Machine Learning-Driven Identification of Key Environmental Factors Influencing Fiber Yield and Quality Traits in Upland Cotton
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Environmental Data
2.4. Analysis of Variance (ANOVA)
2.5. Genotype-by-Environment Interaction (GGE) Biplot
- -
- Yij is the mean value of genotype i in environment j.
- -
- μ is the overall mean.
- -
- βj is the main effect of environment j
- -
- k is the number of axes required for an adequate representation of the GGE interaction.
- -
- λk is the singular value of the kth axis
- -
- γik and δjk are the scores of the ith genotype and the jth environment for axis k, respectively.
2.6. Phenotypic Plasticity
2.7. Key Environmental Factors Identified by Linear Regression
2.8. Machine Learning Algorithm Screening
2.9. Key Environmental Factors Identified by Machine Learning
3. Results
3.1. Environmental Conditions
3.2. Phenotype Variation
3.3. Performance of Machine Learning Algorithms for Cross-Environmental Prediction
3.4. Key Environment Factors for Each Phenotype
3.5. Key Environmental Factors Validation by Model
4. Discussion
4.1. The Relationship Between Crop Phenotypic Variation and the Environment
4.2. The Use Machine Learning Modelling Approaches to More Fully Identify Environmental Factors That Play a Key Role in Phenotype Formation
4.3. The Key Environmental Factors Found for Each Phenotype
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harsanto, B.; Primiana, I.; Sarasi, V.; Satyakti, Y. Sustainability Innovation in the Textile Industry: A Systematic Review. Sustainability 2023, 15, 1549. [Google Scholar] [CrossRef]
- Baghyalakshmi, K.; Priyanka, R.A.; Sarathapriya, G.; Ramchander, S.; Prakash, A.H. Genetic improvement of fiber quality in tetraploid cotton: An overview of major QTLs and genes involved in and edited for the quality of cotton fibers. J. Cotton Res. 2024, 7, 33. [Google Scholar] [CrossRef]
- Zakir, M. Review on Genotype X Environment Interaction in Plant Breeding and Agronomic Stability of Crops. J. Biol. Agric. Healthc. 2018, 8, 14–21. [Google Scholar]
- Bilbro, J.D.; Ray, L.L. Environmental Stability and Adaptation of Several Cotton Cultivars. Crop Sci. 1976, 16, 821–824. [Google Scholar] [CrossRef]
- Gul, S. Genotype by Environment Interaction for Morpho-Yield Traits in Upland Cotton. Master’s Thesis, The University of Agriculture, Peshawar, Pakistan, 2013. [Google Scholar]
- Kerby, T.; Burgess, J.; Bates, M.; Alberts, D.; Lege, K. Partitioning variety and environment contribution to variation in yield, plant growth, and fiber quality. In Proceedings of the Beltwide Cotton Conferences, San Antonio, TX, USA, 4–8 January 2000; pp. 528–532. [Google Scholar]
- Sawan, Z.M. Climatic variables: Evaporation, sunshine, relative humidity, soil and air temperature and its adverse effects on cotton production. Inf. Process. Agric. 2018, 5, 134–148. [Google Scholar] [CrossRef]
- Moutonnet, P.; Couchat, P. Mesure journaliére sur cycle végétatif complet des échanges gazeux: Photosynthése, transpiration et respiration nocturne ?une culture de Maïs conduite sur colonnes de sol. Physiol. Plant. 1979, 47, 39–43. [Google Scholar] [CrossRef]
