Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (625)

Search Parameters:
Keywords = cotton textiles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2192 KiB  
Article
Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
by Maria Solovyeva, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin and Dmitry Selishchev
Int. J. Mol. Sci. 2025, 26(15), 7550; https://doi.org/10.3390/ijms26157550 - 5 Aug 2025
Abstract
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, [...] Read more.
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, the surface of blended cotton/polyester fabric was functionalized with N-doped TiO2 (TiO2-N) nanoparticles using titanium(IV) isopropoxide as a binder to form durable photoactive coating and additionally decorated with Cu species to promote its self-cleaning properties. The photocatalytic ability of the material with photoactive coating was investigated in oxidation of acetone vapor, degradation of deoxyribonucleic acid (DNA) fragments of various lengths, and inactivation of PA136 bacteriophage virus and Candida albicans fungi under visible light and ultraviolet A (UVA) radiation. The kinetic aspects of inactivation and degradation processes were studied using the methods of infrared (IR) spectroscopy, polymerase chain reaction (PCR), double-layer plaque assay, and ten-fold dilution. The results of experiments showed that the textile fabric modified with TiO2-N photocatalyst exhibited photoinduced self-cleaning properties and provided efficient degradation of all studied contaminants under exposure to both UVA and visible light. Additional modification of the material with Cu species substantially improved its self-cleaning properties, even in the absence of light. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

18 pages, 10811 KiB  
Article
Multimodal Feature Inputs Enable Improved Automated Textile Identification
by Magken George Enow Gnoupa, Andy T. Augousti, Olga Duran, Olena Lanets and Solomiia Liaskovska
Textiles 2025, 5(3), 31; https://doi.org/10.3390/textiles5030031 - 2 Aug 2025
Viewed by 94
Abstract
This study presents an advanced framework for fabric texture classification by leveraging macro- and micro-texture extraction techniques integrated with deep learning architectures. Co-occurrence histograms, local binary patterns (LBPs), and albedo-dependent feature maps were employed to comprehensively capture the surface properties of fabrics. A [...] Read more.
This study presents an advanced framework for fabric texture classification by leveraging macro- and micro-texture extraction techniques integrated with deep learning architectures. Co-occurrence histograms, local binary patterns (LBPs), and albedo-dependent feature maps were employed to comprehensively capture the surface properties of fabrics. A late fusion approach was applied using four state-of-the-art convolutional neural networks (CNNs): InceptionV3, ResNet50_V2, DenseNet, and VGG-19. Excellent results were obtained, with the ResNet50_V2 achieving a precision of 0.929, recall of 0.914, and F1 score of 0.913. Notably, the integration of multimodal inputs allowed the models to effectively distinguish challenging fabric types, such as cotton–polyester and satin–silk pairs, which exhibit overlapping texture characteristics. This research not only enhances the accuracy of textile classification but also provides a robust methodology for material analysis, with significant implications for industrial applications in fashion, quality control, and robotics. Full article
Show Figures

Graphical abstract

32 pages, 20583 KiB  
Article
Application of Prodigiosin Extracts in Textile Dyeing and Novel Printing Processes for Halochromic and Antimicrobial Wound Dressings
by Cátia Alves, Pedro Soares-Castro, Rui D. V. Fernandes, Adriana Pereira, Rui Rodrigues, Ana Rita Fonseca, Nuno C. Santos and Andrea Zille
Biomolecules 2025, 15(8), 1113; https://doi.org/10.3390/biom15081113 - 1 Aug 2025
Viewed by 167
Abstract
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin [...] Read more.
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin was prepared under acidic, neutral, and alkaline conditions, resulting in varying protonation states that influenced its affinity for cotton and polyester fibers. Three surfactants (anionic, cationic, non-ionic) were tested, with non-ionic Tween 80 yielding a promising color strength (above 4) and fastness results with neutral prodigiosin at 1.3 g/L. Cotton and polyester demonstrated good washing (color difference up to 14 for cotton, 5 for polyester) and light fastness (up to 15 for cotton, 16 for polyester). Cellulose acetate, used in the conventional printing process as a thickener, produced superior color properties compared to commercial thickeners. Neutral prodigiosin achieved higher color strength, and cotton fabrics displayed halochromic properties, distinguishing them from polyester, which showed excellent fastness. Prodigiosin-printed samples also exhibited strong antimicrobial activity against Pseudomonas aeruginosa and retained halochromic properties over 10 pH cycles. These findings suggest prodigiosin as a sustainable dye alternative and pH sensor, with potential applications in biomedical materials, such as antimicrobial and pH-responsive wound dressings. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Graphical abstract

