Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (718)

Search Parameters:
Keywords = cotton fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4164 KiB  
Article
Characterization and Functional Analysis of the FBN Gene Family in Cotton: Insights into Fiber Development
by Sunhui Yan, Liyong Hou, Liping Zhu, Zhen Feng, Guanghui Xiao and Libei Li
Biology 2025, 14(8), 1012; https://doi.org/10.3390/biology14081012 - 7 Aug 2025
Abstract
Fibrillins (FBNs) are indispensable for plant growth and development, orchestrating multiple physiological processes. However, the precise functional role of FBNs in cotton fiber development remains uncharacterized. This study reports a genome-wide characterization of the FBN gene family in cotton. A total of 28 [...] Read more.
Fibrillins (FBNs) are indispensable for plant growth and development, orchestrating multiple physiological processes. However, the precise functional role of FBNs in cotton fiber development remains uncharacterized. This study reports a genome-wide characterization of the FBN gene family in cotton. A total of 28 GhFBN genes were identified in upland cotton, with systematic analyses of their phylogenetic relationships, protein motifs, gene structures, and hormone-responsive cis-regulatory elements. Expression profiling of GhFBN1A during fiber development revealed stage-specific activity across the developmental continuum. Transcriptomic analyses following hormone treatments demonstrated upregulation of GhFBN family members, implicating their involvement in hormone-mediated regulatory networks governing fiber cell development. Collectively, this work presents a detailed molecular characterization of cotton GhFBNs and establishes a theoretical foundation for exploring their potential applications in cotton breeding programs aimed at improving fiber quality. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

15 pages, 4969 KiB  
Article
Duplicated Genes on Homologous Chromosomes Decipher the Dominant Epistasis of the Fiberless Mutant in Cotton
by Yu Le, Xingchen Xiong, Zhiyong Xu, Meilin Chen, Yuanxue Li, Chao Fu, Chunyuan You and Zhongxu Lin
Biology 2025, 14(8), 983; https://doi.org/10.3390/biology14080983 - 2 Aug 2025
Viewed by 122
Abstract
Cotton fiber initiation determines the fiber yield, yet the genetic basis underlying lint and fuzz initiation has still not been fully uncovered. Here, map-based cloning was carried out to identify the fiberless mutant genes derived from a cross between Gossypium hirsutum acc. WT [...] Read more.
Cotton fiber initiation determines the fiber yield, yet the genetic basis underlying lint and fuzz initiation has still not been fully uncovered. Here, map-based cloning was carried out to identify the fiberless mutant genes derived from a cross between Gossypium hirsutum acc. WT and a natural fiberless mutant, fblSHZ. The 12:3:1 segregation ratio in F2 populations (including 1848 and 3100 individuals that were developed in 2016 and 2018, respectively) revealed dominant epistasis, with the fuzz gene exerting dominance over the lint gene. Genetic linkage analysis revealed that GhMYB25like_A12 controls fuzz fiber initiation, while both GhMYB25like_A12 and GhMYB25like_D12 regulate lint fiber development. Sequencing analyses showed that the fblSHZ mutant exhibited a K104M mutation in the R2R3 domain of GhMYB25like_A12 and a transposable element insertion in GhMYB25like_D12, leading to fiberless seeds. Knockout of GhMYB25like_A12 produced fuzzless seeds, knockout of GhMYB25like_D12 led to no obvious change in seeds, and knockout of both (GhMYB25like_A12&D12) resulted in fiberless seeds. The 12:3:1 ratio reappeared in the F2 population developed from the GhMYB25like_A12&D12 mutated plants as female and Jin668 as the male, which further confirmed the genetic interaction observed in fblSHZ. RNA-seq analysis revealed that GhMYB25like regulates cotton fiber initiation through multiple pathways, especially fatty acid metabolism. This study elucidates the key genes and their genetic interaction mechanisms governing cotton fiber initiation, providing a theoretical foundation for genetic improvement of cotton fiber traits. Full article
(This article belongs to the Special Issue Cotton: Genomics, Biotechnology and Molecular Breeding)
Show Figures