- Zahra, N.; Hafeez, M.B.; Ghaffar, A.; Kausar, A.; Zeidi, M.A.; Siddique, K.H.M.; Farooq, M. Plant Photosynthesis under Heat Stress: Effects and Management. Environ. Exp. Bot. 2022, 206, 105178. [Google Scholar] [CrossRef]
- Najeeb, U.; Tan, D.K.Y.; Bange, M.P.; Atwell, B.J. Protecting cotton crops under elevated CO2 from waterlogging by managing ethylene. Funct. Plant Biol. 2018, 45, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Distefano, G.; Gentile, A.; Hedhly, A.; La Malfa, S. Temperatures during flower bud development affect pollen germination, self-incompatibility reaction and early fruit development of clementine (Citrus clementina Hort. ex Tan.). Plant Biol. 2018, 20, 191–198. [Google Scholar] [CrossRef]
- Hedhly, A.; Hormaza, J.I.; Herrero, M. Effect of temperature on pollen tube kinetics and dynamics in sweet cherry, Prunus avium (Rosaceae). Am. J. Bot. 2004, 91, 558–564. [Google Scholar] [CrossRef]
- Hedhly, A.; Hormaza, J.I.; Herrero, M. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol. 2005, 7, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.R.; Reddy, K.R.; Baker, D.N. Temperature Effect on Growth and Development of Cotton During the Fruiting Period. Agron. J. 1991, 83, 211–217. [Google Scholar] [CrossRef]
- Liakatas, A.; Roussopoulos, D.; Whittington, W.J. Controlled-temperature effects on cotton yield and fibre properties. J. Agric. Sci. 1998, 130, 463–471. [Google Scholar] [CrossRef]
- Li, N.; Lin, H.; Wang, T.-L.; Li, Y.; Liu, Y.; Chen, X.-r.; Hu, X. Impact of climate change on cotton growth and yields in Xinjiang, China. Field Crops Res. 2020, 247, 107590. [Google Scholar] [CrossRef]
- Bozorov, T.A.; Usmanov, R.; Yang, H.; Hamdullaev, S.A.; Musayev, S.; Shavkiev, J.; Nabiev, S.; Zhang, D.; Abdullaev, A.A. Effect of water deficiency on relationships between metabolism, physiology, biomass, and yield of upland cotton (Gossypium hirsutum L.). J. Arid. Land 2018, 10, 441–456. [Google Scholar] [CrossRef]
- Saini, D.K.; Impa, S.M.; McCallister, D.; Patil, G.B.; Abidi, N.; Ritchie, G.; Jaconis, S.Y.; Jagadish, K.S.V. High day and night temperatures impact on cotton yield and quality—Current status and future research direction. J. Cotton Res. 2023, 6, 16. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skeg, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, S.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Deng, X.; Gong, J.; Liu, A.; Shi, Y.; Gong, W.; Ge, Q.; Li, J.; Shang, H.; Wu, Y.; Yuan, Y. QTL mapping for fiber quality and yield-related traits across multiple generations in segregating population of CCRI 70. J. Cotton Res. 2019, 2, 13. [Google Scholar] [CrossRef]
- Zou, X.; Gong, J.; Duan, L.; Jiang, X.; Zhen, Z.; Fan, S.; Ge, Q.; Liu, A.; Gong, W.; Li, J.; et al. High-density genetic map construction and QTL mapping for fiber strength on Chr24 across multiple environments in a CCRI70 recombinant inbred lines population. Euphytica 2018, 214, 102. [Google Scholar] [CrossRef]
