Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = covalent adaptive networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 7197 KB  
Review
Pultrusion and Vitrimer Composites: Emerging Pathways for Sustainable Structural Materials
by Vishal Kumar, Khaled W. Shahwan, Wenbin Kuang, Kevin L. Simmons, Philip Taynton and Emily R. Cieslinski
J. Compos. Sci. 2025, 9(10), 559; https://doi.org/10.3390/jcs9100559 (registering DOI) - 13 Oct 2025
Abstract
Pultrusion is a manufacturing process used to produce fiber-reinforced polymer composites with excellent mechanical, thermal, and chemical properties. The resulting materials are lightweight, durable, and corrosion-resistant, making them valuable in aerospace, automotive, construction, and energy sectors. However, conventional thermoset composites remain difficult to [...] Read more.
Pultrusion is a manufacturing process used to produce fiber-reinforced polymer composites with excellent mechanical, thermal, and chemical properties. The resulting materials are lightweight, durable, and corrosion-resistant, making them valuable in aerospace, automotive, construction, and energy sectors. However, conventional thermoset composites remain difficult to recycle due to their infusible and insoluble cross-linked structure. This review explores integrating vitrimer technology a novel class of recyclable thermosets with dynamic covalent adaptive networks into the pultrusion process. As only limited studies have directly reported vitrimer pultrusion to date, this review provides a forward-looking perspective, highlighting fundamental principles, challenges, and opportunities that can guide future development of recyclable high-performance composites. Vitrimers combine the mechanical strength (tensile strength and modulus) of thermosets with the reprocessability and reshaping of thermoplastics through dynamic bond exchange mechanisms. These polymers offer high-temperature reprocessability, self-healing, and closed-loop recyclability, where recycling efficiency can be evaluated by the recovery yield retention of mechanical properties and reuse cycles meeting the demand for sustainable manufacturing. Key aspects discussed include resin formulation, fiber impregnation, curing cycles, and die design for vitrimer systems. The temperature-dependent bond exchange reactions present challenges in achieving optimal curing and strong fiber–matrix adhesion. Recent studies indicate that vitrimer-based composites can maintain structural integrity while enabling recycling and repair, with mechanical performance such as flexural and tensile strength comparable to conventional composites. Incorporating vitrimer materials into pultrusion could enable high-performance, lightweight products for a circular economy. The remaining challenges include optimizing curing kinetics, improving interfacial adhesion, and scaling production for widespread industrial adoption. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

22 pages, 4598 KB  
Article
Machinability of Vitrified Semi-Finished Products: Chip Formation and Heat Development at the Cutting Edge
by Jannick Fuchs, Yehor Kozlovets, Jonathan Alms, Markus Meurer, Christian Hopmann, Thomas Bergs and Mustapha Abouridouane
Polymers 2025, 17(19), 2681; https://doi.org/10.3390/polym17192681 - 3 Oct 2025
Viewed by 298
Abstract
Fibre-reinforced composites are facing new challenges in the context particular in sustainability and recyclability. Vitrimers could be useful as new matrices to support the increase in sustainability. Due to their high strength, which is comparable to that of thermosets often used in composites, [...] Read more.
Fibre-reinforced composites are facing new challenges in the context particular in sustainability and recyclability. Vitrimers could be useful as new matrices to support the increase in sustainability. Due to their high strength, which is comparable to that of thermosets often used in composites, and their covalent adaptive networks, which make them reshapeable for scaled-up manufacturing and recycling purposes, they are very useful. Orthogonal cutting is used for precise reshaping and functional integration into carbon fibre reinforced plastics. Vitrimers could improve processing results at the cutting edge as well as surface quality thanks to their self-healing properties compared to brittle matrices, as well as enabling the recycling of formed chips and scrap. This study showcases the manufacturing of a carbon fibre-reinforced vitrimer using 4-aminophenyl disulfide as a hardener, with vacuum-assisted resin infusion. The temperature of chip formation and the cutting parameters are then shown for different fibre orientations, cutting widths and speeds. The observed cutting forces are lower (less than 140 N) and more irregular for fibre orientations 45°/135°, increasing with cutting depth, and fluctuating periodically during machining. Despite varying cutting speeds, the forces remain relatively constant in range between 85 N and 175 N for 0°/90° fibre orientation and 50 N and 120 N for 45°/135° fibre orientation, with no significant tool wear observed and lower-damage depth and overhanging fibres observed for 0°/90° fibre orientation. Damage observation of the cutting tool shows promising results, with lower abrasion observed compared to thermoset matrices. Microscopic images of the broached surface also show good quality, which could be improved by self-healing of the matrix at higher temperatures. Temperature measurements of chip formation using a high-speed camera show a high temperature gradient as cutting speeds increase, but the temperature only ever exceeds 180 °C at cutting speeds of 150 m/min, ensuring reprocessability since this is below the degradation temperature. Therefore, orthogonal cutting of vitrimers can impact sustainable composite processing. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

