Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,441)

Search Parameters:
Keywords = cost and benefit assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

27 pages, 1491 KiB  
Article
Spent Nuclear Fuel—Waste to Resource, Part 1: Effects of Post-Reactor Cooling Time and Novel Partitioning Strategies in Advanced Reprocessing on Highly Active Waste Volumes in Gen III(+) UOx Fuel Systems
by Alistair F. Holdsworth, Edmund Ireland and Harry Eccles
J. Nucl. Eng. 2025, 6(3), 29; https://doi.org/10.3390/jne6030029 - 5 Aug 2025
Abstract
Some of nuclear power’s primary detractors are the unique environmental challenges and impacts of radioactive wastes generated during fuel cycle operations. Key benefits of spent fuel reprocessing (SFR) are reductions in primary high active waste (HAW) masses, volumes, and lengths of radiotoxicity at [...] Read more.
Some of nuclear power’s primary detractors are the unique environmental challenges and impacts of radioactive wastes generated during fuel cycle operations. Key benefits of spent fuel reprocessing (SFR) are reductions in primary high active waste (HAW) masses, volumes, and lengths of radiotoxicity at the expense of secondary waste generation and high capital and operational costs. By employing advanced waste management and resource recovery concepts in SFR beyond the existing standard PUREX process, such as minor actinide and fission product partitioning, these challenges could be mitigated, alongside further reductions in HAW volumes, masses, and duration of radiotoxicity. This work assesses various current and proposed SFR and fuel cycle options as base cases, with further options for fission product partitioning of the high heat radionuclides (HHRs), rare earths, and platinum group metals investigated. A focus on primary waste outputs and the additional energy that could be generated by the reprocessing of high-burnup PWR fuel from Gen III(+) reactors using a simple fuel cycle model is used; the effects of 5- and 10-year spent fuel cooling times before reprocessing are explored. We demonstrate that longer cooling times are preferable in all cases except where short-lived isotope recovery may be desired, and that the partitioning of high-heat fission products (Cs and Sr) could allow for the reclassification of traditional raffinates to intermediate level waste. Highly active waste volume reductions approaching 50% vs. PUREX raffinate could be achieved in single-target partitioning of the inactive and low-activity rare earth elements, and the need for geological disposal could potentially be mitigated completely if HHRs are separated and utilised. Full article
Show Figures

Figure 1

13 pages, 491 KiB  
Article
Optimizing One-Sample Tests for Proportions in Single- and Two-Stage Oncology Trials
by Alan David Hutson
Cancers 2025, 17(15), 2570; https://doi.org/10.3390/cancers17152570 - 4 Aug 2025
Abstract
Background/Objectives: Phase II oncology trials often rely on single-arm designs to test H0:π=π0 versus Ha:π>π0, especially when randomized trials are infeasible due to cost or disease rarity. Traditional approaches, such [...] Read more.
Background/Objectives: Phase II oncology trials often rely on single-arm designs to test H0:π=π0 versus Ha:π>π0, especially when randomized trials are infeasible due to cost or disease rarity. Traditional approaches, such as the exact binomial test and Simon’s two-stage design, tend to be conservative, with actual Type I error rates falling below the nominal α due to the discreteness of the underlying binomial distribution. This study aims to develop a more efficient and flexible method that maintains accurate Type I error control in such settings. Methods: We propose a convolution-based method that combines the binomial distribution with a simulated normal variable to construct an unbiased estimator of π. This method is designed to precisely control the Type I error rate while enabling more efficient trial designs. We derive its theoretical properties and assess its performance against traditional exact tests in both one-stage and two-stage trial designs. Results: The proposed method results in more efficient designs with reduced sample sizes compared to standard approaches, without compromising the control of Type I error rates. We introduce a new two-stage design incorporating interim futility analysis and compare it with Simon’s design. Simulations and real-world examples demonstrate that the proposed approach can significantly lower trial cost and duration. Conclusions: This convolution-based approach offers a flexible and efficient alternative to traditional methods for early-phase oncology trial design. It addresses the conservativeness of existing designs and provides practical benefits in terms of resource use and study timelines. Full article
(This article belongs to the Special Issue Application of Biostatistics in Cancer Research)
Show Figures