- Arnold, P.A.; Kruuk, L.E.B.; Nicotra, A.B. How to analyse plant phenotypic plasticity in response to a changing climate. New Phytol. 2019, 222, 1235–1241. [Google Scholar] [CrossRef]
- Bocianowski, J.; Liersch, A. Multi-environmental evaluation of winter oilseed rape genotypic performance using mixed models. Euphytica 2021, 217, 80. [Google Scholar] [CrossRef]
- Gauch, H.G.; Piepho, H.P.; Annicchiarico, P. Statistical Analysis of Yield Trials by AMMI and GGE: Further Considerations. Crop Sci. 2008, 48, 866–889. [Google Scholar] [CrossRef]
- Kee Wong, Y. The use of Big Data in Machine Learning Algorithm. In Proceedings of the NLP Techniques and Applications, Dubai, United Arab Emirates, 27–28 November 2021; pp. 141–147. [Google Scholar]
- Verikas, A.; Gelzinis, A.; Bacauskiene, M. Mining data with random forests: A survey and results of new tests. Pattern Recognit. 2011, 44, 330–349. [Google Scholar] [CrossRef]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.M.; Gerber, J.S.; Reddy, V.R.; et al. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef]
- Gomez-Cano, F.; Rodriguez, J.; Zhou, P.; Chu, Y.H.; Magnusson, E.; Gomez-Cano, L.; Krishnan, A.; Springer, N.M.; de Leon, N.; Grotewold, E. Prioritizing Maize Metabolic Gene Regulators through Multi-Omic Network Integration. bioRxiv 2024. [Google Scholar] [CrossRef]
- Mitra, A.; Beegum, S.; Fleisher, D.; Reddy, V.R.; Sun, W.; Ray, C.; Timlin, D.; Malakar, A. Cotton Yield Prediction Using Random Forest. arXiv 2023, arXiv:2312.02299. [Google Scholar]
- Gipson, J.R.; Joham, H.E. Influence of Night Temperature on Growth and Development of Cotton (Gossypium hirsutum L.). III. Fiber Elongation1. Crop Sci. 1969, 9, 127–129. [Google Scholar] [CrossRef]
- Lokhande, S.; Reddy, K.R. Quantifying Temperature Effects on Cotton Reproductive Efficiency and Fiber Quality. Agron. J. 2014, 106, 1275–1282. [Google Scholar] [CrossRef]
- Jiang, X.; Gong, J.; Zhang, J.; Zhang, Z.; Shi, Y.; Li, J.; Liu, A.; Gong, W.; Ge, Q.; Deng, X.; et al. Quantitative Trait Loci and Transcriptome Analysis Reveal Genetic Basis of Fiber Quality Traits in CCRI70 RIL Population of Gossypium hirsutum. Front. Plant Sci. 2021, 12, 753755. [Google Scholar] [CrossRef]
- Gong, J.; Kong, D.; Liu, C.; Li, P.; Liu, P.; Xiao, X.; Liu, R.; Lu, Q.; Shang, H.; Shi, Y.; et al. Multi-environment Evaluations Across Ecological Regions Reveal That the Kernel Oil Content of Cottonseed Is Equally Determined by Genotype and Environment. J. Agric. Food Chem. 2022, 70, 2529–2544. [Google Scholar] [CrossRef]
- Schützenmeister, A.; Jensen, U.; Piepho, H.P. Checking Normality and Homoscedasticity in the General Linear Model Using Diagnostic Plots. Commun. Stat.-Simul. Comput. 2012, 41, 141–154. [Google Scholar] [CrossRef]
- Lian, L.; de los Campos, G. FW: An R Package for Finlay–Wilkinson Regression that Incorporates Genomic/Pedigree Information and Covariance Structures Between Environments. G3 Genes|Genomes|Genet. 2016, 6, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, T.; Wang, J.; Bekele, W.A.; Sukumaran, S.; Vanous, A.E.; McNellie, J.P.; Tibbs-Cortes, L.E.; Lopes, M.S.; Lamkey, K.R.; et al. An integrated framework reinstating the environmental dimension for GWAS and genomic selection in crops. Mol. Plant 2021, 14, 874–887. [Google Scholar] [CrossRef] [PubMed]