Figure 1

32 pages, 20583 KiB  
Article
Application of Prodigiosin Extracts in Textile Dyeing and Novel Printing Processes for Halochromic and Antimicrobial Wound Dressings
by Cátia Alves, Pedro Soares-Castro, Rui D. V. Fernandes, Adriana Pereira, Rui Rodrigues, Ana Rita Fonseca, Nuno C. Santos and Andrea Zille
Biomolecules 2025, 15(8), 1113; https://doi.org/10.3390/biom15081113 - 1 Aug 2025
Viewed by 190
Abstract
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin [...] Read more.
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin was prepared under acidic, neutral, and alkaline conditions, resulting in varying protonation states that influenced its affinity for cotton and polyester fibers. Three surfactants (anionic, cationic, non-ionic) were tested, with non-ionic Tween 80 yielding a promising color strength (above 4) and fastness results with neutral prodigiosin at 1.3 g/L. Cotton and polyester demonstrated good washing (color difference up to 14 for cotton, 5 for polyester) and light fastness (up to 15 for cotton, 16 for polyester). Cellulose acetate, used in the conventional printing process as a thickener, produced superior color properties compared to commercial thickeners. Neutral prodigiosin achieved higher color strength, and cotton fabrics displayed halochromic properties, distinguishing them from polyester, which showed excellent fastness. Prodigiosin-printed samples also exhibited strong antimicrobial activity against Pseudomonas aeruginosa and retained halochromic properties over 10 pH cycles. These findings suggest prodigiosin as a sustainable dye alternative and pH sensor, with potential applications in biomedical materials, such as antimicrobial and pH-responsive wound dressings. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Graphical abstract

23 pages, 4356 KiB  
Article
Quantifying Cotton Content in Post-Consumer Polyester/Cotton Blend Textiles via NIR Spectroscopy: Current Attainable Outcomes and Challenges in Practice
by Hana Stipanovic, Gerald Koinig, Thomas Fink, Christian B. Schimper, David Lilek, Jeannie Egan and Alexia Tischberger-Aldrian
Recycling 2025, 10(4), 152; https://doi.org/10.3390/recycling10040152 - 1 Aug 2025
Viewed by 174
Abstract
Rising volumes of textile waste necessitate the development of more efficient recycling systems, with a primary focus on the optimization of sorting technologies. Near-infrared (NIR) spectroscopy is a state-of-the-art method for fiber identification; however, its accuracy in quantifying textile blends, particularly common polyester/cotton [...] Read more.
Rising volumes of textile waste necessitate the development of more efficient recycling systems, with a primary focus on the optimization of sorting technologies. Near-infrared (NIR) spectroscopy is a state-of-the-art method for fiber identification; however, its accuracy in quantifying textile blends, particularly common polyester/cotton blend textiles, still requires refinement. This study explores the potential and limitations of NIR spectroscopy for quantifying cotton content in post-consumer textiles. A lab-scale NIR sorter and a handheld NIR spectrometer in complementary wavelength ranges were applied to a diverse range of post-consumer textile samples to test model accuracies. Results show that the commonly assumed 10% accuracy threshold in industrial sorting can be exceeded, especially when excluding textiles with <35% cotton content. Identifying and excluding the range of non-linearity significantly improved the model’s performance. The final models achieved an RMSEP of 6.6% and bias of −0.9% for the NIR sorter and an RMSEP of 3.1% and bias of −0.6% for the handheld NIR spectrometer. This study also assessed how textile characteristics—such as color, structure, product type, and alkaline treatment—affect spectral behavior and model accuracy, highlighting their importance for refining quantification when high-purity inputs are needed. By identifying current limitations and potential sources of errors, this study provides a foundation for improving NIR-based models. Full article
Show Figures