28 pages, 5916 KB  
Review
Recent Advances in Supramolecular Systems for Precision Medicine: Structural Design, Functional Integration, and Clinical Translation Challenges
by Xiaomin Ma, Yazhe Xiao, Shuyu Li, Jianghai Du, Junjie Wang and Xingzhou Peng
Pharmaceutics 2025, 17(9), 1192; https://doi.org/10.3390/pharmaceutics17091192 - 13 Sep 2025
Viewed by 763
Abstract
Non-covalent and dynamic covalent interactions enable supramolecular systems to function as adaptive platforms in biomedical research, offering novel strategies for precision medicine applications. This review examines five-year developments in supramolecular applications across precision medical domains, including disease diagnosis, bioimaging, targeted drug delivery, tissue [...] Read more.
Non-covalent and dynamic covalent interactions enable supramolecular systems to function as adaptive platforms in biomedical research, offering novel strategies for precision medicine applications. This review examines five-year developments in supramolecular applications across precision medical domains, including disease diagnosis, bioimaging, targeted drug delivery, tissue engineering, and gene therapy. The review begins by systematically categorizing supramolecular structures into dynamic covalent systems (e.g., disulfide bonds, boronate esters, and hydrazone bonds) and dynamic non-covalent systems (e.g., host–guest interactions, hydrogen-bond networks, metal coordination, and π–π stacking), highlighting current strategies employed to optimize their responsiveness, stability, and targeting efficiency. Representative case studies, such as cyclodextrin-based nanocarriers and metal–organic frameworks (MOFs), are thoroughly analyzed to illustrate how supramolecular systems can enhance precision in drug delivery and improve biocompatibility. Furthermore, this article critically discusses major challenges faced during clinical translation, encompassing structural instability, inadequate specificity of environmental responsiveness, pharmacokinetic and toxicity concerns, and difficulties in scalable manufacturing. Potential future directions to overcome these barriers are proposed, emphasizing biomimetic interface engineering and dynamic crosslinking strategies. Collectively, the continued evolution in structural optimization and functional integration within supramolecular systems holds great promise for achieving personalized diagnostic and therapeutic platforms, thereby accelerating their translation into clinical practice and profoundly shaping the future landscape of precision medicine. Full article
Show Figures

Figure 1

22 pages, 5572 KB  
Article
Design of Vitrimers with Simultaneous Degradable and Dynamic Crosslinkers: Mechanical and Thermal Behavior Based on Transesterification Reactions Between β-Amino Esters and Hydroxylated Acrylate/Methacrylate Monomers
by Naroa Ayensa, Felipe Reviriego, Helmut Reinecke, Alberto Gallardo, Carlos Elvira and Juan Rodríguez-Hernández
Polymers 2025, 17(18), 2448; https://doi.org/10.3390/polym17182448 - 10 Sep 2025
Viewed by 494
Abstract
In recent years, efforts have focused on developing repairable, malleable, and recyclable thermoset materials to reduce the growing volume of polymer waste and extend the lifetime of existing polymeric materials. Specifically, associative covalent adaptable networks (CANs), also known as vitrimers, have received considerable [...] Read more.
In recent years, efforts have focused on developing repairable, malleable, and recyclable thermoset materials to reduce the growing volume of polymer waste and extend the lifetime of existing polymeric materials. Specifically, associative covalent adaptable networks (CANs), also known as vitrimers, have received considerable attention. In this work, photopolymerizable vitrimers were prepared by combining crosslinkers containing β-amino esters in their structure with hydroxylated acrylate or methacrylate monomers, with the aim of reprocessing these materials through the activation of transesterification reactions. The network design and photopolymerization conditions were optimized to ensure the successful formation of the vitrimers. Tunable mechanical and thermal properties were achieved by varying their chemical composition. Furthermore, the reprocessing ability of these materials was confirmed through thermal treatments. Additionally, these vitrimers exhibited the ability to undergo hydrolysis in basic aqueous media, providing an alternative pathway for recycling. Full article
(This article belongs to the Special Issue Latest Progress on Polymer Synthesis with Multifunctional Monomers)
Show Figures

