Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,880)

Search Parameters:
Keywords = countermeasures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 1857 KiB  
Review
The Adaptive Ecosystem of MaaS-Driven Cookie Theft: Dynamics, Anticipatory Analysis Concepts, and Proactive Defenses
by Leandro Antonio Pazmiño Ortiz, Ivonne Fernanda Maldonado Soliz and Vanessa Katherine Guevara Balarezo
Future Internet 2025, 17(8), 365; https://doi.org/10.3390/fi17080365 - 11 Aug 2025
Abstract
The industrialization of cybercrime, principally through Malware-as-a-Service (MaaS), has elevated HTTP cookie theft to a critical cybersecurity challenge, enabling attackers to bypass multi-factor authentication and perpetrate large-scale account takeovers. Employing a Holistic and Integrative Review methodology, this paper dissects the intricate, adaptive ecosystem [...] Read more.
The industrialization of cybercrime, principally through Malware-as-a-Service (MaaS), has elevated HTTP cookie theft to a critical cybersecurity challenge, enabling attackers to bypass multi-factor authentication and perpetrate large-scale account takeovers. Employing a Holistic and Integrative Review methodology, this paper dissects the intricate, adaptive ecosystem of MaaS-driven cookie theft. We systematically characterize the co-evolving arms race between offensive and defensive strategies (2020–2025), revealing a critical strategic asymmetry where attackers optimize for speed and low cost, while effective defenses demand significant resources. To shift security from a reactive to an anticipatory posture, a multi-dimensional predictive framework is not only proposed but is also detailed as a formalized, testable algorithm, integrating technical, economic, and behavioral indicators to forecast emerging threat trajectories. Our findings conclude that long-term security hinges on disrupting the underlying cybercriminal economic model; we therefore reframe proactive countermeasures like Zero-Trust principles and ephemeral tokens as economic weapons designed to devalue the stolen asset. Finally, the paper provides a prioritized, multi-year research roadmap and a practical decision-tree framework to guide the implementation of these advanced, collaborative cybersecurity strategies to counter this pervasive and evolving threat. Full article
Show Figures

Figure 1

27 pages, 859 KiB  
Article
Performance Enhancement Pathways for Electric Vehicle Manufacturing Companies Driven by Digital Transformation—A Configuration Analysis Based on the TOE Framework
by Yiqi Zhao, Qingfeng Meng and Zhen Li
Systems 2025, 13(8), 680; https://doi.org/10.3390/systems13080680 - 10 Aug 2025
Abstract
Digital transformation has brought unprecedented transformation and opportunities in manufacturing enterprises. Focusing on 65 listed companies in the electric vehicle sector as the research objects and drawing on the “Technology–Organization–Environment” (TOE) framework, this study selects three dimensions—technology, organization, and environment—and six antecedent conditions. [...] Read more.
Digital transformation has brought unprecedented transformation and opportunities in manufacturing enterprises. Focusing on 65 listed companies in the electric vehicle sector as the research objects and drawing on the “Technology–Organization–Environment” (TOE) framework, this study selects three dimensions—technology, organization, and environment—and six antecedent conditions. Using fsQCA configurational analysis, this research explores diverse paths to improving corporate performance, identifying five pathways. Among these, digital transformation and operational efficiency consistently serve as pivotal bridging conditions across multiple configurations. Furthermore, when enterprises demonstrate strong capabilities in both the technological and organizational dimensions, other conditions tend to act as substitutes, interacting synergistically with these core strengths to enhance overall firm performance. This study organically combines the TOE framework and fsQCA, deepening the application of the TOE theory in the field of electric vehicle manufacturing enterprises. Additionally, based on the configurational paths derived from the research, it provides differentiated countermeasure suggestions for electric vehicle manufacturing enterprises, offering practical guidance for enhancing their performance in the context of digital transformation. Full article
(This article belongs to the Section Complex Systems and Cybernetics)
Show Figures