- Napier, J.D.; Heckman, R.W.; Juenger, T.E. Gene-by-environment interactions in plants: Molecular mechanisms, environmental drivers, and adaptive plasticity. Plant Cell 2023, 35, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Hafeez ur, R.; Murtaza, N.; Shah, M.K.N. Study of Cotton Fibre Traits Inheritance under Different Temperature Regimes. J. Agron. Crop Sci. 2006, 193, 45–54. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; El-Banna, A. Response of Fiber Quality to Temperature Degree and Lint Cotton Grade in Two Long Staple Varieties. Alex. Sci. Exch. J. 2018, 39, 494–501. [Google Scholar] [CrossRef]
- Haigler, C.H.; Rao, N.R.; Roberts, E.M.; Huang, J.Y.; Upchurch, D.R.; Trolinder, N.L.G. Cultured Ovules as Models for Cotton Fiber Development under Low Temperatures. Plant Physiol. 1991, 95, 88–96. [Google Scholar] [CrossRef]
- Reddy, K.R.; Davidonis, G.H.; Johnson, A.S.; Vinyard, B.T. Temperature Regime and Carbon Dioxide Enrichment Alter Cotton Boll Development and Fiber Properties. Agron. J. 1999, 91, 851–858. [Google Scholar] [CrossRef]
- Cintron, M.; Ingber, B. Preliminary examination of the effects of relative humidity on the fracture morphology of cotton flat bundles. Text. Res. J. 2013, 83, 1044–1054. [Google Scholar] [CrossRef]
- Hoffman, G.J.; Rawlins, S.L.; Garber, M.J.; Cullen, E.M. Water Relations and Growth of Cotton as Influenced by Salinity and Relative Humidity1. Agron. J. 1971, 63, 822–826. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, C.; Liu, H.; Wu, C. The impact of temperature and relative humidity on cotton fiber moisture regain and specific resistance. J. Text. Inst. 2024, 116, 1220–1226. [Google Scholar] [CrossRef]
- Szewczyk, P.K.; Stachewicz, U. The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Adv. Colloid. Interface Sci. 2020, 286, 102315. [Google Scholar] [CrossRef] [PubMed]
- Lovell, J.T.; MacQueen, A.H.; Mamidi, S.; Bonnette, J.; Jenkins, J.; Napier, J.D.; Sreedasyam, A.; Healey, A.; Session, A.; Shu, S.; et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 2021, 590, 438–444. [Google Scholar] [CrossRef]
- Abasi, A.; Suqin, H.; Maimaitireyimu, N.e. Effect of climate change on cotton growth period and yield in Kashgar City, Xinjiang Uygur Autonomous Region. Chin. J. Eco-Agric. 2015, 23, 919–930. [Google Scholar] [CrossRef]
- Feng, L.; Mathis, G.; Ritchie, G.; Han, Y.; Li, Y.; Wang, G.; Zhi, X.; Bednarz, C.W. Optimizing Irrigation and Plant Density for Improved Cotton Yield and Fiber Quality. Agron. J. 2014, 106, 1111–1118. [Google Scholar] [CrossRef]
- Williford, J. Influence of harvest factors on cotton yield and quality. Trans. ASAE 1992, 35, 1103–1107. [Google Scholar] [CrossRef]
- Tang, X.; Lv, X. The Effect of Extreme Climatic Events on Extreme Runoff in the Past 50 Years in the Manas River Basin, Xinjiang, China. Am. J. Clim. Change 2016, 05, 15–26. [Google Scholar] [CrossRef]