Figure 1

19 pages, 10990 KiB  
Article
Geospatial Assessment and Economic Analysis of Rooftop Solar Photovoltaic Potential in Thailand
by Linux Farungsang, Alvin Christopher G. Varquez and Koji Tokimatsu
Sustainability 2025, 17(15), 7052; https://doi.org/10.3390/su17157052 - 4 Aug 2025
Abstract
Evaluating the renewable energy potential, such as that of solar photovoltaics (PV), is important for developing renewable energy policies. This study investigated rooftop solar PV potential in Thailand based on open-source geographic information system (GIS) building footprints, solar PV power output, and the [...] Read more.
Evaluating the renewable energy potential, such as that of solar photovoltaics (PV), is important for developing renewable energy policies. This study investigated rooftop solar PV potential in Thailand based on open-source geographic information system (GIS) building footprints, solar PV power output, and the most recent land use data (2022). GIS-based overlay analysis, buffering, fishnet modeling, and spatial join operations were applied to assess rooftop availability across various building types, taking into account PV module installation parameters and optimal panel orientation. Economic feasibility and sensitivity analyses were conducted using standard economic metrics, including net present value (NPV), internal rate of return (IRR), payback period, and benefit–cost ratio (BCR). The findings showed a total rooftop solar PV power generation potential of 50.32 TWh/year, equivalent to 25.5% of Thailand’s total electricity demand in 2022. The Central region contributed the highest potential (19.59 TWh/year, 38.94%), followed by the Northeastern (10.49 TWh/year, 20.84%), Eastern (8.16 TWh/year, 16.22%), Northern (8.09 TWh/year, 16.09%), and Southern regions (3.99 TWh/year, 7.92%). Both commercial and industrial sectors reflect the financial viability of rooftop PV installations and significantly contribute to the overall energy output. These results demonstrate the importance of incorporating rooftop solar PV in renewable energy policy development in regions with similar data infrastructure, particularly the availability of detailed and standardized land use data for building type classification. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Viewed by 195
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

20 pages, 1387 KiB  
Review
Barriers and Facilitators to Artificial Intelligence Implementation in Diabetes Management from Healthcare Workers’ Perspective: A Scoping Review
by Giovanni Cangelosi, Andrea Conti, Gabriele Caggianelli, Massimiliano Panella, Fabio Petrelli, Stefano Mancin, Matteo Ratti and Alice Masini
Medicina 2025, 61(8), 1403; https://doi.org/10.3390/medicina61081403 - 1 Aug 2025
Viewed by 71
Abstract
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by [...] Read more.
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by healthcare professionals in the adoption of AI. Secondarily, by analyzing both quantitative and qualitative data collected, it aims to support the potential development of AI-based programs for diabetes management, with particular focus on a possible bottom-up approach. Materials and Methods: A scoping review was conducted following PRISMA-ScR guidelines for reporting and registered in the Open Science Framework (OSF) database. The study selection process was conducted in two phases—title/abstract screening and full-text review—independently by three researchers, with a fourth resolving conflicts. Data were extracted and assessed using Joanna Briggs Institute (JBI) tools. The included studies were synthesized narratively, combining both quantitative and qualitative analyses to ensure methodological rigor and contextual depth. Results: The adoption of AI tools in diabetes management is influenced by several barriers, including perceived unsatisfactory clinical performance, high costs, issues related to data security and decision-making transparency, as well as limited training among healthcare workers. Key facilitators include improved clinical efficiency, ease of use, time-saving, and organizational support, which contribute to broader acceptance of the technology. Conclusions: The active and continuous involvement of healthcare workers represents a valuable opportunity to develop more effective, reliable, and well-integrated AI solutions in clinical practice. Our findings emphasize the importance of a bottom-up approach and highlight how adequate training and organizational support can help overcome existing barriers, promoting sustainable and equitable innovation aligned with public health priorities. Full article
(This article belongs to the Special Issue Advances in Public Health and Healthcare Management for Chronic Care)
Show Figures