Figure 1

16 pages, 1511 KiB  
Article
Study on the Effectiveness of Reinforcing Bar Insertion Work with a Circular Pipe
by Kakuta Fujiwara and Lichao Wang
Geotechnics 2025, 5(3), 55; https://doi.org/10.3390/geotechnics5030055 - 9 Aug 2025
Viewed by 28
Abstract
It is an urgent issue for preventing slope failure caused by increasingly severe earthquakes and heavy rain. As a conventional construction method, reinforcing bar insertion work uses the tensile force of the core bar to integrate multiple core bars and pressure plates. Meanwhile, [...] Read more.
It is an urgent issue for preventing slope failure caused by increasingly severe earthquakes and heavy rain. As a conventional construction method, reinforcing bar insertion work uses the tensile force of the core bar to integrate multiple core bars and pressure plates. Meanwhile, landslide deterrence piles are a construction method in which steel or concrete piles are constructed below the slope, and the rigidity of the piles is used to resist slope failure. In this study, these methods are combined to propose a reinforcing bar insertion work that uses pipes as a construction method. The pipes are not embedded in the immovable layer and are not connected to the reinforcing bar insertion work; therefore, the construction is expected to be simple. Two series of model experiments—a lift-up experiment and a water sprinkling experiment—were performed. Through the lift-up experiment, the effectiveness of the proposed method against static load was confirmed, and the evaluation formula of the load applied to the core bar was proposed. Through the water sprinkling experiment, the effectiveness against rainfall was confirmed, that is, the time until slope failure was extended by the proposed method. Full article
14 pages, 3113 KiB  
Article
Development of the Biofidelic Instrumented Neck Surrogate (BINS) with Tunable Stiffness and Embedded Kinematic Sensors for Application in Static Tests and Low-Energy Impacts
by Giuseppe Zullo, Elisa Baldoin, Leonardo Marin, Andrey Koptyug and Nicola Petrone
Sensors 2025, 25(16), 4925; https://doi.org/10.3390/s25164925 - 9 Aug 2025
Viewed by 46
Abstract
Road accidents could result in severe or fatal neck injuries. A few surrogate necks are available to develop and test neck protectors as countermeasures, but each has its own limitations. The objective of this study was to develop a surrogate neck compatible with [...] Read more.
Road accidents could result in severe or fatal neck injuries. A few surrogate necks are available to develop and test neck protectors as countermeasures, but each has its own limitations. The objective of this study was to develop a surrogate neck compatible with the Hybrid III dummy, focused on tunable flexural stiffness and integrated angular sensors for kinematic feedback during impact tests. The neck features six 3D-printed surrogate vertebral bodies interconnected by rubber surrogate discs, providing a baseline flexibility to the surrogate fundamental spinal units. An adjustable inner cable and elastic elements hooked on the sides of vertebral elements allow to increase the flexural stiffness of the surrogate and to simulate the asymmetric behavior of the human neck. Neck flexural angles and axial compression are measured using a novel system made of wires, pulleys, and rotary potentiometers embedded in the neck base. A motion capture system and a load cell were used to determine the bending and torsional stiffness of the neck and to calibrate the sensors. Results showed that the neck flexural stiffness can be tuned between 3.29 and 5.76 Nm/rad. Torsional stiffness was 1.01 Nm/rad and compression stiffness can be tuned from 39 to 193 N/mm. Sensor flexural angles were compared with motion capture angles, showing an RMSE error of 1.35° during static testing and of 3° during dynamic testing. The developed neck could be a viable tool for investigating neck braces from a kinematic and kinetic perspective due to its inbuilt sensing ability and its tunable stiffness. Full article
(This article belongs to the Special Issue Applications of Body Worn Sensors and Wearables)
Show Figures