- Li, B.; Tian, Q.; Wang, X.; Han, B.; Liu, L.; Kong, X.; Si, A.; Wang, J.; Lin, Z.; Zhang, X.; et al. Phenotypic plasticity and genetic variation of cotton yield and its related traits under water-limited conditions. Crop J. 2020, 8, 966–976. [Google Scholar] [CrossRef]
- Arshad, M.U.; Zhao, Y.; Hanif, O.; Fatima, F. Evolution of Overall Cotton Production and Its Determinants: Implications for Developing Countries Using Pakistan Case. Sustainability 2022, 14, 840. [Google Scholar] [CrossRef]
- Han, W.; Liu, S.; Wang, J.; Lei, Y.; Zhang, Y.; Han, Y.; Wang, G.; Feng, L.; Li, X.; Li, Y.; et al. Climate variation explains more than half of cotton yield variability in China. Ind. Crop Prod. 2022, 190, 115905. [Google Scholar] [CrossRef]
- Chen, C.; Pang, Y.; Pan, X.; Zhang, L. Impacts of climate change on cotton yield in China from 1961 to 2010 based on provincial data. J. Meteorol. Res. 2015, 29, 515–524. [Google Scholar] [CrossRef]
- Qian, L.; Meng, H.; Chen, X.; Tang, R. Evaluating agricultural drought and flood abrupt alternation: A case study of cotton in the middle-and-lower Yangtze River, China. Agr. Water Manag. 2023, 283, 108313. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.; Yang, Q.; Biswas, A.; Dong, H. Simulating climate change impacts on cotton using AquaCrop model in China. Agr. Syst. 2024, 216, 103897. [Google Scholar] [CrossRef]
- Liu, L.; Li, C.; Han, Y.; Wang, Z.; Feng, L.; Zhi, X.; Yang, B.; Lei, Y.; Du, W.; Li, Y. Adjusting cotton planting density under the climatic conditions of Henan Province, China. PLoS ONE 2019, 14, e0222395. [Google Scholar] [CrossRef]
- Guo, T.; Li, X. Machine learning for predicting phenotype from genotype and environment. Curr. Opin. Biotechnol. 2023, 79, 102853. [Google Scholar] [CrossRef]
- Crossa, J.; Montesinos-Lopez, O.A.; Costa-Neto, G.; Vitale, P.; Martini, J.W.R.; Runcie, D.; Fritsche-Neto, R.; Montesinos-Lopez, A.; Perez-Rodriguez, P.; Gerard, G.; et al. Machine learning algorithms translate big data into predictive breeding accuracy. Trends Plant Sci. 2025, 30, 167–184. [Google Scholar] [CrossRef]
- Azodi, C.B.; Tang, J.; Shiu, S.-H. Opening the Black Box: Interpretable Machine Learning for Geneticists. Trends Genet. TIG 2020, 36, 442–455. [Google Scholar] [CrossRef]
- Washburn, J.D.; Cimen, E.; Ramstein, G.; Reeves, T.; O’Briant, P.; McLean, G.; Cooper, M.; Hammer, G.; Buckler, E.S. Predicting phenotypes from genetic, environment, management, and historical data using CNNs. Theor. Appl. Genet. 2021, 134, 3997–4011. [Google Scholar] [CrossRef] [PubMed]
- Kick, D.R.; Wallace, J.G.; Schnable, J.C.; Kolkman, J.M.; Alaca, B.; Beissinger, T.M.; Edwards, J.; Ertl, D.; Flint-Garcia, S.; Gage, J.L.; et al. Yield prediction through integration of genetic, environment, and management data through deep learning. G3 Genes|Genomes|Genet. 2023, 13, jkad006. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Beegum, S.; Fleisher, D.; Reddy, V.R.; Sun, W.; Ray, C.; Timlin, D.; Malakar, A. Cotton Yield Prediction: A Machine Learning Approach With Field and Synthetic Data. IEEE Access 2024, 12, 101273–101288. [Google Scholar] [CrossRef]