22 pages, 5403 KiB  
Article
Degradation of Synthetic and Natural Textile Materials Using Streptomyces Strains: Model Compost and Genome Exploration for Potential Plastic-Degrading Enzymes
by Vukašin Janković, Brana Pantelic, Marijana Ponjavic, Darka Marković, Maja Radetić, Jasmina Nikodinovic-Runic and Tatjana Ilic-Tomic
Microorganisms 2025, 13(8), 1800; https://doi.org/10.3390/microorganisms13081800 - 1 Aug 2025
Viewed by 218
Abstract
Given the environmental significance of the textile industry, especially the accumulation of nondegradable materials, there is extensive development of greener approaches to fabric waste management. Here, we investigated the biodegradation potential of three Streptomyces strains in model compost on polyamide (PA) and polyamide-elastane [...] Read more.
Given the environmental significance of the textile industry, especially the accumulation of nondegradable materials, there is extensive development of greener approaches to fabric waste management. Here, we investigated the biodegradation potential of three Streptomyces strains in model compost on polyamide (PA) and polyamide-elastane (PA-EA) as synthetic, and on cotton (CO) as natural textile materials. Weight change of the materials was followed, while Fourier-Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were used to analyze surface changes of the materials upon biodegradation. The bioluminescence-based toxicity test employing Aliivibrio fischeri confirmed the ecological safety of the tested textiles. After 12 months, the increase of 10 and 16% weight loss, of PA-EA and PA, respectively, was observed in compost augmented with Streptomyces sp. BPS43. Additionally, a 14% increase in cotton degradation was recorded after 2 months in compost augmented with Streptomyces sp. NP10. Genome exploration of the strains was carried out for potential plastic-degrading enzymes. It highlighted BPS43 as the most versatile strain with specific amidases that show sequence identity to UMG-SP-1, UMG-SP-2, and UMG-SP-3 (polyurethane degrading enzymes identified from compost metagenome). Our results showcase the behavior of Streptomyces sp. BPS43 in the degradation of PA and PA-EA textiles in composting conditions, with enzymatic potential that could be further characterized and optimized for increased synthetic textile degradation. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

23 pages, 4356 KiB  
Article
Quantifying Cotton Content in Post-Consumer Polyester/Cotton Blend Textiles via NIR Spectroscopy: Current Attainable Outcomes and Challenges in Practice
by Hana Stipanovic, Gerald Koinig, Thomas Fink, Christian B. Schimper, David Lilek, Jeannie Egan and Alexia Tischberger-Aldrian
Recycling 2025, 10(4), 152; https://doi.org/10.3390/recycling10040152 - 1 Aug 2025
Viewed by 157
Abstract
Rising volumes of textile waste necessitate the development of more efficient recycling systems, with a primary focus on the optimization of sorting technologies. Near-infrared (NIR) spectroscopy is a state-of-the-art method for fiber identification; however, its accuracy in quantifying textile blends, particularly common polyester/cotton [...] Read more.
Rising volumes of textile waste necessitate the development of more efficient recycling systems, with a primary focus on the optimization of sorting technologies. Near-infrared (NIR) spectroscopy is a state-of-the-art method for fiber identification; however, its accuracy in quantifying textile blends, particularly common polyester/cotton blend textiles, still requires refinement. This study explores the potential and limitations of NIR spectroscopy for quantifying cotton content in post-consumer textiles. A lab-scale NIR sorter and a handheld NIR spectrometer in complementary wavelength ranges were applied to a diverse range of post-consumer textile samples to test model accuracies. Results show that the commonly assumed 10% accuracy threshold in industrial sorting can be exceeded, especially when excluding textiles with <35% cotton content. Identifying and excluding the range of non-linearity significantly improved the model’s performance. The final models achieved an RMSEP of 6.6% and bias of −0.9% for the NIR sorter and an RMSEP of 3.1% and bias of −0.6% for the handheld NIR spectrometer. This study also assessed how textile characteristics—such as color, structure, product type, and alkaline treatment—affect spectral behavior and model accuracy, highlighting their importance for refining quantification when high-purity inputs are needed. By identifying current limitations and potential sources of errors, this study provides a foundation for improving NIR-based models. Full article
Show Figures