Figure 1

31 pages, 3210 KiB  
Systematic Review
The Mind-Wandering Phenomenon While Driving: A Systematic Review
by Gheorghe-Daniel Voinea, Florin Gîrbacia, Răzvan Gabriel Boboc and Cristian-Cezar Postelnicu
Information 2025, 16(8), 681; https://doi.org/10.3390/info16080681 - 8 Aug 2025
Viewed by 160
Abstract
Mind wandering (MW) is a significant safety risk in driving, yet research on its scope, underlying mechanisms, and mitigation strategies remains fragmented across disciplines. In this review guided by the PRISMA framework, we analyze findings from 64 empirical studies to address these factors. [...] Read more.
Mind wandering (MW) is a significant safety risk in driving, yet research on its scope, underlying mechanisms, and mitigation strategies remains fragmented across disciplines. In this review guided by the PRISMA framework, we analyze findings from 64 empirical studies to address these factors. The presented study quantifies the prevalence of MW in naturalistic and simulated driving environments and shows its impact on driving behaviors. We document its negative effects on braking reaction times and lane-keeping consistency, and we assess recent advancements in objective detection methods, including EEG signatures, eye-tracking metrics, and physiological markers. We also identify key cognitive and contextual risk factors, including high perceived risk, route familiarity, and driver fatigue, which increase MW episodes. Also, we survey emergent countermeasures, such as haptic steering wheel alerts and adaptive cruise control perturbations, designed to sustain driver engagement. Despite these advancements, the MW research shows persistent challenges, including methodological heterogeneity that limits cross-study comparisons, a lack of real-world validation of detection algorithms, and a scarcity of long-term field trials of interventions. Our integrated synthesis, therefore, outlines a research agenda prioritizing harmonized measurement protocols, on-road algorithm deployment, and rigorous evaluation of countermeasures under naturalistic driving conditions. Full article
(This article belongs to the Section Information and Communications Technology)
Show Figures

Figure 1

19 pages, 2082 KiB  
Article
Numerical Modeling of Levee Failure Mechanisms by Integrating Seepage and Stability Processes
by Liaqat Ali, Shiro Konno, Yoshiya Igarashi and Norio Tanaka
GeoHazards 2025, 6(3), 44; https://doi.org/10.3390/geohazards6030044 - 8 Aug 2025
Viewed by 233
Abstract
Levee failures caused by prolonged flooding and elevated upstream water levels pose a significant risk to floodplain communities, especially as the number of extreme hydrological events increases under climate change. Understanding seepage-induced weakening and failure mechanisms is essential for improving levee design and [...] Read more.
Levee failures caused by prolonged flooding and elevated upstream water levels pose a significant risk to floodplain communities, especially as the number of extreme hydrological events increases under climate change. Understanding seepage-induced weakening and failure mechanisms is essential for improving levee design and resilience. This study develops a numerical framework that integrates unsaturated and saturated seepage analysis with slope stability evaluation to simulate seepage front progression and predict failure initiation. The model employs van Genuchten-based soil water retention properties and experimentally derived hydraulic conductivities, with results validated against five experimental cases with varying hydraulic conductivity contrasts between the levee body and foundation soils. The simulations reproduced seepage front evolution and slope deformation patterns with good agreement with experimental observations. In cases with high permeability contrasts, the model captured foundation-dominant seepage behavior, while moderate- and low-contrast scenarios showed close alignment with observed phreatic line development. Slight deviations were noted in failure timing, but the framework demonstrated potential for reproducing seepage-induced instability in levees. The findings contribute to understanding how the internal soil composition governs levee performance under flooding and provide a basis for developing seepage countermeasures and early warning tools. This approach offers practical value for risk-informed levee design and flood management. Full article
Show Figures