Figure 1

17 pages, 587 KiB  
Review
Exploring the Potential of Biochar in Enhancing U.S. Agriculture
by Saman Janaranjana Herath Bandara
Reg. Sci. Environ. Econ. 2025, 2(3), 23; https://doi.org/10.3390/rsee2030023 - 1 Aug 2025
Viewed by 141
Abstract
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and [...] Read more.
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and sector-specific applications. This narrative review synthesizes two decades of literature to examine biochar’s applications, production methods, and market dynamics, with a focus on its economic and environmental role within the United States. The review identifies biochar’s multifunctional benefits: enhancing soil fertility and crop productivity, sequestering carbon, reducing greenhouse gas emissions, and improving water quality. Recent empirical studies also highlight biochar’s economic feasibility across global contexts, with yield increases of up to 294% and net returns exceeding USD 5000 per hectare in optimized systems. Economically, the global biochar market grew from USD 156.4 million in 2021 to USD 610.3 million in 2023, with U.S. production reaching ~50,000 metric tons annually and a market value of USD 203.4 million in 2022. Forecasts project U.S. market growth at a CAGR of 11.3%, reaching USD 478.5 million by 2030. California leads domestic adoption due to favorable policy and biomass availability. However, barriers such as inconsistent quality standards, limited awareness, high costs, and policy gaps constrain growth. This study goes beyond the existing literature by integrating market analysis, SWOT assessment, cost–benefit findings, and production technologies to highlight strategies for scaling biochar adoption. It concludes that with supportive legislation, investment in research, and enhanced supply chain transparency, biochar could become a pivotal tool for sustainable development in the U.S. agricultural and environmental sectors. Full article
Show Figures

Figure 1

18 pages, 446 KiB  
Systematic Review
Environmental Enrichment in Dairy Small Ruminants: A PRISMA-Based Review on Welfare Implications and Future Research Directions
by Fabiana Ribeiro Caldara, Jéssica Lucilene Cantarini Buchini and Rodrigo Garófallo Garcia
Dairy 2025, 6(4), 42; https://doi.org/10.3390/dairy6040042 - 1 Aug 2025
Viewed by 113
Abstract
Background: Environmental enrichment is a promising strategy to improve the welfare of dairy goats and sheep. However, studies in this field remain scattered, and its effects on productivity are unclear. Objectives: To evaluate the effects of environmental enrichment on behavioral, physiological, and productive [...] Read more.
Background: Environmental enrichment is a promising strategy to improve the welfare of dairy goats and sheep. However, studies in this field remain scattered, and its effects on productivity are unclear. Objectives: To evaluate the effects of environmental enrichment on behavioral, physiological, and productive parameters in dairy goats and sheep. Data sources: Scopus and Web of Science were searched for studies published from 2010 to 2025. Study eligibility criteria: Experimental or observational peer-reviewed studies comparing enriched vs. non-enriched housing in dairy goats or sheep, reporting on welfare or productivity outcomes. Methods: This review followed PRISMA 2020 guidelines and the PICO framework. Two independent reviewers screened and extracted data. Risk of bias was assessed with the SYRCLE tool. Results: Thirteen studies were included, mostly with goats. Physical, sensory, and social enrichments showed benefits for behavior (e.g., activity, fewer stereotypies) and stress physiology. However, results varied by social rank, enrichment type, and physiological stage. Only three studies assessed productive parameters (weight gain in kids/lambs); none evaluated milk yield or quality. Limitations: Most studies had small samples and short durations. No meta-analysis was conducted due to heterogeneity. Conclusions: Environmental enrichment can benefit the welfare of dairy goats and sheep. However, evidence on productivity is scarce. Long-term studies are needed to evaluate its cost-effectiveness and potential impacts on milk yield and reproductive performance. Full article
(This article belongs to the Section Dairy Small Ruminants)
Show Figures