Figure 1

12 pages, 6938 KiB  
Article
Development of Water-Based Inks with Bio-Based Pigments for Digital Textile Printing Using Valve-Jet Printhead Technology
by Jéssica Antunes, Marisa Lopes, Beatriz Marques, Augusta Silva, Helena Vilaça and Carla J. Silva
Colorants 2025, 4(3), 24; https://doi.org/10.3390/colorants4030024 - 24 Jul 2025
Viewed by 233
Abstract
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and [...] Read more.
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and quinacridone (red)—were incorporated into ink formulations and applied on cotton and polyester fabrics through valve-jet inkjet printing (ChromoJet). The physical properties of the inks were analyzed to ensure compatibility with the equipment, and printed fabrics were assessed as to their color fastness to washing, rubbing, artificial weathering, and artificial light. The results highlight the good performance of the bio-based inks, with excellent light and weathering fastness and satisfactory wash and rub resistance. The effect of different pre-treatments, including a biopolymer and a synthetic binder, was also investigated. Notably, the biopolymer pre-treatment enhanced pigment fixation on cotton, while the synthetic binder improved wash fastness on polyester. These findings support the integration of biotechnologically sourced pigments into eco-friendly textile digital printing workflows. Full article
Show Figures

Figure 1

13 pages, 11974 KiB  
Article
A Study and Comparative Analysis of the Action of the Deacidifying Products Bookkeeper® and Nanorestore Paper® on Plant Textile Fibres
by A. Nani, C. Ricci, A. Gatti and A. Agostino
Heritage 2025, 8(7), 287; https://doi.org/10.3390/heritage8070287 - 19 Jul 2025
Viewed by 355
Abstract
The aim of this study is to evaluate the effectiveness of deacidifying treatments for the restoration of textiles used as supports for works of art, with particular attention to the chemical stability, colour variation and mechanical resistance of the materials over time. The [...] Read more.
The aim of this study is to evaluate the effectiveness of deacidifying treatments for the restoration of textiles used as supports for works of art, with particular attention to the chemical stability, colour variation and mechanical resistance of the materials over time. The present study involved the analysis of two products: BookkeeperTM, containing magnesium oxide, and NanorestoreTM, a dispersion of calcium hydroxide in alcoholic solutions of ethanol and 2-propanol. The products were applied to a series of tests on cotton, linen and jute fabrics. The experimental approach comprised an artificial degradation process of the fabrics, followed by the application of the treatments and an accelerated ageing cycle. A series of parameters were monitored throughout the experiment, encompassing surface pH, chromatic shifts ascertained through colorimetric measurements and the morphological transformations of the fabrics, as elucidated by scanning electron microscopy (SEM-EDS). The findings yielded from this study have enabled the delineation of the behaviour exhibited by the treated materials over an extended timeframe. This underscores the significance of a judicious selection of treatments, contingent upon the particular chemical and physical attributes inherent to the fabrics in question. Full article
(This article belongs to the Section Materials and Heritage)
Show Figures