Figure 1

26 pages, 6182 KiB  
Article
The Spatiotemporal Pattern Evolution Characteristics and Affecting Factors for Collaborative Agglomeration of the Yellow River Basin’s Tourism and Cultural Industries
by Yihan Chi and Yongheng Fang
Sustainability 2025, 17(16), 7193; https://doi.org/10.3390/su17167193 - 8 Aug 2025
Viewed by 130
Abstract
Seeking to advance mutual clustering of the tourism economy and cultural industries while safeguarding cultural sustainability in tourism, this paper delves into the patterns of co-development and the contributing forces across spatial and temporal dimensions in the Yellow River Basin. Using a combined [...] Read more.
Seeking to advance mutual clustering of the tourism economy and cultural industries while safeguarding cultural sustainability in tourism, this paper delves into the patterns of co-development and the contributing forces across spatial and temporal dimensions in the Yellow River Basin. Using a combined spatial and temporal analytical lens, along with spatial autocorrelation testing and a spatial Durbin model embedded in a synergetic systems approach, the present study analyzes the evolutionary characteristics of the spatiotemporal pattern of the collaborative agglomeration of the Yellow River Basin’s tourism and cultural industries in 2011 and 2021 and the internal mechanism of its influencing factors. We then propose countermeasures and suggestions to boost the quality–efficiency synergy agglomeration of the basin’s tourism and cultural industries. The results showed the following: ① From 2011 to 2021, a positive overall spatial autocorrelation was noted in the basin’s tourism and cultural industries. Temporally, it presented a variation trend of “rise–fall–rise”, and spatially, it presented a distribution characteristic of “higher in the central and eastern regions versus in its western parts”. ② From 2011 to 2021, the local spatial autocorrelation (LSA) of the basin’s tourism and cultural industries remained at a low level. Moreover, significant differences were noted in the LSA among different regions. In spatial terms, the clustering intensity of tourism and cultural industries was stronger in the central and eastern parts of the basin versus in its western parts. ③ Influencing variables for tourism–culture collaborative agglomeration across the basin involve both temporal superposition effects and spatial radiation driving effects. The industrial economy, policies, and innovation exert enduring effects on the development and cross-regional spillover outcomes of the two collaborative agglomerations. Serving as a theoretical reference and policy resource, this study addresses how to promote the quality–efficiency synergy in the Yellow River Basin’s tourism and cultural industries while enhancing cultural sustainability in the tourism industry. Moreover, it can also provide experiences and references for other similar regions. Full article
Show Figures

Figure 1

22 pages, 4651 KiB  
Review
Potential Issues and Optimization Solutions for High-Compression-Ratio Utilization in Hybrid-Dedicated Gasoline Engines
by Qiuyu Liu, Baitan Ma, Zhiqiang Zhang, Chunyun Fu and Zhe Kang
Energies 2025, 18(15), 4204; https://doi.org/10.3390/en18154204 - 7 Aug 2025
Viewed by 217
Abstract
This systematic review critically examines the benefits and challenges of high-compression-ratio (CR) implementation in hybrid-dedicated engines, recognizing CR increase as a pivotal strategy for enhancing the indicated thermal efficiency to achieve carbon peak and carbon neutrality goals. However, excessively high CRs face critical [...] Read more.
This systematic review critically examines the benefits and challenges of high-compression-ratio (CR) implementation in hybrid-dedicated engines, recognizing CR increase as a pivotal strategy for enhancing the indicated thermal efficiency to achieve carbon peak and carbon neutrality goals. However, excessively high CRs face critical constraints, including intensified knock propensity, increased heat transfer (HTR) losses, reduced combustion stability, augmented dissociation losses, and cold-start misfire risks. The feasibility and necessity of CR enhancement in hybrid systems were comprehensively evaluated based on these factors, with fundamental mechanisms of the detrimental effects elucidated. To address these challenges, optimized countermeasures were synthesized: knock suppression via high-octane fuels, EGR technology, lean combustion, and in-cylinder water injection; heat transfer reduction through thermal barrier coatings and independent CR/expansion-ratio control; misfire risk monitoring using ion current or cylinder pressure sensors. These approaches provide viable pathways to overcome high-CR limitations and optimize engine performance. Nevertheless, current research remains confined to isolated solutions, warranting future focus on integrated optimization mechanisms investigating synergistic interactions of multiple strategies under high-CR conditions. Full article
Show Figures