Figure 1

29 pages, 540 KiB  
Systematic Review
Digital Transformation in International Trade: Opportunities, Challenges, and Policy Implications
by Sina Mirzaye and Muhammad Mohiuddin
J. Risk Financial Manag. 2025, 18(8), 421; https://doi.org/10.3390/jrfm18080421 - 1 Aug 2025
Viewed by 370
Abstract
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) [...] Read more.
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) How do these effects vary by countries’ development level and firm size?—we conducted a PRISMA-compliant systematic literature review covering 2010–2024. Searches across eight major databases yielded 1857 records; after duplicate removal, title/abstract screening, full-text assessment, and Mixed Methods Appraisal Tool (MMAT 2018) quality checks, 86 peer-reviewed English-language studies were retained. Findings reveal three dominant technology clusters: (1) e-commerce platforms and cloud services, (2) IoT-enabled supply chain solutions, and (3) emerging AI analytics. E-commerce and cloud adoption consistently raise export intensity—doubling it for digitally mature SMEs—while AI applications are the fastest-growing research strand, particularly in East Asia and Northern Europe. However, benefits are uneven: firms in low-infrastructure settings face higher fixed digital costs, and cybersecurity and regulatory fragmentation remain pervasive obstacles. By integrating trade economics with development and SME internationalization studies, this review offers the first holistic framework that links national digital infrastructure and policy support to firm-level export performance. It shows that the trade-enhancing effects of digitalization are contingent on robust broadband penetration, affordable cloud access, and harmonized data-governance regimes. Policymakers should, therefore, prioritize inclusive digital-readiness programs, while business leaders should invest in complementary capabilities—data analytics, cyber-risk management, and cross-border e-logistics—to fully capture digital trade gains. This balanced perspective advances theory and practice on building resilient, equitable digital trade ecosystems. Full article
(This article belongs to the Special Issue Modern Enterprises/E-Commerce Logistics and Supply Chain Management)
Show Figures

Figure 1

79 pages, 12542 KiB  
Article
Evolutionary Game-Theoretic Approach to Enhancing User-Grid Cooperation in Peak Shaving: Integrating Whole-Process Democracy (Deliberative Governance) in Renewable Energy Systems
by Kun Wang, Lefeng Cheng and Ruikun Wang
Mathematics 2025, 13(15), 2463; https://doi.org/10.3390/math13152463 - 31 Jul 2025
Viewed by 278
Abstract
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced [...] Read more.
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced by incorporating whole-process democracy (deliberative governance) into decision-making. Our framework captures excess returns, cooperation-driven profits, energy pricing, participation costs, and benefit-sharing coefficients to identify equilibrium conditions under varied subsidy, cost, and market scenarios. Furthermore, this study integrates the theory, path, and mechanism of deliberative procedures under the perspective of whole-process democracy, exploring how inclusive and participatory decision-making processes can enhance cooperation in renewable energy systems. We simulate seven scenarios that systematically adjust subsidy rates, cost–benefit structures, dynamic pricing, and renewable-versus-conventional competitiveness, revealing that robust cooperation emerges only under well-aligned incentives, equitable profit sharing, and targeted financial policies. These scenarios systematically vary these key parameters to assess the robustness of cooperative equilibria under diverse economic and policy conditions. Our findings indicate that policy efficacy hinges on deliberative stakeholder engagement, fair profit allocation, and adaptive subsidy mechanisms. These results furnish actionable guidelines for regulators and grid operators to foster sustainable, low-carbon energy systems and inform future research on demand response and multi-source integration. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