Figure 1

13 pages, 6838 KiB  
Article
Preparation and Bonding Properties of Fabric Veneer Plywood
by Ziyi Yuan, Limei Cheng, Chengsheng Gui and Lu Fang
Coatings 2025, 15(8), 864; https://doi.org/10.3390/coatings15080864 - 23 Jul 2025
Viewed by 309
Abstract
Fabric veneer panels were prepared using ethylene-vinyl acetate copolymer film (EVA) as the intermediate layer and poplar plywood as the substrate. Eight fabrics with different compositions were selected for evaluation to screen out fabric materials suitable for poplar plywood veneer. The fabrics were [...] Read more.
Fabric veneer panels were prepared using ethylene-vinyl acetate copolymer film (EVA) as the intermediate layer and poplar plywood as the substrate. Eight fabrics with different compositions were selected for evaluation to screen out fabric materials suitable for poplar plywood veneer. The fabrics were objectively analyzed by bending and draping, compression, and surface roughness, and subjectively evaluated by establishing seven levels of semantic differences. ESEM, surface adhesive properties, and peel resistance tests were used to characterize the microstructure and physical–mechanical properties of the composites. The results show that cotton and linen fabrics and corduroy fabrics are superior to other fabrics in performance, and they are suitable for decorative materials. Because the fibers of the doupioni silk fabric are too thin, and the fibers of felt fabric are randomly staggered, they are not suitable for the surface decoration materials of man-made panels. The acetate veneer surface gluing performance was 1.31 MPa, and the longitudinal peel resistance was 20.98 N, significantly exceeding that of other fabric veneers. Through the subjective and objective analysis of fabrics and gluing performance tests, it was concluded that, compared with fabrics made of natural fibers, man-made fiber fabrics are more suitable for use as surface finishing materials for wood-based panels. The results of this study provide a theoretical basis and process reference for the development of environmentally friendly decorative panels, which can be expanded and applied to furniture, interior decoration, and other fields. Full article
(This article belongs to the Special Issue Innovations in Functional Coatings for Wood Processing)
Show Figures

Graphical abstract

18 pages, 21045 KiB  
Article
Genome-Wide Characterization of the ABI3 Gene Family in Cotton
by Guoyong Fu, Yanlong Yang, Tahir Mahmood, Xinxin Liu, Zongming Xie, Zengqiang Zhao, Yongmei Dong, Yousheng Tian, Jehanzeb Farooq, Iram Sharif and Youzhong Li
Genes 2025, 16(8), 854; https://doi.org/10.3390/genes16080854 - 23 Jul 2025
Viewed by 253
Abstract
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted [...] Read more.
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted a comprehensive genome-wide investigation of the ABI3 gene family across 26 plant species, with a focus on 8 Gossypium species. Analyses included phylogenetics, chromosomal localization, synteny assessment, gene duplication patterns, protein domain characterization, promoter cis-regulatory element identification, and tissue-specific/spatiotemporal expression profiling under different organizations of Gossypium hirsutum. Results: Phylogenetic and chromosomal analyses revealed conserved ABI3 evolutionary patterns between monocots and dicots, alongside lineage-specific expansion events within Gossypium spp. Syntenic relationships and duplication analysis in G. hirsutum (upland cotton) indicated retention of ancestral synteny blocks and functional diversification driven predominantly by segmental duplication. Structural characterization confirmed the presence of conserved B3 domains in all G. hirsutum ABI3 homologs. Promoter analysis identified key stress-responsive cis-elements, including ABA-responsive (ABRE), drought-responsive (MYB), and low-temperature-responsive (LTRE) motifs, suggesting a role in abiotic stress regulation. Expression profiling demonstrated significant tissue-specific transcriptional activity across roots, stems, leaves, and fiber developmental stages. Conclusions: This study addresses a significant knowledge gap by elucidating the evolution, structure, and stress-responsive expression profiles of the ABI3 gene family in cotton. It establishes a foundational framework for future functional validation and targeted genetic engineering strategies aimed at developing stress-resilient cotton cultivars with enhanced fiber quality. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