- Wijayanti, E.B.; Setiadi, D.R.I.M.; Setyoko, B.H. Dataset Analysis and Feature Characteristics to Predict Rice Production based on eXtreme Gradient Boosting. J. Comput. Theor. Appl. 2024, 1, 299–310. [Google Scholar] [CrossRef]
- Kumar, S.; Sohail, M.A.; Jadhav, S.; Gupta, R.K. Light Gradient Boosting Machine for Optimizing Crop Maintenance and Yield Prediction in Agriculture. ICTACT J. Soft Comput. 2024, 15, 3551–3555. [Google Scholar] [CrossRef]
- Sawan, Z.M. Applied methods for studying the relationship between climatic factors and cotton production. Agric. Sci. 2013, 4, 37–54. [Google Scholar] [CrossRef]
- Vigier, B.; Reid, L.M.; Dwyer, L.M.; Stewart, D.W.; Sinha, R.C.; Arnason, J.T.; Butler, G. Maize resistance to gibberella ear rot: Symptoms, deoxynivalenol, and yield1. Can. J. Plant Pathol. 2001, 23, 99–105. [Google Scholar] [CrossRef]
- Hoffman, G.J.; Jobes, J.A. Growth and Water Relations of Cereal Crops as Influenced by Salinity and Relative Humidity1. Agron. J. 1978, 70, 765–769. [Google Scholar] [CrossRef]
- Lomas, J.; Mandel, M.; Zemel, Z. The effect of climate on irrigated cotton yields under semi-arid conditions: Temperature-yield relationships. Agric. Meteorol. 1977, 18, 435–453. [Google Scholar] [CrossRef]
- Arshad, A.; Raza, M.A.; Zhang, Y.; Zhang, L.; Wang, X.; Ahmed, M.; Habib-ur-Rehman, M. Impact of Climate Warming on Cotton Growth and Yields in China and Pakistan: A Regional Perspective. Agriculture 2021, 11, 97. [Google Scholar] [CrossRef]
- Reddy, K.R.; Hodges, H.; McKinion, J. A Comparison of Scenarios for the Effect of Global Climate Change on Cotton Growth and Yield. Funct. Plant Biol. 1997, 24, 707–713. [Google Scholar] [CrossRef]
- Walne, C.H.; Reddy, K.R. Temperature Effects on the Shoot and Root Growth, Development, and Biomass Accumulation of Corn (Zea mays L.). Agriculture 2022, 12, 443. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, Y.; Liu, K.; Shu, H.; Zhou, Z. Protein expression changes during cotton fiber elongation in response to low temperature stress. J. Plant Physiol. 2012, 169, 399–409. [Google Scholar] [CrossRef]
- Khaldi, M.; Bouziane, M.M.; Vivet, A.; Bougherara, H. About the influence of temperature and environmental relative humidity on the longitudinal and transverse mechanical properties of elementary alfa fibers. J. Appl. Polym. Sci. 2020, 137, 48992. [Google Scholar] [CrossRef]
- Hinchliffe, D.J.; Meredith, W.R.; Delhom, C.D.; Thibodeaux, D.P.; Fang, D.D. Elevated Growing Degree Days Influence Transition Stage Timing During Cotton Fiber Development Resulting in Increased Fiber-Bundle Strength. Crop Sci. 2011, 51, 1683–1692. [Google Scholar] [CrossRef]
- Sawan, Z.M.; Hanna, L.I.; McCuistion, W.L. Effect of climatic factors during the development periods of flowering and boll formation on the production of Egyptian cotton (Gossypium barbadense L.). Agronomie 1999, 19, 435–443. [Google Scholar] [CrossRef]
- Barker, G.L.; Hatfield, J.L.; Wanjura, D.F. Influence of Wind on Cotton Growth and Yield. Trans. ASABE 1989, 32, 97–0104. [Google Scholar] [CrossRef]