Figure 1

13 pages, 1612 KiB  
Article
Ozone-Mediated Washing Process of Reference Stain Textile Monitors
by Tanja Pušić, Vanja Šantak, Tihana Dekanić and Mirjana Čurlin
Polymers 2025, 17(14), 1906; https://doi.org/10.3390/polym17141906 - 10 Jul 2025
Viewed by 308
Abstract
The complex chemical composition of certain color stains on textiles requires an optimal proportion of thermal and chemical action in the Sinner cycle of the washing process. In this study, both factors were analyzed by varying the composition of the liquid detergent, bleach, [...] Read more.
The complex chemical composition of certain color stains on textiles requires an optimal proportion of thermal and chemical action in the Sinner cycle of the washing process. In this study, both factors were analyzed by varying the composition of the liquid detergent, bleach, and ozone at temperatures of 30 °C, 40 °C, 60 °C, 75 °C, and 90 °C. Standard cotton fabrics stained with tea, red wine, and blood/milk/ink were selected as monitors, which were evaluated before and after the washing process by spectral parameters. The data sets and their interrelationships were evaluated by a cluster analysis (CA) and ANOVA. An unstained standard cotton fabric was selected as a reference for qualification of the sanitation effect. The stain removal effects showed a selective influence of ozone in the washing processes under the investigated conditions, including the synergy of standard materials—stain monitors and different Sinner cycle factors. The most effective sanitation was achieved in processes using formulations with higher concentrations of liquid detergent (D) and bleaching agents (BA) across all tested temperatures. A lower ozone concentration in combination with lower concentrations of detergents and bleaching agents in washing processes at 30 °C and 40 °C also contributed positively to the effect on sanitation. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

24 pages, 9971 KiB  
Article
Development of Bioactive Cotton, Wool, and Silk Fabrics Functionalized with Origanum vulgare L. for Healthcare and Medical Applications: An In Vivo Study
by Aleksandra Ivanovska, Anica Petrović, Tamara Lazarević-Pašti, Tatjana Ilic-Tomic, Katarina Dimić-Mišić, Jelena Lađarević and Jovana Bradić
Pharmaceutics 2025, 17(7), 856; https://doi.org/10.3390/pharmaceutics17070856 - 30 Jun 2025
Viewed by 469
Abstract
Background: This study presents an innovative approach to developing bioactive natural fabrics for healthcare and medical applications. Methods: An ethanol extract of Origanum vulgare L. (in further text: OE), exhibiting exceptional antioxidant (100%) and antibacterial activity (>99% against E.coli and S.aureus), was [...] Read more.
Background: This study presents an innovative approach to developing bioactive natural fabrics for healthcare and medical applications. Methods: An ethanol extract of Origanum vulgare L. (in further text: OE), exhibiting exceptional antioxidant (100%) and antibacterial activity (>99% against E.coli and S.aureus), was employed to biofunctionalize cotton, wool, and silk fabrics. Results: All biofunctionalized fabrics demonstrated strong antioxidant activity (>99%), while antibacterial efficacy varied by fabric: cotton > 54%, wool > 99%, and silk > 89%. OE-biofunctionalized wool possessed the highest release of OE’s bioactive compounds, followed by silk and cotton, indicating substrate-dependent release behavior. This tunable fabrics’ OE release profile, along with their unique bioactivity, supports targeted applications: OE-functionalized silk for luxury or prolonged therapeutic use (skin-care textiles, post-surgical dressings, anti-aging products), cotton for disposable or short-term use (protective wipes, minor wound coverings), and wool for wound dressings. The biocompatibility and cytotoxicity of OE-biofunctionalized wool were evaluated via in vitro assays using healthy human keratinocytes and in vivo testing in Wistar albino male rats. The obtained results revealed that OE-functionalized wool significantly accelerated wound closure (97.8% by day 14), enhanced collagen synthesis (6.92 µg/mg hydroxyproline), and improved tissue and systemic antioxidant defense while reducing oxidative stress markers in skin and blood samples of rats treated with OE-biofunctionalized wool. Conclusions: OE-biofunctionalized wool demonstrates strong potential as an advanced natural solution for managing chronic wounds. Further clinical validation is recommended to confirm its performance in real-world healthcare settings. This work introduces an entirely new application of OE in textile biofunctionalization, offering alternatives for healthcare and medical textiles. Full article
Show Figures