Figure 1

30 pages, 2584 KiB  
Article
Travel Frequent-Route Identification Based on the Snake Algorithm Using License Plate Recognition Data
by Feiyang Liu, Jie Zeng, Jinjun Tang and TianJian Yu
Mathematics 2025, 13(15), 2536; https://doi.org/10.3390/math13152536 - 7 Aug 2025
Viewed by 124
Abstract
Path flow always plays a critical role in extracting vehicle travel patterns and reflecting network-scale traffic features. However, the comprehensive topological structure of urban road networks induces massive route choices, so frequent travel routes have been gradually regarded as an ideal countermeasure to [...] Read more.
Path flow always plays a critical role in extracting vehicle travel patterns and reflecting network-scale traffic features. However, the comprehensive topological structure of urban road networks induces massive route choices, so frequent travel routes have been gradually regarded as an ideal countermeasure to represent traffic states. Widely used license plate recognition (LPR) devices can collect the abundant traffic features of all vehicles, but their sparse spatial distributions restrict the conventional models in frequent travel identification. Therefore, this study develops a network reconstruction method to construct a topological network from the LPR dataset, avoiding the adverse effects caused by the sparse distribution of detectors on the road network and further uses the Snake algorithm to fully utilize the road network structure and traffic attributes for clustering to obtain various travel patterns, with frequent routes under different travel patterns finally identified based on Steiner trees and frequent item recognition. To address the sparse spatial distribution of LPR devices, we utilize the word2vec model to extract spatial correlations among intersections. A threshold-based method is then applied to transform the correlation matrix into a reconstructed network, connecting intersections with strong vehicle transition relationships. This community structure can be interpreted as representing different travel patterns. Consequently, the Snake algorithm is employed to cluster intersections into distinct categories, reflecting these varied travel patterns. By leveraging the word2vec model, the detector installation rate requirement for Snake is significantly reduced, ensuring that the clustering results accurately represent the intrinsic relevance of traffic roads. Subsequently, frequent routes are identified from both macro- and micro-perspectives using the Steiner tree and Frequent Pattern Growth (FP Growth) algorithm, respectively. Validated on the LPR dataset in Changsha, China, the experiment results demonstrate that the proposed method can effectively identify travel patterns and extract frequent routes in the sparsely installed LPR devices. Full article
Show Figures

Figure 1

20 pages, 1351 KiB  
Review
Appropriate Lifelong Circadian Rhythms Are Established During Infancy: A Narrative Review
by Teruhisa Miike
Clocks & Sleep 2025, 7(3), 41; https://doi.org/10.3390/clockssleep7030041 - 7 Aug 2025
Viewed by 322
Abstract
In humans, the master circadian clock, present in the suprachiasmatic nucleus, plays an important role in controlling life-sustaining functions. The development of the circadian clock begins in the fetal period and is almost completed during infancy to early childhood, based on the developmental [...] Read more.
In humans, the master circadian clock, present in the suprachiasmatic nucleus, plays an important role in controlling life-sustaining functions. The development of the circadian clock begins in the fetal period and is almost completed during infancy to early childhood, based on the developmental program that is influenced by the mother’s daily rhythms and, after birth, with the addition of information from the daily life environment. It is known that circadian rhythms are deeply related not only to the balance of a child’s mental and physical development but also to maintaining mental and physical health throughout one’s life. However, it has been suggested that various health problems in the future at any age may be caused by the occurrence of circadian disturbances transmitted by the mother during the fetal period. This phenomenon can be said to support the so-called DOHaD theory, and the involvement of the mother in the maturation of appropriate and stable circadian rhythms cannot be ignored. We consider the problems and countermeasures during the fetal and infant periods, which are important for the formation of circadian clocks. Full article
(This article belongs to the Special Issue The Circadian Rhythm Research in Infants and Young Children)
Show Figures