26 pages, 3891 KiB  
Article
Investigation of Hollow Block Production by Substituting Chicken Feather, Cotton and Rock Wool Waste Fibers for Pumice Aggregate
by Ela Bahsude Gorur Avsaroglu
Buildings 2025, 15(15), 2587; https://doi.org/10.3390/buildings15152587 - 22 Jul 2025
Viewed by 297
Abstract
Currently, natural resources are rapidly depleting as a result of increasing construction facilities. Increasing energy consumption with increasing construction is another serious issue. In addition, many problems that threaten the environment and human health arise during the disposal and storage of waste materials [...] Read more.
Currently, natural resources are rapidly depleting as a result of increasing construction facilities. Increasing energy consumption with increasing construction is another serious issue. In addition, many problems that threaten the environment and human health arise during the disposal and storage of waste materials obtained in different sectors. The main objective of this study is to investigate the substitution of cotton (CW), chicken feather (CFF) and stone wool waste (SWW) from pumice aggregate in the production of environmentally friendly hollow blocks. To achieve this, CW, CFF and SWW were substituted for pumice at ratios of 2.5–5–7.5–10% in mass, and hollow blocks were produced with this mixture under low pressure and vibrations in a production factory. Various characterization methods, including a size and tolerance analysis, unit volume weight test, thermal conductivity test, durability test, water absorption test and strength tests, were carried out on the samples produced. This study showed that waste fibers of chicken feather and stone wool are suitable for the production of sustainable and environmentally friendly hollow blocks that can reduce the dead load of the building, have sufficient strength, provide energy efficiency due to low thermal conductivity and have a high durability due to a low water absorption value. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 7078 KiB  
Article
Synthesis and Catalytic Performance of Cotton-Derived Mn–Ce and Mn–Co–Ce Biomorphic Fibers for Soot Combustion and CO Oxidation
by Nicolás Sacco, Ezequiel Banús, Juan P. Bortolozzi, Sabrina Leonardi, Eduardo Miró and Viviana Milt
Sustain. Chem. 2025, 6(3), 20; https://doi.org/10.3390/suschem6030020 - 16 Jul 2025
Viewed by 624
Abstract
Biomorphic mineralization was employed to synthesize novel Mn–Ce and Mn–Co–Ce oxide fibers using commercial cotton as a biotemplate, aiming to assess their catalytic performance in diesel soot combustion and CO oxidation. Two synthesis protocols—one with and one without citric acid—were investigated. The inclusion [...] Read more.
Biomorphic mineralization was employed to synthesize novel Mn–Ce and Mn–Co–Ce oxide fibers using commercial cotton as a biotemplate, aiming to assess their catalytic performance in diesel soot combustion and CO oxidation. Two synthesis protocols—one with and one without citric acid—were investigated. The inclusion of citric acid led to fibers with more uniform morphology, attributed to improved precursor distribution, although synthesis yields decreased for Co-containing systems. In soot combustion tests, Mn–Ce catalysts synthesized with citric acid outperformed their monometallic counterparts. While cobalt incorporation enhanced the mechanical robustness of the fibers, it did not significantly boost catalytic activity. Selected formulations were also evaluated for CO oxidation, with Mn–Co–Ce fibers achieving T50 values in the 240–290 °C range, comparable to Co–Ce nanofibers reported in the literature. These results demonstrate that biomorphic fibers produced through a simple and sustainable route can offer competitive performance in soot and CO oxidation applications. Full article
Show Figures