Graphical abstract

28 pages, 1706 KiB  
Article
Impact Assessment and Product Life Cycle Analysis of Different Jersey Fabrics Using Conventional, Post-Industrial, and Post-Consumer Recycled Cotton Fibers
by Rute Santos and Maria José Abreu
Sustainability 2025, 17(13), 5700; https://doi.org/10.3390/su17135700 - 20 Jun 2025
Viewed by 589
Abstract
The textile industry generates a large amount of waste, producing approximately 92 million tons of textile waste annually, much of which ends up in landfills. This alarming figure highlights the need for an urgent waste management strategy. Mechanical recycling has emerged and is [...] Read more.
The textile industry generates a large amount of waste, producing approximately 92 million tons of textile waste annually, much of which ends up in landfills. This alarming figure highlights the need for an urgent waste management strategy. Mechanical recycling has emerged and is being explored as an alternative to manage this waste, enabling the transformation of discarded textiles into recycled fibers for the production of new materials. In this study, a Life Cycle Assessment (LCA) was conducted for five different knitted fabrics, considering the origin of their cotton content: from virgin cotton to post-industrial and post-consumer recycled cotton fibers, to evaluate the environmental impact of each fabric. The analysis revealed that the spinning, dyeing, and finishing processes were the primary contributors across multiple environmental impact categories. Specifically, for the Water Scarcity Potential (WSP) indicator, these processes accounted for 96% of the total impact. In terms of raw material contributions to water scarcity, organic cotton fiber had the highest impact at 54%, followed by post-consumer recycled cotton at 24% and post-industrial recycled cotton at 22%. Variations in environmental contributions were also observed for the remaining impact categories. A key challenge in this study is the lack of a dedicated impact category in LCA that directly quantifies the environmental benefits of using recycled materials. Specifically, current LCA methodologies do not have a standardized metric to measure the impact reduction achieved by substituting virgin fibers with recycled ones, even though comparisons indicate reduced impacts. Full article
(This article belongs to the Special Issue Circular Economy Solutions for a Sustainable Future)
Show Figures

Figure 1

23 pages, 4302 KiB  
Article
Evaluation of the Potential of Corynebacterium glutamicum ATCC 21492 for L-Lysine Production Using Glucose Derived from Textile Waste
by Paola Rodríguez Bello, Anahí Ginestá Anzola, Alberto Ortiz Becerril and David Fernández Gutiérrez
Fermentation 2025, 11(6), 355; https://doi.org/10.3390/fermentation11060355 - 18 Jun 2025
Viewed by 978
Abstract
The textile industry generates millions of tons of waste annually, posing significant environmental challenges. Addressing this issue, our study explores a sustainable biotechnological approach to convert cotton textile waste into valuable bioproducts. We evaluated the potential of Corynebacterium glutamicum ATCC 21492 for the [...] Read more.
The textile industry generates millions of tons of waste annually, posing significant environmental challenges. Addressing this issue, our study explores a sustainable biotechnological approach to convert cotton textile waste into valuable bioproducts. We evaluated the potential of Corynebacterium glutamicum ATCC 21492 for the production of L-lysine and other amino acids using glucose derived from cotton textile waste. Two experimental strategies were implemented: Sequential Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF). In SHF, optimization of initial glucose concentration, temperature, and inoculum size led to the highest L-lysine concentration of 2.38 g/L under conditions of 45 g/L glucose, 35 °C, and 2% inoculum. The production of L-lysine, along with varying proportions of other amino acids such as alanine, threonine, methionine, and leucine, was significantly influenced by these parameters. In SSF, the highest L-lysine yield of 3.10 mg/g untreated cotton was achieved at 14% cotton loading, 7% enzyme dose, 35 °C, and 10% inoculum concentration, corresponding to an L-lysine concentration of 0.5 g/L. This reduced concentration, compared to SHF, is primarily attributed to limitations in cotton hydrolysis under the studied conditions. Nevertheless, C. glutamicum utilized alternative carbon sources present in the culture medium, leading to a diversified amino acid profile in the final product. These findings support the feasibility of textile waste bioconversion using C. glutamicum and highlight its potential as a sustainable platform for amino acid production, aligning with circular economy principles and contributing to the reduction of the textile industry’s environmental impact. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Valorization)
Show Figures

