixed-Mode Decomposition in Asymmetric DCB Samples
by Jorge Bonhomme, Victoria Mollón, Jaime Viña and Antonio Argüelles
Fibers 2025, 13(6), 70; https://doi.org/10.3390/fib13060070 - 27 May 2025
Viewed by 679
Abstract
The Asymmetric Double Cantilever Beam (ADCB) is a common test configuration used to produce mixed mode I/II in composite materials. It consists of two sublaminates with different thicknesses or elastic properties, a situation that usually occurs in bimaterial adhesive joints. During this test, [...] Read more.
The Asymmetric Double Cantilever Beam (ADCB) is a common test configuration used to produce mixed mode I/II in composite materials. It consists of two sublaminates with different thicknesses or elastic properties, a situation that usually occurs in bimaterial adhesive joints. During this test, the sample undergoes rotation. In this work, the influence of this rotation on the calculation of the energy release rate (ERR) in modes I and II was studied using the Finite Element Method (FEM). Several models with different degrees of asymmetry (different thickness ratio and/or elastic modulus ratio) and different applied displacements were prepared to obtain different levels of rotation during the test. As is known, the concept of modes I and II refers to the components of the energy release rate calculated in the direction perpendicular and tangential to the delamination plane, respectively. If the model experiences significant rotation during the application of the load, this non-linearity must be considered in the calculation of the mode partition I/II. In this work, appreciable differences were observed in the values of modes I and II, depending on their calculation in a global system or a local system that rotates with the sample. When performing crack growth calculations, the difference between critical loads can be in the order of 4%, while the difference between mode I and mode II results can reach 4% and 14%, respectively, for an applied displacement of only 5 mm. Currently, this correction is not usually implemented in Finite Element calculation codes or in analytical developments. The purpose of this article is to draw attention to this aspect when the rotation of the specimen is not negligible. Full article
Show Figures

Figure 1

16 pages, 5631 KiB  
Article
Dynamic Damage Characteristics of Red Sandstone: An Investigation of Experiments and Numerical Simulations
by Yelin Qian, Ying Su, Ruicai Han, Changchun Li and Ran An
Buildings 2025, 15(11), 1845; https://doi.org/10.3390/buildings15111845 - 27 May 2025
Viewed by 373
Abstract
This study investigates damage characteristics of red sandstone under dynamic loads to clarify the effects of construction disturbances and blasting on the stability of surrounding rock during mountain tunnel construction in water-rich strata. Dynamic impact experiments at various loads were conducted using the [...] Read more.
This study investigates damage characteristics of red sandstone under dynamic loads to clarify the effects of construction disturbances and blasting on the stability of surrounding rock during mountain tunnel construction in water-rich strata. Dynamic impact experiments at various loads were conducted using the Split Hopkinson Pressure Bar (SHPB) instrument, complemented by simulations of the fracturing process in saturated sandstone using finite element software. This analysis systematically examines the post-fracture granularity mass fraction, stress-strain curves, peak stress-average strain rate relationship, and fracture patterns. The dynamic response mechanism of red sandstone during the process of tunnel blasting construction was thoroughly investigated. Experimental results reveal that the peak stress and failure strain exhibit strain rate dependency, increasing from 45.65 MPa to 115.34 MPa and 0.95% to 5.23%, respectively, as strain rate elevates from 35.53 s−1 to 118.71 s−1. The failure process of red sandstone is divided into four stages: crack closure, nearly elastic phase, rapid crack development, and rapid unloading. Dynamic peak stress and average strain rate in sandstone demonstrate an approximately linear relationship, with the correlation coefficient being 0.962. Under different impact loads, fractures in specimens typically expand from the edges to the center and evolve from internal squeezing fractures to external development. Peak stress, degree of specimen breakage, and energy dissipation during fracturing are significantly influenced by the strain rate. The numerical simulations confirmed experimental findings while elucidating the failure mechanism in surrounding rocks under varying strain rates. This work pioneers a multiscale analysis framework bridging numerical simulation with a blasting construction site, addressing the critical gap in time-dependent deformation during tunnel excavation. Full article
Show Figures