Figure 1

17 pages, 7594 KiB  
Article
Uridine Kinase-like Protein (GhUKL4) Positively Regulates Resistance to Verticillium Wilt in Cotton
by Baimei Cheng, Yanmeng Sun, Xiaohui Sang, Jianhua Lu, Pei Zhao, Wei Chen, Yunlei Zhao and Hongmei Wang
Genes 2025, 16(7), 819; https://doi.org/10.3390/genes16070819 - 12 Jul 2025
Viewed by 283
Abstract
Background: Verticillium wilt (VW), caused by the fungal pathogen Verticillium dahliae, is a destructive disease that severely compromises cotton yield and fiber quality. Pyrimidine nucleotides, as essential metabolites and nucleic acid components, play critical roles in plant development and stress responses. However, [...] Read more.
Background: Verticillium wilt (VW), caused by the fungal pathogen Verticillium dahliae, is a destructive disease that severely compromises cotton yield and fiber quality. Pyrimidine nucleotides, as essential metabolites and nucleic acid components, play critical roles in plant development and stress responses. However, genes involved in pyrimidine metabolism, especially their roles in disease resistance, remain largely uncharacterized in plants. Methods: Ghir_D05G039120, a gene encoding uridine kinase, shown to be associated with VW resistance in our previous study, was cloned and named as GhUKL4. The differential expression of GhUKL4 between the resistant and susceptible cultivars at multiple time points post-inoculation with V. dahliae was analyzed by quantitative real-time PCR (qRT-PCR), and the uracil phosphoribosyl transferase (UPRT) and uridine 5′-monophosphate kinase (UMPK) domains were verified by analyzing the amino acid sequences of GhUKL4. The role of GhUKL4 in the defense against VW infection was estimated by silencing GhUKL4 in the resistant and susceptible cultivars using virus-induced gene silencing (VIGS) analysis. Results: There were significant differences in the expression level of Ghir_D05G039120/ GhUKL4 among resistant and susceptible cotton lines. GhUKL4 contains UPRTase and UMPK domains, and there was one SNP between the resistant and susceptible cultivars in its 3′-UTR region. The silencing of GhUKL4 reduced cotton’s resistance to VW through mediating hormone signaling (JA) and oxidative stress (ROS) pathways. Conclusions: GhUKL4, encoding UMPK and UPRTase domain proteins, is a new regulatory factor associated with VW resistance in Gossypium hirsutum through fine-tuning JA-signalling and ROS bursting. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

11 pages, 2180 KiB  
Article
Impact of Mild Acid and Alkali Treatments on Cotton Fibers with Nonlinear Optical Imaging and SEM Analysis
by Huipeng Gao, Xiaoxiao Li, Rui Li, Chao Wang, Hsiang-Chen Chui and Quan Zhang
Photonics 2025, 12(7), 688; https://doi.org/10.3390/photonics12070688 - 8 Jul 2025
Viewed by 280
Abstract
This study investigates the structural effects of dilute acid and alkali treatments on cotton fibers, aiming to understand the influence of chemical pretreatment on cellulose morphology. Cotton samples were exposed to 1% sulfuric acid and 1% sodium hydroxide at 90 °C, and the [...] Read more.
This study investigates the structural effects of dilute acid and alkali treatments on cotton fibers, aiming to understand the influence of chemical pretreatment on cellulose morphology. Cotton samples were exposed to 1% sulfuric acid and 1% sodium hydroxide at 90 °C, and the resulting changes were evaluated using scanning electron microscopy and nonlinear optical imaging techniques. The results indicate that sulfuric acid causes significant fiber degradation, leading to fragmentation and reduced fiber thickness. In contrast, sodium hydroxide treatment results in a roughened, flaky surface while preserving the overall structural integrity, with fibers appearing fluffier and more accessible to enzymatic processes. Untreated cotton fibers maintained a smooth and uniform surface, confirming the chemical specificity of the observed changes. These findings are crucial for optimizing biomass pretreatment methods, demonstrating that dilute chemical treatments primarily affect macrostructural features without significantly disrupting the cellulose microfibrils. The study provides valuable insights for the development of efficient biorefining processes and sustainable bio-based materials, highlighting the importance of selecting appropriate chemical conditions to enhance enzymatic hydrolysis and biomass conversion while maintaining the core structure of cellulose. This research contributes to advancing the understanding of cellulose’s structural resilience under mild chemical pretreatment conditions. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