Figure 1

21 pages, 2502 KiB  
Article
Characterisation of Waste Textiles from Mixed MSW and Separate Collection—A Case Study from Vienna, Austria
by Pablo Kählig, Wolfgang Ipsmiller, Andreas Bartl and Jakob Lederer
Sustainability 2025, 17(12), 5484; https://doi.org/10.3390/su17125484 - 13 Jun 2025
Viewed by 538
Abstract
Textile recycling approaches require input material streams of defined purity. Establishing sorting facilities and defining viable sorting fractions for efficient subsequent recycling necessitates knowledge on the composition and material content of the textiles to be processed. Subsequently, this information is crucial for the [...] Read more.
Textile recycling approaches require input material streams of defined purity. Establishing sorting facilities and defining viable sorting fractions for efficient subsequent recycling necessitates knowledge on the composition and material content of the textiles to be processed. Subsequently, this information is crucial for the implementation of a sustainable circular economy for textiles. This study presents the results of a comprehensive waste textile sampling and characterisation along with data on the quantities and composition of waste textiles in Vienna in 2022. The data reveals that only 28% of the 19,975 t of waste textiles generated end up in separate collection, of which a significant amount goes to the international market. However, the results regarding the fibre composition show that textiles from mixed municipal solid waste and separate collection are very similar. Cotton fibres accounted for approx. half of the fibre mass from non-complex textiles, with 9328 t overall (6776 t in the mixed municipal solid waste and 2522 t in separate collection). A further analysis regarding fibre blends found that a total of 6275 t of single-fibre materials and 5132 t of two-fibre materials were present. This reveals great potential for using this waste stream in fibre-to-fibre recycling processes. Collecting accurate data on this waste stream enables sorters and recyclers to tailor their processes to the expected input material. By increasing the amount of recycled materials, the share of incinerated or landfilled textiles will decrease, which in turn will have a positive impact on the environment. However, further research in textile identification and material separation as well as regulations to keep these materials in a sustainable closed loop are required. Full article
(This article belongs to the Special Issue Recycling Materials for the Circular Economy—2nd Edition)
Show Figures

Graphical abstract

17 pages, 4206 KiB  
Article
Fluorescent Hyperbranched Polymers and Cotton Fabrics Treated with Them as Innovative Agents for Antimicrobial Photodynamic Therapy and Self-Disinfecting Textiles
by Desislava Staneva, Paula Bosch, Petar Grozdanov, Ivanka Nikolova and Ivo Grabchev
Macromol 2025, 5(2), 26; https://doi.org/10.3390/macromol5020026 - 11 Jun 2025
Viewed by 569
Abstract
The results of this study, which involved treating cotton fabrics with three fluorescent hyperbranched polymers modified with 1,8-naphthalamide (P1), acridine (P2), and dansyl (P3) groups, could have applications in the development of antimicrobial textiles with self-disinfecting ability. The polymers, dissolved in DMF/water solution, [...] Read more.
The results of this study, which involved treating cotton fabrics with three fluorescent hyperbranched polymers modified with 1,8-naphthalamide (P1), acridine (P2), and dansyl (P3) groups, could have applications in the development of antimicrobial textiles with self-disinfecting ability. The polymers, dissolved in DMF/water solution, were deposited on the cotton fabric using the exhaustion method. The fabrics were thoroughly analyzed by reflection spectra, CIEL*a*b* coordinates, and color difference (∆E). The release of the polymers from the cotton surface was studied in a phosphate buffer with pH = 7.4 and an acetate buffer with pH = 4.5 at 37 °C for 10 h. It is shown that at pH = 7.4, the release of the three polymers occurs slowly (about 4–5%). In contrast, in an acidic medium, due to protonation of the tertiary amino group of 1,8-naphthalimide, P1 passes significantly more readily into the aqueous solution (35%). The possibility of singlet oxygen (1O2) generation by the polymers and the cotton fabrics treated with them under sunlight irradiation was followed using an iodometric method. The microbiological activity was investigated against Gram-positive Bacillus cereus and Gram-negative Pseudomonas aeruginosa as model bacterial strains in the dark and after irradiation with sunlight. The antimicrobial activity of the polymers increased after light irradiation, as 1O2 attacks and destroys the bacterial cell membrane. Scanning electron microscopy showed that a stable bacterial biofilm had formed on the untreated cotton surface, but treatment with hyperbranched polymers prevented its formation. However, many bacteria were still observed on the fiber surface when the microbial test was performed in the dark, whereas only a few single bacteria were noticed after the illumination. A virucidal effect against respiratory viruses HRSV-2 and AAdV-5 was observed only after irradiation with sunlight. Full article
Show Figures