Figure 1

16 pages, 3096 KiB  
Article
Effect of Desulfurization Ash Content on the Low-Temperature Rheological Properties of Asphalt Mastic
by Yinghui Zhang, Kai Li, Yong Wu and Zhigang Zhou
Coatings 2025, 15(5), 604; https://doi.org/10.3390/coatings15050604 - 18 May 2025
Viewed by 429
Abstract
Circulating fluidized bed combustion flue gas desulfurization generates large volumes of dry desulfurization ash requiring sustainable management. This study evaluated the impacts of substituting desulfurization ash for mineral powder filler in asphalt mastic on low-temperature rheological properties. Asphalt mastics were produced with 0–100% [...] Read more.
Circulating fluidized bed combustion flue gas desulfurization generates large volumes of dry desulfurization ash requiring sustainable management. This study evaluated the impacts of substituting desulfurization ash for mineral powder filler in asphalt mastic on low-temperature rheological properties. Asphalt mastics were produced with 0–100% ash replacing mineral powder at 0.8–1.2 powder-binder mass ratios. Ductility and bending beam rheometer testing assessed flexibility and crack resistance. Burgers’ model fitted bending creep compliance to derive relaxation time, m(t)/S(t) index, and low-temperature compliance parameter for analytical insight. Scanning electron microscopy and Fourier transform infrared spectroscopy probed microstructural development and interaction mechanisms. Results showed that the inclusion of desulfurization ash reduced the low-temperature performance of the asphalt mastic compared to the mineral powder asphalt mastic. Additionally, as the temperature decreased further, the effect of the powder-to-gum ratio on the slurry’s crack resistance became less pronounced. Desulfurization ash primarily interacted with the base bitumen through physical means, and the performance of desulfurization ash asphalt slurry mainly depended on the degree of swelling between the desulfurization ash and the base asphalt. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

29 pages, 5998 KiB  
Article
Stability of Slope and Concrete Structure Under Cyclic Load Coupling and Its Application in Ecological Risk Prevention and Control
by Shicong Ren, Jun Wang, Nian Chen and Tingyao Wu
Sustainability 2025, 17(10), 4260; https://doi.org/10.3390/su17104260 - 8 May 2025
Viewed by 495
Abstract
This paper focuses on the stability issues of geological and engineering structures and conducts research from two perspectives: the mechanism of slope landslides under micro-seismic action and the cyclic failure behavior of concrete materials. In terms of slope stability, through the combination of [...] Read more.
This paper focuses on the stability issues of geological and engineering structures and conducts research from two perspectives: the mechanism of slope landslides under micro-seismic action and the cyclic failure behavior of concrete materials. In terms of slope stability, through the combination of model tests and theories, the cumulative effect of circulating micro-seismic waves on the internal damage of slopes was revealed. This research finds that the coupling of micro-vibration stress and static stress significantly intensifies the stress concentration on the slope, promotes the development of potential sliding surfaces and the extension of joints, and provides a scientific basis for the prediction of landslide disasters. This helps protect mountain ecosystems and reduce soil erosion and vegetation destruction. The number of cyclic loads has a power function attenuation relationship with the compressive strength of concrete. After 1200 cycles, the strength drops to 20.5 MPa (loss rate 48.8%), and the number of cracks increases from 2.7 per mm3 to 34.7 per mm3 (an increase of 11.8 times). Damage evolution is divided into three stages: linear growth, accelerated expansion, and critical failure. The influence of load amplitude on the number of cracks shows a threshold effect. A high amplitude (>0.5 g) significantly stimulates the propagation of intergranular cracks in the mortar matrix, and the proportion of intergranular cracks increases from 12% to 65%. Grey correlation analysis shows that the number of cycles dominates the strength attenuation (correlation degree 0.87), and the load amplitude regulates the crack initiation efficiency more significantly (correlation degree 0.91). These research results can optimize the design of concrete structures, enhance the durability of the project, and indirectly reduce the resource consumption and environmental burden caused by structural damage. Both studies are supported by numerical simulation and experimental verification, providing theoretical support for disaster prevention and control and sustainable engineering practices and contributing to ecological environment risk management and the development of green building materials. Full article
Show Figures

Figure 1

18 pages, 7522 KiB  
Article
Study on Influence of Grouting on Mechanical Characteristics and Stress Concentration in Hole-Containing Rock
by Yanshuang Yang, Zhaopeng Kang, Shili Qiu, Lei Yan and Jiancheng Peng
Appl. Sci. 2025, 15(10), 5245; https://doi.org/10.3390/app15105245 - 8 May 2025
Viewed by 374
Abstract
Grouting technology is a pivotal methodology for enhancing the mechanical properties of defective surrounding rock masses in tunnel engineering. Through uniaxial compression tests on intact, hole-containing, and grouted marble specimens, the influence of cement grout filling on the mechanical behavior of marble containing [...] Read more.
Grouting technology is a pivotal methodology for enhancing the mechanical properties of defective surrounding rock masses in tunnel engineering. Through uniaxial compression tests on intact, hole-containing, and grouted marble specimens, the influence of cement grout filling on the mechanical behavior of marble containing holes was investigated. Based on the experimental results, discrete element method (DEM) models were established for the three types of specimens, revealing the mesoscopic crack propagation mechanisms and stress distribution in potential stress concentration zones during failure. The experimental results demonstrated that the implementation of cement grouting enhanced the strength properties of the specimens by 22.38%. In terms of failure modes, the failure mode of the grouted specimens was similar to that of the intact specimens, and the filling material transformed the failure mode from tensile to shear failure. Numerical simulations revealed differences in microcrack evolution: cracks in the hole-containing specimens initiated near the upper and lower ends of the holes, while cracks in the grouted specimens originated around the filling material, with both types propagating axially. Microcracks in the grouted specimens initiated earlier, but the majority of microcracks in both types developed after peak stress and were predominantly tensile. The stress concentration coefficients for the intact, grouted, and hole-containing specimens were approximately 0.84, 2.25, and 2.96, respectively. The grouted specimens shortened the duration and alleviated the degree of stress concentration in the defect zones. This study elucidates the grouting reinforcement mechanisms in defective tunnel surrounding rock through a multiscale approach, providing theoretical underpinnings for optimizing tunnel support systems and preventing engineering hazards including collapse and rockburst. Full article
Show Figures