19 pages, 1957 KiB  
Article
Resource-Efficient Cotton Network: A Lightweight Deep Learning Framework for Cotton Disease and Pest Classification
by Zhengle Wang, Heng-Wei Zhang, Ying-Qiang Dai, Kangning Cui, Haihua Wang, Peng W. Chee and Rui-Feng Wang
Plants 2025, 14(13), 2082; https://doi.org/10.3390/plants14132082 - 7 Jul 2025
Cited by 2 | Viewed by 429
Abstract
Cotton is the most widely cultivated natural fiber crop worldwide, yet it is highly susceptible to various diseases and pests that significantly compromise both yield and quality. To enable rapid and accurate diagnosis of cotton diseases and pests—thus supporting the development of effective [...] Read more.
Cotton is the most widely cultivated natural fiber crop worldwide, yet it is highly susceptible to various diseases and pests that significantly compromise both yield and quality. To enable rapid and accurate diagnosis of cotton diseases and pests—thus supporting the development of effective control strategies and facilitating genetic breeding research—we propose a lightweight model, the Resource-efficient Cotton Network (RF-Cott-Net), alongside an open-source image dataset, CCDPHD-11, encompassing 11 disease categories. Built upon the MobileViTv2 backbone, RF-Cott-Net integrates an early exit mechanism and quantization-aware training (QAT) to enhance deployment efficiency without sacrificing accuracy. Experimental results on CCDPHD-11 demonstrate that RF-Cott-Net achieves an accuracy of 98.4%, an F1-score of 98.4%, a precision of 98.5%, and a recall of 98.3%. With only 4.9 M parameters, 310 M FLOPs, an inference time of 3.8 ms, and a storage footprint of just 4.8 MB, RF-Cott-Net delivers outstanding accuracy and real-time performance, making it highly suitable for deployment on agricultural edge devices and providing robust support for in-field automated detection of cotton diseases and pests. Full article
(This article belongs to the Special Issue Precision Agriculture in Crop Production)
Show Figures

Figure 1

26 pages, 11026 KiB  
Article
Machine Learning-Driven Identification of Key Environmental Factors Influencing Fiber Yield and Quality Traits in Upland Cotton
by Mohamadou Souaibou, Haoliang Yan, Panhong Dai, Jingtao Pan, Yang Li, Yuzhen Shi, Wankui Gong, Haihong Shang, Juwu Gong and Youlu Yuan
Plants 2025, 14(13), 2053; https://doi.org/10.3390/plants14132053 - 4 Jul 2025
Viewed by 430
Abstract
Understanding the influence of environmental factors on cotton performance is crucial for enhancing yield and fiber quality in the context of climate change. This study investigates genotype-by-environment (G×E) interactions in cotton, using data from 250 recombinant inbred lines (CCRI70 RILs) cultivated across 14 [...] Read more.
Understanding the influence of environmental factors on cotton performance is crucial for enhancing yield and fiber quality in the context of climate change. This study investigates genotype-by-environment (G×E) interactions in cotton, using data from 250 recombinant inbred lines (CCRI70 RILs) cultivated across 14 diverse environments in China’s major cotton cultivation areas. Our findings reveal that environmental effects predominantly influenced yield-related traits (boll weight, lint percentage, and the seed index), contributing to 34.7% to 55.7% of their variance. In contrast fiber quality traits showed lower environmental sensitivity (12.3–27.0%), with notable phenotypic plasticity observed in the boll weight, lint percentage, and fiber micronaire. Employing six machine learning models, Random Forest demonstrated superior predictive ability (R2 = 0.40–0.72; predictive Pearson correlation = 0.63–0.86). Through SHAP-based interpretation and sliding-window regression, we identified key environmental drivers primarily active during mid-to-late growth stages. This approach effectively reduced the number of influential input variables to just 0.1–2.4% of the original dataset, spanning 2–9 critical time windows per trait. Incorporating these identified drivers significantly improved cross-environment predictions, enhancing Random Forest accuracy by 0.02–0.15. These results underscore the strong potential of machine learning to uncover critical temporal environmental factors underlying G×E interactions and to substantially improve predictive modeling in cotton breeding programs, ultimately contributing to more resilient and productive cotton cultivation. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress—2nd Edition)
Show Figures