Graphical abstract

35 pages, 3721 KB  
Review
Research Progress of Supramolecular Gels in the Field of Petroleum Engineering
by Liyao Dai, Jinsheng Sun, Kaihe Lv, Yingrui Bai, Jianlong Wang, Chaozheng Liu and Mei-Chun Li
Gels 2025, 11(8), 661; https://doi.org/10.3390/gels11080661 - 19 Aug 2025
Viewed by 785
Abstract
Traditional petroleum engineering materials have problems such as single functionality and poor environmental adaptability in terms of lost circulation control and enhanced oil recovery. Supramolecular gels, with their dynamic reversible non-covalent network structure, demonstrate unique advantages in this regard. This paper classifies supramolecular [...] Read more.
Traditional petroleum engineering materials have problems such as single functionality and poor environmental adaptability in terms of lost circulation control and enhanced oil recovery. Supramolecular gels, with their dynamic reversible non-covalent network structure, demonstrate unique advantages in this regard. This paper classifies supramolecular gels into hydrogen bond type, metal coordination type, host–guest type, and electrostatic interaction type based on differences in crosslinking structures. It explains the construction principles and characteristics of each type of gel and analyses their application progress in petroleum engineering fields, such as lost circulation control in drilling, temporary plugging in fracturing, and profile control in enhanced oil recovery. It also discusses the advantages and disadvantages of different systems and future development directions. Research has shown that the molecular design strategy of supramolecular gels can effectively address technical challenges under complex conditions, offering new insights for oil and gas field development. Further optimization of their long-term stability and large-scale production technology is needed to advance their practical application. Full article
(This article belongs to the Special Issue Polymer Gels for the Oil and Gas Industry)
Show Figures

Figure 1

15 pages, 2628 KB  
Article
High Anti-Swelling Zwitterion-Based Hydrogel with Merit Stretchability and Conductivity for Motion Detection and Information Transmission
by Qingyun Zheng, Jingyuan Liu, Rongrong Chen, Qi Liu, Jing Yu, Jiahui Zhu and Peili Liu
Nanomaterials 2025, 15(13), 1027; https://doi.org/10.3390/nano15131027 - 2 Jul 2025
Viewed by 915
Abstract
Hydrogel sensors show unique advantages in underwater detection, ocean monitoring, and human–computer interaction because of their excellent flexibility, biocompatibility, high sensitivity, and environmental adaptability. However, due to the water environment, hydrogels will dissolve to a certain extent, resulting in insufficient mechanical strength, poor [...] Read more.
Hydrogel sensors show unique advantages in underwater detection, ocean monitoring, and human–computer interaction because of their excellent flexibility, biocompatibility, high sensitivity, and environmental adaptability. However, due to the water environment, hydrogels will dissolve to a certain extent, resulting in insufficient mechanical strength, poor long-term stability, and signal interference. In this paper, a double-network structure was constructed by polyvinyl alcohol (PVA) and poly([2-(methacryloyloxy) ethyl]7 dimethyl-(3-sulfopropyl) ammonium hydroxide) (PSBMA). The resultant PVA/PSBMA-PA hydrogel demonstrated notable swelling resistance, a property attributable to the incorporation of non-covalent interactions (electrostatic interactions and hydrogen bonding) through the addition of phytic acid (PA). The hydrogel exhibited high stretchability (maximum tensile strength up to 304 kPa), high conductivity (5.8 mS/cm), and anti-swelling (only 1.8% swelling occurred after 14 days of immersion in artificial seawater). Assembled as a sensor, it exhibited high strain sensitivity (0.77), a low detection limit (1%), and stable electrical properties after multiple tensile cycles. The utilization of PVA/PSBMA-PA hydrogel as a wearable sensor shows promise for detecting human joint movements, including those of the fingers, wrists, elbows, and knees. Due to the excellent resistance to swelling, the PVA/PSBMA-PA-based sensors are also suitable for underwater applications, enabling the detection of underwater mannequin motion. This study proposes an uncomplicated and pragmatic methodology for producing hydrogel sensors suitable for use within subaquatic environments, thereby concomitantly broadening the scope of applications for wearable electronic devices. Full article
(This article belongs to the Special Issue Nanomaterials in Flexible Sensing and Devices)
Show Figures