Figure 1

20 pages, 8770 KiB  
Article
Failure and Energy Evolution Characteristics of Saturated Natural Defective Material Under Different Confining Pressures
by Zhihao Gao, Shihao Guo, Xiaoyong Yang, Shanchao Hu, Junhong Huang, Yafei Cheng, Dawang Yin and Jinhao Dou
Materials 2025, 18(9), 2027; https://doi.org/10.3390/ma18092027 - 29 Apr 2025
Viewed by 448
Abstract
In nature, many brittle materials contain natural defects such as microcracks or joints, for example, rocks. Under water-saturated conditions, the strength of defective materials undergoes varying degrees of attenuation, leading to material failure and even structural instability in engineering contexts. Moreover, the deformation [...] Read more.
In nature, many brittle materials contain natural defects such as microcracks or joints, for example, rocks. Under water-saturated conditions, the strength of defective materials undergoes varying degrees of attenuation, leading to material failure and even structural instability in engineering contexts. Moreover, the deformation and failure of defective brittle materials are essentially the result of the accumulation and dissipation of energy. Studying the energy evolution of defective brittle materials under load is more conducive to reflecting the intrinsic characteristics of strength changes and overall failure of brittle materials under external loading. Natural defective brittle rock materials were firstly water saturated and triaxial compression tests were performed to determine the mechanical properties of water-saturated materials. The energy evolution patterns of water-saturated materials under varying confining pressures were also obtained. Using the discrete element method, the macro- and micro-failure characteristics of water-saturated materials were investigated, revealing the mesoscopic mechanisms of deformation and failure evolution in these materials. The results indicate that confining pressure significantly enhances the peak compressive strength and elastic modulus of water-saturated defective materials. When the confining pressure increased from 0 MPa to 20 MPa, the peak strength and elastic modulus of the water-saturated materials increased by 126.8% and 91.9%, respectively. Confining pressure restricts the radial deformation of water-saturated materials and dominates the failure mode. As confining pressure increases, the failure mode transitions from tensile splitting (at 0 MPa confining pressure) to shear failure (at confining pressures ≥ 10 MPa), with the failure plane angle gradually decreasing as confining pressure rises. Confining pressure significantly alters the energy storage–release mechanism of water-saturated defective brittle materials. At peak load, the total energy, elastic energy, and dissipated energy increased by 347%, 321%, and 1028%, respectively. The ratio of elastic energy storage to peak strain ratio shows a positive correlation, and the elastic storage ratio of water-saturated defective brittle materials under confining pressure is always higher than that without confining pressure. When the strain ratio exceeds 0.94, a negative correlation between confining pressure and the rate of elastic storage ratio is observed. From the perspective of mesoscopic fracture evolution in water-saturated defective brittle materials, the crack propagation path shifts from the periphery to the center of the material, and the fracture angle decreases linearly from 89° to 58° as confining pressure increases. The dominant direction of crack development is concentrated within the 45–135° range. The findings elucidate the mechanisms by which water saturation and confining pressure influence the strength degradation of natural defective brittle materials from both mesoscopic and energy perspectives, providing theoretical support for the stability control of related engineering structures. Full article
Show Figures