Figure 1

14 pages, 4803 KiB  
Article
Developing JMP and VBA Add-Ins for Finite Mixture Modeling of Cotton Fiber Length Distribution
by Mourad Krifa, Vinusha Garlapati, Vikki B. Martin and Neha Kothari
Fibers 2025, 13(7), 91; https://doi.org/10.3390/fib13070091 - 2 Jul 2025
Viewed by 484
Abstract
In this study, software add-ins were developed and presented to allow data processing and statistical analysis of the unique shape of cotton fiber length distribution. The approach uses VBA coding in Excel to process the data, as well as the JMP 14-17 application [...] Read more.
In this study, software add-ins were developed and presented to allow data processing and statistical analysis of the unique shape of cotton fiber length distribution. The approach uses VBA coding in Excel to process the data, as well as the JMP 14-17 application and add-in builder tools to fit finite mixture models to empirical fiber length distributions. The resulting model derives a parametric expression for the fiber length probability density function. The analysis add-in was applied and validated on a wide range of empirical length distributions and proved to parameterize the complex distribution patterns with an excellent goodness of fit. Both tools were compiled into installable add-ins that extended the capabilities of MS Excel for the processing of AFIS distribution reports and the statistical toolbox of JMP using the Application Builder JSL coding. Installable add-ins, along with a user manual, are available for download by cotton researchers. Full article
Show Figures

Figure 1

19 pages, 2218 KiB  
Article
Phenotypic Validation of the Cotton Fiber Length QTL, qFL-Chr.25, and Its Impact on AFIS Fiber Quality
by Samantha J. Wan, Sameer Khanal, Nino Brown, Pawan Kumar, Dalton M. West, Edward Lubbers, Neha Kothari, Donald Jones, Lori L. Hinze, Joshua A. Udall, William C. Bridges, Christopher Delhom, Andrew H. Paterson and Peng W. Chee
Plants 2025, 14(13), 1937; https://doi.org/10.3390/plants14131937 - 24 Jun 2025
Viewed by 488
Abstract
Advances in spinning technology have increased the demand for upland cotton (Gossypium hirsutum L.) cultivars with superior fiber quality. However, progress in breeding for traits such as fiber length is constrained by limited phenotypic and genetic diversity within upland cotton. Introgression from [...] Read more.
Advances in spinning technology have increased the demand for upland cotton (Gossypium hirsutum L.) cultivars with superior fiber quality. However, progress in breeding for traits such as fiber length is constrained by limited phenotypic and genetic diversity within upland cotton. Introgression from Gossypium barbadense, a closely related species known for its superior fiber traits, offers a promising strategy. Sealand 883 is an obsolete upland germplasm developed through G. barbadense introgression and is known for its long and fine fibers. Previous studies have identified a fiber length quantitative trait locus (QTL) on Chromosome 25, designated qFL-Chr.25, in Sealand 883, conferred by an allele introgressed from G. barbadense. This study evaluated the effect of qFL-Chr.25 in near-isogenic introgression lines (NIILs) using Advanced Fiber Information System (AFIS) measurements. Across four genetic backgrounds, NIILs carrying qFL-Chr.25 consistently exhibited longer fibers, as reflected in multiple length parameters, including UHML, L(n), L(w), UQL(w), and L5%. Newly developed TaqMan SNP diagnostic markers flanking the QTL enable automated, reproducible, and scalable screening of large populations typical in commercial breeding programs. These markers will facilitate the incorporation of qFL-Chr.25 into commercial breeding pipelines, accelerating fiber quality improvement and enhancing the competitiveness of cotton against synthetic fibers. Full article
Show Figures