Figure 1

31 pages, 4977 KB  
Review
Polyimine-Based Self-Healing Composites: A Review on Dynamic Covalent Thermosets for Sustainable and High-Performance Applications
by Xiaoxue Wang, Si Zhang and Yun Chen
Polymers 2025, 17(12), 1607; https://doi.org/10.3390/polym17121607 - 9 Jun 2025
Cited by 2 | Viewed by 1636
Abstract
Polyimine-based composites have emerged as a promising class of dynamic covalent thermosets, combining high mechanical strength, thermal stability, self-healing, recyclability, and reprocessability. This review systematically summarizes recent advances in polyimine synthesis, highlighting dynamic covalent chemistry (DCC) strategies such as imine exchange and reversible [...] Read more.
Polyimine-based composites have emerged as a promising class of dynamic covalent thermosets, combining high mechanical strength, thermal stability, self-healing, recyclability, and reprocessability. This review systematically summarizes recent advances in polyimine synthesis, highlighting dynamic covalent chemistry (DCC) strategies such as imine exchange and reversible Schiff base reactions. Structural customization can be achieved by incorporating reinforcing phases such as carbon nanotubes, graphene, and bio-based fibers. Advanced fabrication methods—including solution casting, hot pressing, and interfacial polymerization—enable precise integration of these components while preserving structural integrity and adaptability. Mechanical performance analysis emphasizes the interplay between dynamic bonds, interfacial engineering, and multiscale design strategies. Polyimine composites exhibit outstanding performance characteristics, including a self-healing efficiency exceeding 90%, a tensile strength reaching 96.2 MPa, and remarkable chemical recyclability. Emerging engineering applications encompass sustainable green materials, flexible electronics, energy storage devices, and flame-retardant systems. Key challenges include balancing multifunctionality, enhancing large-scale processability, and developing low-energy recycling strategies. Future efforts should focus on interfacial optimization and network adaptivity to accelerate the industrial translation of polyimine composites, advancing next-generation sustainable materials. Full article
(This article belongs to the Collection Progress in Polymer Applications)
Show Figures

Figure 1

19 pages, 3225 KB  
Article
Tailoring Thermomechanical, Shape Memory and Self-Healing Properties of Furan-Based Polyketone via Diels-Alder Chemistry with Different Bismaleimide Crosslinkers
by Esteban Araya-Hermosilla, Marco Carlotti, Felipe Orozco, Guilherme Macedo R. Lima, Rodrigo Araya-Hermosilla, Daniela E. Ortega, Diego Cortés-Arriagada, Francesco Picchioni, Ranjita K. Bose, Virgilio Mattoli and Andrea Pucci
Polymers 2025, 17(5), 565; https://doi.org/10.3390/polym17050565 - 20 Feb 2025
Cited by 1 | Viewed by 1407
Abstract
Furan/maleimide dynamic covalent chemistry has been extensively used to fabricate re-workable and self-healing thermosets. Understanding the relationship between crosslinker structure, network dynamics, and material final properties, however, remains a challenge. This study introduces self-healing and shape-memory thermosets derived from furan-functionalized polyketones (PKFU) crosslinked [...] Read more.
Furan/maleimide dynamic covalent chemistry has been extensively used to fabricate re-workable and self-healing thermosets. Understanding the relationship between crosslinker structure, network dynamics, and material final properties, however, remains a challenge. This study introduces self-healing and shape-memory thermosets derived from furan-functionalized polyketones (PKFU) crosslinked with aromatic bis-maleimides, i.e., 1,1′-(methylenedi-4,1-phenylene)bis-maleimide (BISM1) and bis(3-ethyl-5-methyl-4-maleimidophenyl)methane (BISM2), via a thermally reversible Diels-Alder reaction. Polyketones were chemically modified with furfurylamine through the Paal-Knorr reaction, achieving varying furan grafting ratios. The resulting networks, characterized by ATR-FTIR, 1H-NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and rheology, demonstrated tunable thermomechanical properties. BISM2-based thermosets exhibited enhanced thermal stability and reversibility over a broad temperature range (20–120 °C), with a shape recovery ratio of up to 89% and complete self-healing at 120 °C within 5 min. These findings highlight the potential of polyketone-based thermosets for applications requiring adaptive thermomechanical properties, efficient self-repair, and sustainability. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