Figure 1

20 pages, 7512 KiB  
Article
Fatigue Crack Growth Simulation of R260 Grade Pearlitic Rail Steel Using the Discrete Element Method
by Hamed Davoodi Jooneghani, Klaus Six, Saham Sadat Sharifi, Maria Cecilia Poletti and Gerald Trummer
Machines 2025, 13(4), 305; https://doi.org/10.3390/machines13040305 - 9 Apr 2025
Viewed by 514
Abstract
Fatigue-induced crack initiation and propagation are a major concern in pearlitic railway rails and wheels. Rails and wheels undergo significant plastic deformation on their near-surface layers during service, leading to the initiation and propagation of cracks within the deformed region. Existing models typically [...] Read more.
Fatigue-induced crack initiation and propagation are a major concern in pearlitic railway rails and wheels. Rails and wheels undergo significant plastic deformation on their near-surface layers during service, leading to the initiation and propagation of cracks within the deformed region. Existing models typically use finite element models (FEMs) to describe these kinds of fatigue phenomena. However, they fail to establish a strong connection between the microstructure of the undeformed and the deformed materials and their corresponding fatigue properties. Therefore, a model based on the soft-contact discrete element method (DEM) was developed that considers microstructural details such as prior austenite grains (PAGs), pearlite blocks, pearlite colonies, and lamellar orientation of the ferrite–cementite structure of the pearlite. The Voronoi Tessellation method was used to generate a hierarchical mesh to represent these microstructural details, considering the distribution of microstructural details. Crack propagation is simulated by applying damage laws on the microstructural interface level that degrade the stiffness of the fibers connecting the mesh elements. The model’s crack growth predictions are compared with experimental results from the literature to validate its accuracy for different deformation degrees. The developed model can be used in the designing and material selection phase in the railway industry to help select the material with optimum microstructural features. Also, it can be used for the selection of the optimum heat treatment process considering materials resistance to the fatigue crack growth. Full article
(This article belongs to the Special Issue Wheel–Rail Contact: Mechanics, Wear and Analysis)
Show Figures

Figure 1

22 pages, 5425 KiB  
Article
Diffusion Mechanism in Running-Water and CFD-DEM Numerical Simulation of Expandable Particulate Grouting Material
by Zhipeng Zhang, Chenyang Ma, Chen Zhao, Zhuo Zheng, Wei Li, Rentai Liu, Xiuhao Li and Hongyan Wang
Materials 2025, 18(7), 1681; https://doi.org/10.3390/ma18071681 - 7 Apr 2025
Viewed by 490
Abstract
In order to study the diffusion and sealing mechanism of an innovative grouted material tentatively called “expandable particulate grout material”, the diffusion process was simulated by the numerical method of CFD-DEM coupling. A numerical model was established for a grouting process in an [...] Read more.
In order to study the diffusion and sealing mechanism of an innovative grouted material tentatively called “expandable particulate grout material”, the diffusion process was simulated by the numerical method of CFD-DEM coupling. A numerical model was established for a grouting process in an individual fracture based on the basic physical parameters of expandable particles. The numerical model of the expandable particulate slurry flow was established. The interaction between particles and water in different conditions, such as different grouting times, different volume fractions of the particle, and different velocities, was investigated. The differences in the diffusion process and in the running-water sealing mechanism of expandable particles, cement slurry, and cement-sodium silicate slurry in the crack (in a, in b, and in c) were analyzed. The influence of expandable particles on the streamline of the grout and the drag force in the interaction process under the fracture were analyzed. This is summarized The influence of the velocity ratio of grout to water on different physical quantities, such as diffusion opening degree, diffusion velocity, and diffusion distance, was summarized. It is of significant theoretical and practical value to further develop and improve the grouting technology. Full article
Show Figures

Figure 1

20 pages, 4590 KiB  
Article
Computationally Efficient p-Version Finite Element Analysis of Composite-Reinforced Thin-Walled Cylindrical Shells with Circumferential Cracks
by Jae S. Ahn
Materials 2025, 18(7), 1404; https://doi.org/10.3390/ma18071404 - 21 Mar 2025
Viewed by 340
Abstract
Cylindrical shells are extensively employed in fluid transport, pressure vessels, and aerospace structures, where they endure mechanical and environmental stresses. However, under high pressure or external loading, circumferential cracks may develop, threatening structural integrity. Composite patch reinforcement is an effective method to mitigate [...] Read more.
Cylindrical shells are extensively employed in fluid transport, pressure vessels, and aerospace structures, where they endure mechanical and environmental stresses. However, under high pressure or external loading, circumferential cracks may develop, threatening structural integrity. Composite patch reinforcement is an effective method to mitigate crack propagation and restore structural performance. This study presents a finite element model using p-refinement techniques to analyze cylindrical shells with circumferential cracks reinforced by composite patches. The approach integrates equivalent single-layer (ESL) and layer-wise (LW) theories within a unified single-element mesh, significantly reducing the degrees of freedom compared to conventional LW models. Fracture analysis is conducted using the virtual crack closure technique (VCCT) to evaluate stress intensity factors. The model’s accuracy and efficiency are verified through benchmark and patch reinforcement simulations. Additionally, a parametric study examines how patch material, thickness, and adhesive properties affect reinforcement efficiency across varying crack angles. This study provides an effective methodology for analyzing composite-reinforced thin-walled cylindrical shells, offering valuable insights for aerospace, marine, and pipeline engineering. Full article
Show Figures

Figure 1

Back to TopTop