Figure 1

19 pages, 4975 KiB  
Article
Bio-Based Flame Retardant Superhydrophobic Coatings by Phytic Acid/Polyethyleneimine Layer-by-Layer Assembly on Nylon/Cotton Blend Fabrics
by Yue Shen, Haiyan Zheng, Jiqiang Cao and Xinyun Guo
Coatings 2025, 15(6), 699; https://doi.org/10.3390/coatings15060699 - 10 Jun 2025
Viewed by 670
Abstract
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. [...] Read more.
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. Initially, the nylon/cotton blended fabric was pretreated with 3-glycidyloxypropyltrimethoxy silane (GPTMS). An intumescent flame retardant coating based on bio-derived phytic acid (PA) and polyethyleneimine (PEI) was constructed on NC fabrics via a layer-by-layer (LBL) self-assembly process. Subsequently, polydimethylsiloxane (PDMS) was grafted to reduce surface energy, imparting synergistic flame retardancy and superhydrophobicity. The treated fabric (C-3) showed excellent flame retardant and self-extinguishing behavior, with no afterflame or afterglow during vertical burning and a char length of only 35 mm. Thermogravimetric analysis revealed a residual char rate of 43.9%, far exceeding that of untreated fabric (8.6%). After PDMS modification, the fabric reached a water contact angle of 157.8°, indicating superior superhydrophobic and self-cleaning properties. Durability tests showed that the fabric maintained its flame retardancy (no afterflame or afterglow) and superhydrophobicity (WCA > 150°) after 360 cm of abrasion and five laundering cycles. This fluorine-free, nanoparticle-free, and environmentally friendly approach offers a promising route for developing multifunctional NC fabrics for applications in firefighting clothing and self-cleaning textiles. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

13 pages, 1955 KiB  
Article
Thermochromic Behaviour and Comfort Properties of Printed Woven Fabric
by Nursyafawani Idris, Nor Dalila Nor Affandi, Intan Zulaikha Borhan, Muhammad Ismail Ab Kadir, Ridwan Yahaya and Liliana Indrie
Coatings 2025, 15(6), 692; https://doi.org/10.3390/coatings15060692 - 7 Jun 2025
Viewed by 642
Abstract
Thermochromic materials have attracted interest in textile applications, particularly in printing and dyeing processes. However, their thermochromic properties and impact on fabric comfort remain underexplored. This study aimed to investigate the thermochromic properties of printed fabrics with green-to-brown transitions and evaluates their comfort [...] Read more.
Thermochromic materials have attracted interest in textile applications, particularly in printing and dyeing processes. However, their thermochromic properties and impact on fabric comfort remain underexplored. This study aimed to investigate the thermochromic properties of printed fabrics with green-to-brown transitions and evaluates their comfort attributes. In the present study, a thermochromic dye paste was applied to nylon/cotton medium-weight fabric via screen printing process. The brown pigment paste was applied first, followed by the thermochromic olive green dye. The printed fabrics were tested for thermochromism, morphology, Fourier Transform Infrared Spectroscopy (FTIR), and comfort properties. Comfort properties were assessed via air permeability, water vapour permeability, and moisture management tests. The results show reversible colour changes from green (25 °C) to brown (40 °C), with increasing lightness (L*) and shifting green–red coordinates (−a*). The scanning electron microscopy (SEM) confirmed uniform dye dispersion, and the FTIR validated the presence of thermochromic pigments. The printed fabrics showed a reduction in air permeability from 40.2 mm/s to 0 mm/s, while water vapour permeability decreased by 62.50% compared to the pristine fabric due to the coating layers. The overall moisture management properties of the printed fabric remained similar to those of the unprinted fabric, with a grade of 1. These findings highlight the potential of thermochromic textiles for adaptive camouflage, particularly in military uniforms, contributing to the advancement of intelligent textiles with enhanced thermal responsiveness. Full article
(This article belongs to the Special Issue Functional Coatings for Textile Applications)
Show Figures

Figure 1

Back to TopTop