13 pages, 6101 KB  
Proceeding Paper
Characterisation of Novel Self-Healing Composites Using Acousto-Ultrasonic Testing
by Claudia Barile, Vimalathithan Paramsamy Kannan, Giulia Derosa and Giovanni Pappalettera
Eng. Proc. 2025, 85(1), 23; https://doi.org/10.3390/engproc2025085023 - 19 Feb 2025
Viewed by 392
Abstract
Self-healing composites are designed based on natural healing processes such as bone regeneration and blood coagulation. These composites have polymeric material containing covalent adaptable networks that rearrange their molecular structure when heated, thereby serving as a healing agent. The inclusion of the healing [...] Read more.
Self-healing composites are designed based on natural healing processes such as bone regeneration and blood coagulation. These composites have polymeric material containing covalent adaptable networks that rearrange their molecular structure when heated, thereby serving as a healing agent. The inclusion of the healing polymers into the principal matrix of the fiber-reinforced composites alters their off-axis properties. In addition, the healing agents tend to bleed out of the composite structures upon heating. It is, therefore, essential to characterize the extent of the changes in the off-axis properties of the self-healing composites. In this research work, three different configurations of self-healing composites are subjected to three-point bending tests, and their healing characteristics are studied using Acousto-Ultrasonic tests. Frequencies of the propagating stress waves in the AU tests are used to analyze the different conditions of the self-healing composites, such as virgin, damaged, damaged-partially healed, and damaged-fully healed. The results show that the AU test could potentially be used to evaluate the healing behavior of these fiber-reinforced self-healable composites. Full article
Show Figures

Figure 1

19 pages, 4151 KB  
Review
Current State-of-the-Art and Perspectives in the Design and Application of Vitrimeric Systems
by Diego Pugliese and Giulio Malucelli
Molecules 2025, 30(3), 569; https://doi.org/10.3390/molecules30030569 - 27 Jan 2025
Cited by 1 | Viewed by 3452
Abstract
To fulfill the current circular economy concept, the academic and industrial communities are devoting significant efforts to plastic materials’ end-of-life. Unlike thermoplastics, which are easy to recover and re-valorize, recycling thermosets is still difficult and challenging. Conversely, because of their network structure, thermosetting [...] Read more.
To fulfill the current circular economy concept, the academic and industrial communities are devoting significant efforts to plastic materials’ end-of-life. Unlike thermoplastics, which are easy to recover and re-valorize, recycling thermosets is still difficult and challenging. Conversely, because of their network structure, thermosetting polymer systems exhibit peculiar features that make these materials preferable for several applications where high mechanical properties, chemical inertness, and thermal stability, among others, are demanded. In this view, vitrimers have quite recently attracted the attention of the scientific community, as they can form dynamic covalent adaptive networks that provide the properties typical of thermosets while keeping the possibility of being processed (and, therefore, mechanically recycled) beyond a certain temperature. This review aims to provide an overview of vitrimers, elucidating their most recent advances and applications and posing some perspectives for the forthcoming years. Full article
Show Figures

Graphical abstract

31 pages, 6199 KB  
Review
Conventional Thermoset Composites and Their Sustainable Alternatives with Vitrimer Matrix—Waste Management/Recycling Options with Focus on Carbon Fiber Reinforced Epoxy Resin Composites
by Paraskevi Markouti, Evanthia Tzouma, Alkiviadis S. Paipetis and Nektaria-Marianthi Barkoula
Materials 2025, 18(2), 351; https://doi.org/10.3390/ma18020351 - 14 Jan 2025
Cited by 1 | Viewed by 2643
Abstract
Carbon-fiber-reinforced polymers (CFRPs) with epoxy matrices are widely applied in high-performance structural applications and represent one of the biggest classes of materials with urgent need for end-of-life management. Available waste management methodologies for conventional thermoset composites with a focus on CFRPs are briefly [...] Read more.
Carbon-fiber-reinforced polymers (CFRPs) with epoxy matrices are widely applied in high-performance structural applications and represent one of the biggest classes of materials with urgent need for end-of-life management. Available waste management methodologies for conventional thermoset composites with a focus on CFRPs are briefly reviewed and their limitations are highlighted. In the quest to obtain materials with mechanical performance, thermal stability, and sustainability, the research community has turned its interest to develop polymer composites with adaptable and dynamic networks in their matrix, and lately also at an interface/interphase level. The current review focuses on the life extension/waste management options that are opened through the introduction of covalent adaptable networks in the epoxy matrix of CFRPs. The processing conditions that are applied for the healing/repairing, welding/reshaping, and/or recycling of CFRPs are presented in detail, and compared based on the most common dynamic exchange reactions. Full article
(This article belongs to the Special Issue Advanced Resin Composites: From Synthesis to Application)
Show Figures