- Sawan, Z.M.; Hanna, L.I.; McCuistion, W.L.; Foote, R.J. Egyptian cotton (Gossypium barbadense) flower and boll production as affected by climatic factors and soil moisture status. Theor. Appl. Climatol. 2009, 99, 217–227. [Google Scholar] [CrossRef]
- Chakraborty, P.K.; Banerjee, S.; Nath, R.; Samanta, S. The Influence of Photo-thermal Quotient on the Growth and Yield of Summer Rice under Varying Dates of Transplanting and Irrigation Regimes in Lower Gangetic Plains of India. Curr. J. Appl. Sci. Technol. 2018, 29, 1–14. [Google Scholar] [CrossRef]
- Silva, R.R.; Benin, G.; Marchese, J.A.; Silva, É.D.B.d.; Marchioro, V.S. The use of photothermal quotient and frost risk to identify suitable sowing dates for wheat. Acta Scientiarum. Agron. 2014, 36, 99–110. [Google Scholar] [CrossRef]
- Nalley, L.L.; Barkley, A.P.; Sayre, K. Photothermal Quotient Specifications to Improve Wheat Cultivar Yield Component Models. Agron. J. 2009, 101, 556–563. [Google Scholar] [CrossRef]
- Ahmed, M.; Hassan, F. Cumulative Effect of Temperature and Solar Radiation on Wheat Yield. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 146–152. [Google Scholar] [CrossRef]
- Huang, Y.; Qi, Z.; Li, J.; You, J.; Zhang, X.; Wang, M. Genetic interrogation of phenotypic plasticity informs genome-enabled breeding in cotton. J. Genet. Genom. 2023, 50, 971–982. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S.U.S. Agro-Climate in 20(th) Century: Growing Degree Days, First and Last Frost, Growing Season Length, and Impacts on Crop Yields. Sci. Rep. 2018, 8, 6977. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear Effects of Weather on Corn Yields. Appl. Econ. Perspect. Policy 2006, 28, 391–398. [Google Scholar] [CrossRef]
- Ye, Q.; Lin, X.; Adee, E.; Min, D.; Assefa Mulisa, Y.; O’Brien, D.; Ciampitti, I.A. Evaluation of climatic variables as yield-limiting factors for maize in Kansas. Int. J. Climatol. 2017, 37, 464–475. [Google Scholar] [CrossRef]
- Bradow, J.M.; Bauer, P.J. Fiber-quality variations related to cotton planting date and temperature. In Proceedings of the Beltwide Cotton Conference, New Orleans, LA, USA, 6–10 January 1997. [Google Scholar]
Variable | Groupe | Df | SS | MS | F Value | p Value | Variance % |
---|---|---|---|---|---|---|---|
BW | Genotype | 249 | 732.97 | 2.94 | 15.7 | 0 | 15.46 |
BW | ENVs | 13 | 2641.58 | 203.2 | 1083.99 | 0 | 55.72 |
BW | Rep | 2 | 2.53 | 1.26 | 6.74 | 0 | 0.05 |
BW | Genotype:ENVs | 3237 | 663.29 | 0.2 | 1.09 | 0 | 13.99 |
BW | Residuals | 3735 | 700.14 | 0.19 | 14.77 | ||
LP | Genotype | 249 | 35,035.88 | 140.71 | 81.49 | 0 | 40.46 |
LP | ENVs | 13 | 37,070 | 2851.54 | 1651.54 | 0 | 42.81 |
LP | Rep | 2 | 3.62 | 1.81 | 1.05 | 0.35 | 0 |
LP | Genotype:ENVs | 3237 | 8035.56 | 2.48 | 1.44 | 0 | 9.28 |
LP | Residuals | 3730 | 6440.19 | 1.73 | 7.44 | ||
SI | Genotype | 249 | 5633.49 | 22.62 | 87.85 | 0 | 47.16 |
SI | ENVs | 13 | 4146.68 | 318.98 | 1238.52 | 0 | 34.71 |
SI | Rep | 2 | 10.28 | 5.14 | 19.96 | 0 | 0.09 |
SI | Genotype:ENVs | 3237 | 1195.02 | 0.37 | 1.43 | 0 | 10 |