Figure 1

35 pages, 1184 KiB  
Review
Which Approach to Choose to Counteract Musculoskeletal Aging? A Comprehensive Review on the Multiple Effects of Exercise
by Angela Falvino, Roberto Bonanni, Umberto Tarantino, Virginia Tancredi and Ida Cariati
Int. J. Mol. Sci. 2025, 26(15), 7573; https://doi.org/10.3390/ijms26157573 - 5 Aug 2025
Viewed by 315
Abstract
Aging is a complex physiological process that profoundly affects the functionality of the musculoskeletal system, contributing to an increase in the incidence of diseases such as osteoporosis, osteoarthritis, and sarcopenia. Cellular senescence plays a crucial role in these degenerative processes, promoting chronic inflammation [...] Read more.
Aging is a complex physiological process that profoundly affects the functionality of the musculoskeletal system, contributing to an increase in the incidence of diseases such as osteoporosis, osteoarthritis, and sarcopenia. Cellular senescence plays a crucial role in these degenerative processes, promoting chronic inflammation and tissue dysfunction through the senescence-associated secretory phenotype (SASP). Recently, senotherapeutics have shown promising results in improving musculoskeletal health. Natural compounds such as resveratrol, rapamycin, quercetin, curcumin, vitamin E, genistein, fisetin, and epicatechin act on key signaling pathways, offering protective effects against musculoskeletal decline. On the other hand, molecules such as dasatinib, navitoclax, UBX0101, panobinostat, and metformin have been shown to be effective in eliminating or modulating senescent cells. However, understanding the mechanisms of action, long-term safety, and bioavailability remain areas for further investigation. In this context, physical exercise emerges as an effective non-pharmacological countermeasure, capable of directly modulating cellular senescence and promoting tissue regeneration, representing an integrated strategy to combat age-related diseases. Therefore, we have provided an overview of the main anti-aging compounds and examined the potential of physical exercise as a strategy in the management of age-related musculoskeletal disorders. Further studies should focus on identifying synergistic combinations of pharmacological and non-pharmacological interventions to optimize the effectiveness of anti-aging strategies and promoting healthier musculoskeletal aging. Full article
(This article belongs to the Special Issue Molecular Biology of Senescence and Anti-Aging Strategies)
Show Figures

Figure 1

24 pages, 1028 KiB  
Review
Biocontrol of Phage Resistance in Pseudomonas Infections: Insights into Directed Breaking of Spontaneous Evolutionary Selection in Phage Therapy
by Jumpei Fujiki, Daigo Yokoyama, Haruka Yamamoto, Nana Kimura, Manaho Shimizu, Hinatsu Kobayashi, Keisuke Nakamura and Hidetomo Iwano
Viruses 2025, 17(8), 1080; https://doi.org/10.3390/v17081080 - 4 Aug 2025
Viewed by 444
Abstract
Phage therapy, long overshadowed by antibiotics in Western medicine, has a well-established history in some Eastern European countries and is now being revitalized as a promising strategy against antimicrobial resistance (AMR). This resurgence of phage therapy is driven by the urgent need for [...] Read more.
Phage therapy, long overshadowed by antibiotics in Western medicine, has a well-established history in some Eastern European countries and is now being revitalized as a promising strategy against antimicrobial resistance (AMR). This resurgence of phage therapy is driven by the urgent need for innovative countermeasures to AMR, which will cause an estimated 10 million deaths annually by 2050. However, the emergence of phage-resistant variants presents challenges similar to AMR, thus necessitating a deeper understanding of phage resistance mechanisms and control strategies. The highest priority must be to prevent the emergence of phage resistance. Although phage cocktails targeting multiple receptors have demonstrated a certain level of phage resistance suppression, they cannot completely suppress resistance in clinical settings. This highlights the need for strategies beyond simple resistance suppression. Notably, recent studies examining fitness trade-offs associated with phage resistance have opened new avenues in phage therapy that offer the potential of restoring antibiotic susceptibility and attenuating pathogen virulence despite phage resistance. Thus, controlling phage resistance may rely on both its suppression and strategic redirection. This review summarizes key concepts in the control of phage resistance and explores evolutionary engineering as a means of optimizing phage therapy, with a particular focus on Pseudomonas infections. Harnessing evolutionary dynamics by intentionally breaking the spontaneous evolutionary trajectories of target bacterial pathogens could potentially reshape bacterial adaptation by acquisition of phage resistance, unlocking potential in the application of phage therapy. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

11 pages, 459 KiB  
Case Report
Urinary Multidrug-Resistant Klebsiella pneumoniae: Essential Oil Countermeasures in a One Health Case Report
by Mălina-Lorena Mihu, Cristiana Ştefania Novac, Smaranda Crăciun, Nicodim Iosif Fiţ, Cosmina Maria Bouari, George Cosmin Nadăş and Sorin Răpuntean
Microorganisms 2025, 13(8), 1807; https://doi.org/10.3390/microorganisms13081807 - 1 Aug 2025
Viewed by 503
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to [...] Read more.
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to only 5 agents. One month later, repeat testing showed that tetracycline alone remained active, highlighting the strain’s rapidly evolving resistome. Given the scarcity of drug options, we performed an “aromatogram” with seven pure essential oils, propolis, and two commercial phytotherapeutic blends. Biomicin Forte® produced a 30 mm bactericidal halo, while thyme, tea tree, laurel, and palmarosa oils yielded clear inhibition zones of 11–22 mm. These in vitro data demonstrate that carefully selected plant-derived products can target CR-Kp where conventional antibiotics fail. Integrating aromatogram results into One Health’s stewardship plans may therefore help preserve last-line antibiotics and provide adjunctive options for persistent urinary infections. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