Figure 1

27 pages, 34507 KB  
Article
Leveraging Non-Covalent Adaptable Networks to Stabilize Drug-Polymer Systems in Supersaturated Solutions: A Computational and Experimental Approach
by Arif Budiman, Taufik Muhammad Fakih, Sandra Megantara, Muchtaridi Muchtaridi and Diah Lia Aulifa
Appl. Sci. 2025, 15(1), 307; https://doi.org/10.3390/app15010307 - 31 Dec 2024
Cited by 1 | Viewed by 1207
Abstract
This study’s integration of molecular dynamics (MD) simulations with non-covalent adaptable networks (NANs) and corroborative wet lab experiments offers a comprehensive approach to understanding the interactions between ritonavir (RTV) and polymers in supersaturated solutions. This multifaceted study not only explored the stabilization mechanisms [...] Read more.
This study’s integration of molecular dynamics (MD) simulations with non-covalent adaptable networks (NANs) and corroborative wet lab experiments offers a comprehensive approach to understanding the interactions between ritonavir (RTV) and polymers in supersaturated solutions. This multifaceted study not only explored the stabilization mechanisms facilitated by NANs but also examined the influence of polymer selection on the pharmaceutical properties of RTV, a class III compound known for its slow crystallization rate. This research utilized molecular dynamics simulations to model the intermolecular interactions between RTV and two polymers, Polyvinylpyrrolidone (PVP) K30 and Eudragit L100. These simulations were specifically designed to incorporate the effects of NANs, highlighting their dynamic nature and potential to enhance drug stability and solubility. Simultaneously, wet lab experiments were conducted to measure the nucleation induction times and observe the crystallization behavior of RTV under varying conditions of polymer presence. The experimental data demonstrated a significant extension in nucleation induction time, prolonging the duration from 12 to approximately 64 h when PVP K30 and Eudragit L100 were present. This substantial delay in crystallization was attributed to the strong intermolecular interactions between RTV and the polymers, which were effectively stabilized by the non-covalent bonds within the NANs. These findings were consistently confirmed across both computational and experimental settings, illustrating how NANs can effectively inhibit crystallization and enhance the supersaturation state of RTV. This study successfully demonstrates how the physical and chemical properties of polymers influence the crystallization process of poorly water-soluble drugs such as RTV. Leveraging the synergy between computational simulations and empirical laboratory data, this research provides deep insights into the mechanisms at play, ensuring that drug formulations are optimized for both stability and performance. Full article
Show Figures

Figure 1

13 pages, 2374 KB  
Article
Covalent Adaptable Networks from Polyacrylates Based on Oxime–Urethane Bond Exchange Reaction
by Yu Sotoyama, Naoto Iwata and Seiichi Furumi
Int. J. Mol. Sci. 2024, 25(23), 12897; https://doi.org/10.3390/ijms252312897 - 30 Nov 2024
Viewed by 1301
Abstract
Covalent adaptable networks (CANs) are polymer networks cross-linked via dynamic covalent bonds that can proceed with bond exchange reactions upon applying external stimuli. In this report, a series of cross-linked polyacrylate films were fabricated by changing the combination of acrylate monomer and the [...] Read more.
Covalent adaptable networks (CANs) are polymer networks cross-linked via dynamic covalent bonds that can proceed with bond exchange reactions upon applying external stimuli. In this report, a series of cross-linked polyacrylate films were fabricated by changing the combination of acrylate monomer and the amount of diacrylate cross-linker possessing oxime–urethane bonds as a kind of dynamic covalent bond to evaluate their rheological relaxation properties. Model analysis of the experimental relaxation curves of cross-linked polyacrylate films was conducted by assuming that they consist of two types of relaxation, one of which is related to the oxime–urethane bond exchange reaction, and another of which is associated with the melting of the aggregated cross-linker. It was found that the contribution from the relaxation due to the bond exchange reaction becomes dominant only when the normal-alkyl acrylates are used as a monomer. The relaxation time was almost constant even when the amount of the cross-linker was adjusted. Moreover, it was also indicated that the miscibility of the cross-linker is very important for the fabrication of CANs with good self-healing ability and reprocessability. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Japan)
Show Figures