SI | Residuals | 3732 | 961.16 | 0.26 | 8.05 | ||
FL | Genotype | 249 | 6177.22 | 24.81 | 28.93 | 0 | 43.48 |
FL | ENVs | 13 | 1745.81 | 134.29 | 156.61 | 0 | 12.29 |
FL | Rep | 2 | 5.37 | 2.69 | 3.13 | 0.04 | 0.04 |
FL | Genotype:ENVs | 3237 | 3083.86 | 0.95 | 1.11 | 0 | 21.7 |
FL | Residuals | 3727 | 3195.85 | 0.86 | 22.49 | ||
FS | Genotype | 249 | 14,923.77 | 59.93 | 25.01 | 0 | 36.32 |
FS | ENVs | 13 | 8344.21 | 641.86 | 267.85 | 0 | 20.31 |
FS | Rep | 2 | 17.68 | 8.84 | 3.69 | 0.03 | 0.04 |
FS | Genotype:ENVs | 3237 | 8871.58 | 2.74 | 1.14 | 0 | 21.59 |
FS | Residuals | 3727 | 8931.14 | 2.4 | 21.74 | ||
FM | Genotype | 249 | 490.74 | 1.97 | 35.1 | 0 | 36.78 |
FM | ENVs | 13 | 360.31 | 27.72 | 493.65 | 0 | 27.01 |
FM | Rep | 2 | 1.71 | 0.85 | 15.21 | 0 | 0.13 |
FM | Genotype:ENVs | 3237 | 272.2 | 0.08 | 1.5 | 0 | 20.4 |
FM | Residuals | 3727 | 209.25 | 0.06 | 15.68 |
Trait | Environmental Factor | Start Day | End Day |
---|---|---|---|
BW | tmax | 111 | 115 |
pcp | 101 | 105 | |
rhmean | 62 | 71 | |
wsmean | 90 | 94 | |
wsmean | 126 | 130 | |
GDD | 92 | 96 | |
PRDTR | 101 | 105 | |
PTQ | 94 | 99 | |
LP | tmean | 138 | 143 |
tmin | 67 | 71 | |
wsmean | 115 | 119 | |
GDD | 138 | 143 | |
PTQ | 68 | 72 | |
SI | tmean | 118 | 146 |
tmin | 117 | 146 | |
pcp | 69 | 73 | |
pcp | 128 | 140 | |
rhmean | 78 | 82 | |
rhmean | 107 | 111 | |
GDD | 118 | 146 | |
PRDTR | 69 | 73 | |
PRDTR | 128 | 140 | |
FL | pcp | 135 | 139 |
PRDTR | 135 | 139 | |
FS | tmax | 70 | 74 |
tmax | 97 | 101 | |
tmean | 72 | 79 | |
tmin | 37 | 37 | |
tmin | 59 | 62 | |
tmin | 91 | 92 | |
rhmean | 82 | 88 | |
GDD | 72 | 76 | |
PTQ | 82 | 86 | |
FM | tmin | 36 | 40 |
tmin | 135 | 139 | |
radn | 136 | 140 | |
dh | 136 | 140 | |
rhmean | 136 | 140 | |
DTR | 136 | 140 | |
PTQ | 131 | 140 | |
PTT | 136 | 140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souaibou, M.; Yan, H.; Dai, P.; Pan, J.; Li, Y.; Shi, Y.; Gong, W.; Shang, H.; Gong, J.; Yuan, Y. Machine Learning-Driven Identification of Key Environmental Factors Influencing Fiber Yield and Quality Traits in Upland Cotton. Plants 2025, 14, 2053. https://doi.org/10.3390/plants14132053
Souaibou M, Yan H, Dai P, Pan J, Li Y, Shi Y, Gong W, Shang H, Gong J, Yuan Y. Machine Learning-Driven Identification of Key Environmental Factors Influencing Fiber Yield and Quality Traits in Upland Cotton. Plants. 2025; 14(13):2053. https://doi.org/10.3390/plants14132053
Chicago/Turabian StyleSouaibou, Mohamadou, Haoliang Yan, Panhong Dai, Jingtao Pan, Yang Li, Yuzhen Shi, Wankui Gong, Haihong Shang, Juwu Gong, and Youlu Yuan. 2025. "Machine Learning-Driven Identification of Key Environmental Factors Influencing Fiber Yield and Quality Traits in Upland Cotton" Plants 14, no. 13: 2053. https://doi.org/10.3390/plants14132053
APA StyleSouaibou, M., Yan, H., Dai, P., Pan, J., Li, Y., Shi, Y., Gong, W., Shang, H., Gong, J., & Yuan, Y. (2025). Machine Learning-Driven Identification of Key Environmental Factors Influencing Fiber Yield and Quality Traits in Upland Cotton. Plants, 14(13), 2053. https://doi.org/10.3390/plants14132053