24 pages, 4753 KiB  
Article
A Secure Satellite Transmission Technique via Directional Variable Polarization Modulation with MP-WFRFT
by Zhiyu Hao, Zukun Lu, Xiangjun Li, Xiaoyu Zhao, Zongnan Li and Xiaohui Liu
Aerospace 2025, 12(8), 690; https://doi.org/10.3390/aerospace12080690 - 31 Jul 2025
Viewed by 194
Abstract
Satellite communications are pivotal to global Internet access, connectivity, and the advancement of information warfare. Despite these importance, the open nature of satellite channels makes them vulnerable to eavesdropping, making the enhancement of interception resistance in satellite communications a critical issue in both [...] Read more.
Satellite communications are pivotal to global Internet access, connectivity, and the advancement of information warfare. Despite these importance, the open nature of satellite channels makes them vulnerable to eavesdropping, making the enhancement of interception resistance in satellite communications a critical issue in both academic and industrial circles. Within the realm of satellite communications, polarization modulation and quadrature techniques are essential for information transmission and interference suppression. To boost electromagnetic countermeasures in complex battlefield scenarios, this paper integrates multi-parameter weighted-type fractional Fourier transform (MP-WFRFT) with directional modulation (DM) algorithms, building upon polarization techniques. Initially, the operational mechanisms of the polarization-amplitude-phase modulation (PAPM), MP-WFRFT, and DM algorithms are elucidated. Secondly, it introduces a novel variable polarization-amplitude-phase modulation (VPAPM) scheme that integrates variable polarization with amplitude-phase modulation. Subsequently, leveraging the VPAPM modulation scheme, an exploration of the anti-interception capabilities of MP-WFRFT through parameter adjustment is presented. Rooted in an in-depth analysis of simulation data, the anti-scanning capabilities of MP-WFRFT are assessed in terms of scale vectors in the horizontal and vertical direction. Finally, exploiting the potential of the robust anti-scanning capabilities of MP-WFRFT and the directional property of antenna arrays in DM, the paper proposes a secure transmission technique employing directional variable polarization modulation with MP-WFRFT. The performance simulation analysis demonstrates that the integration of MP-WFRFT and DM significantly outperforms individual secure transmission methods, improving anti-interception performance by at least an order of magnitude at signal-to-noise ratios above 10 dB. Consequently, this approach exhibits considerable potential and engineering significance for its application within satellite communication systems. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

29 pages, 1119 KiB  
Systematic Review
Phishing Attacks in the Age of Generative Artificial Intelligence: A Systematic Review of Human Factors
by Raja Jabir, John Le and Chau Nguyen
AI 2025, 6(8), 174; https://doi.org/10.3390/ai6080174 - 31 Jul 2025
Viewed by 683
Abstract
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest [...] Read more.
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest link in any defence system. The existing literature on human factors in phishing attacks is limited and does not live up to the witnessed advances in phishing attacks, which have become exponentially more dangerous with the introduction of generative artificial intelligence (GenAI). This paper studies the implications of AI advancement, specifically the exploitation of GenAI and human factors in phishing attacks. We conduct a systematic literature review to study different human factors exploited in phishing attacks, potential solutions and preventive measures, and the complexity introduced by GenAI-driven phishing attacks. This paper aims to address the gap in the research by providing a deeper understanding of the evolving landscape of phishing attacks with the application of GenAI and associated human implications, thereby contributing to the field of knowledge to defend against phishing attacks by creating secure digital interactions. Full article
Show Figures

Figure 1

Back to TopTop