Graphical abstract

11 pages, 3848 KB  
Article
Covalent Adaptable Network of Semicrystalline Polyolefin Blend with Triple-Shape Memory Effect
by Hann Lee, Yujin Jang, Young-Wook Chang and Changgyu Lim
Polymers 2024, 16(19), 2714; https://doi.org/10.3390/polym16192714 - 25 Sep 2024
Cited by 2 | Viewed by 1466
Abstract
A covalent adaptable network (CAN) of semicrystalline polyolefin blends with triple-shape memory effects was fabricated by the reactive melt blending of maleated polypropylene (mPP) and maleated polyolefin elastomer (mPOE) (50 wt/50 wt) in the presence of a small amount of a tetrafunctional thiol [...] Read more.
A covalent adaptable network (CAN) of semicrystalline polyolefin blends with triple-shape memory effects was fabricated by the reactive melt blending of maleated polypropylene (mPP) and maleated polyolefin elastomer (mPOE) (50 wt/50 wt) in the presence of a small amount of a tetrafunctional thiol (PETMP) and 1,5,7-triazabicyclo [4,4,0]dec-5-ene (TBD). The polymer blend formed a chemically crosslinked network via the reaction between the thiol group of PETMP and maleic anhydride of both polymers in the blend, which was confirmed by FTIR, the variation of torque during the melt mixing process, a solubility test, and DMA. DSC analysis revealed that the crosslinked polyolefin blends show two distinct crystalline melting transitions corresponding to each component polymer. Improved tensile strength as well as elongation at break were observed in the crosslinked blend as compared to the simple blend, and the mechanical properties were maintained after repeated melt processing. These results suggest that thermoplastic polyolefin blends can be transformed into a high-performance and value-added material with good recyclability and reprocessability. Full article
(This article belongs to the Special Issue Progress in Polymer Networks)
Show Figures

Figure 1

15 pages, 6006 KB  
Article
Recycling of Commercially Available Biobased Thermoset Polyurethane Using Covalent Adaptable Network Mechanisms
by Edoardo Miravalle, Gabriele Viada, Matteo Bonomo, Claudia Barolo, Pierangiola Bracco and Marco Zanetti
Polymers 2024, 16(15), 2217; https://doi.org/10.3390/polym16152217 - 3 Aug 2024
Cited by 2 | Viewed by 1908
Abstract
Until recently, recycling thermoset polyurethanes (PUs) was limited to degrading methods. The development of covalent adaptable networks (CANs), to which PUs can be assigned, has opened novel possibilities for actual recycling. Most efforts in this area have been directed toward inventing new materials [...] Read more.
Until recently, recycling thermoset polyurethanes (PUs) was limited to degrading methods. The development of covalent adaptable networks (CANs), to which PUs can be assigned, has opened novel possibilities for actual recycling. Most efforts in this area have been directed toward inventing new materials that can benefit from CAN theory; presently, little or nothing has been applied to industrially producible materials. In this study, both an industrially available polyol (Sovermol780®) and isocyanate (Tolonate X FLO 100®) with percentages of bioderived components were employed, resulting in a potentially scalable and industrially producible material. The resultant network could be reworked up to three times, maintaining the crosslinked structure without significantly changing the thermal properties. Improvements in mechanical parameters were observed when comparing the pristine material to the material exposed to three rework processes, with gains of roughly 50% in elongation at break and 20% in tensile strength despite a 25% decrease in Young’s modulus and crosslink density. Thus, it was demonstrated that theory may be profitably applied even to materials that are not designed including additional bonds but instead rely just on the dynamic urethane bond that is naturally present in the network. Full article
(This article belongs to the Special Issue Polymers and Biopolymers for Sustainable Life and Applications)
Show Figures

Figure 1

Back to TopTop