Figure 1

18 pages, 1903 KiB  
Article
Effects of Dietary Ratio of Insoluble Fiber to Soluble Fiber on Reproductive Performance, Biochemical Parameters, and Fecal Microbial Composition of Gestating Sows
by Xiaolu Wen, Qiwen Wu, Kaiguo Gao, Xuefen Yang, Hao Xiao, Zongyong Jiang and Li Wang
Animals 2025, 15(13), 1850; https://doi.org/10.3390/ani15131850 - 23 Jun 2025
Viewed by 396
Abstract
This study aimed to investigate the effects of dietary ISF:SF ratio on reproductive performance, biochemical parameters, colostrum composition, and fecal microbial composition in gestating sows. A total of 30 multiparous sows were randomly allocated to three dietary treatment groups: 8% inulin diet (ISF:SF [...] Read more.
This study aimed to investigate the effects of dietary ISF:SF ratio on reproductive performance, biochemical parameters, colostrum composition, and fecal microbial composition in gestating sows. A total of 30 multiparous sows were randomly allocated to three dietary treatment groups: 8% inulin diet (ISF:SF 1.14, Inulin group), 8% cotton fiber diet (ISF:SF 6.61, Cotton group), and 4% inulin + 4% cotton fiber diet (ISF:SF 2.37, Inulin + Cotton group). The results showed that, compared to the other groups, the Inulin group had a significantly higher number of piglets born alive, as well as increased plasma concentrations of acetic acid, butyric acid, hexanoic acid, and total short-chain fatty acids (SCFAs) (p < 0.05). Sows in the Inulin group had significantly lower fecal scores than those in the other groups from days 81 to 85 and from days 106 to 110 of gestation (p < 0.05). On day 90 of gestation, the serum levels of albumin, urea, uric acid, calcium, and phosphorus in the Inulin group were significantly lower than those in the other groups (p < 0.05). Additionally, the serum levels of triacylglycerol in the Inulin + Cotton Fiber group were significantly higher than those in the other groups (p < 0.05). However, there were no significant differences in serum concentrations of total protein, creatinine, glucose, cholesterol, HDL-cholesterol, or LDL-cholesterol among the treatments (p > 0.05). On day 110 of gestation, the serum content of urea, uric acid, calcium, and phosphorus in the Inulin group was significantly lower than those in the other groups (p < 0.05). Furthermore, the plasma levels of uric acid, triacylglycerol, and HDL-cholesterol in the Inulin + Cotton Fiber group were significantly higher than those in the Cotton Fiber group (p < 0.05), while the creatinine levels in the Inulin group were higher than those in the other groups (p < 0.05). No differences were observed in the composition and immune performance of colostrum (p > 0.05). Microbial sequencing analysis showed that dietary inulin supplementation to increase the proportion of soluble fiber significantly decreased the abundance of Firmicutes, Clostridia, Clostridiales, Lachnospiraceae, Streptococcaceae, and Streptococcus (p < 0.05). The abundance of short-chain fatty acid-producing microorganisms—Bacteroidetes, Bacteroidia, Bacteroidales, and Muribaculaceae—was significantly increased (p < 0.05). The results indicated that inulin supplementation decreased the dietary ISF:SF ratio, significantly alleviated constipation in sows, increased the number of piglets born alive, regulated intestinal microecology, and increased the plasma concentrations of short-chain fatty acids (SCFAs), including acetic, propionic, and butyric acids. Full article
Show Figures

Figure 1

Back to TopTop