23 pages, 3019 KiB  
Review
Phase-Transfer Catalysis for Fuel Desulfurization
by Xun Zhang and Rui Wang
Catalysts 2025, 15(8), 724; https://doi.org/10.3390/catal15080724 - 30 Jul 2025
Viewed by 246
Abstract
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe [...] Read more.
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe temperature–pressure conditions and displays limited efficacy toward sterically hindered thiophenic compounds, motivating the exploration of non-hydrogen routes such as oxidative desulfurization (ODS). Within ODS, PTC offers distinctive benefits by shuttling reactants across immiscible phases, thereby enhancing reaction rates and selectivity. In particular, PTC enables efficient migration of organosulfur substrates from the hydrocarbon matrix into an aqueous phase where they are oxidized and subsequently extracted. The review first summarizes the deployment of classic PTC systems—quaternary ammonium salts, crown ethers, and related agents—in ODS operations and then delineates the underlying phase-transfer mechanisms, encompassing reaction-controlled, thermally triggered, photo-responsive, and pH-sensitive cycles. Attention is next directed to a new generation of catalysts, including quaternary-ammonium polyoxometalates, imidazolium-substituted polyoxometalates, and ionic-liquid-based hybrids. Their tailored architectures, catalytic performance, and mechanistic attributes are analyzed comprehensively. By incorporating multifunctional supports or rational structural modifications, these systems deliver superior desulfurization efficiency, product selectivity, and recyclability. Despite such progress, commercial deployment is hindered by the following outstanding issues: long-term catalyst durability, continuous-flow reactor design, and full life-cycle cost optimization. Future research should, therefore, focus on elucidating structure–performance relationships, translating batch protocols into robust continuous processes, and performing rigorous environmental and techno-economic assessments to accelerate the industrial adoption of PTC-enabled desulfurization. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

40 pages, 910 KiB  
Review
Impact of Indoor Air Quality, Including Thermal Conditions, in Educational Buildings on Health, Wellbeing, and Performance: A Scoping Review
by Duncan Grassie, Kaja Milczewska, Stijn Renneboog, Francesco Scuderi and Sani Dimitroulopoulou
Environments 2025, 12(8), 261; https://doi.org/10.3390/environments12080261 - 30 Jul 2025
Viewed by 437
Abstract
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences [...] Read more.
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences of poor—and benefits of good—IAQ and thermal conditions are evaluated, focusing on source control, ventilation and air purification interventions. Economic impacts of interventions in educational buildings have been evaluated to enable the assessment of tangible building-related costs and savings, alongside less easily quantifiable improvements in educational attainment and reduced healthcare. Key recommendations are provided to assist decision makers in pathways to provide clean air, at an optimal temperature for students’ learning and health outcomes. Although the role of educational buildings can be challenging to isolate from other socio-economic confounders, secondary short- and long-term impacts on attainment and absenteeism have been demonstrated from the health effects associated with various pollutants. Sometimes overlooked, source control and repairing existing damage can be important cost-effective methods in minimising generation and preventing ingress of pollutants. Existing ventilation standards are often not met, even when mechanical and hybrid ventilation systems are already in place, but can often be achieved with a fraction of a typical school budget through operational and maintenance improvements, and small-scale air-cleaning and ventilation technologies, where necessary. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

28 pages, 8824 KiB  
Article
Platform Approaches in the AEC Industry: Stakeholder Perspectives and Case Study
by Layla Mujahed, Gang Feng and Jianghua Wang
Buildings 2025, 15(15), 2684; https://doi.org/10.3390/buildings15152684 - 30 Jul 2025
Viewed by 221
Abstract
The architecture, engineering, and construction (AEC) industry faces challenges related to inefficiencies and fragmentation that highlight the need for advanced construction technologies and drive interest in innovative solutions such as the platform approach to design. This study assessed platform-based building design through (1) [...] Read more.
The architecture, engineering, and construction (AEC) industry faces challenges related to inefficiencies and fragmentation that highlight the need for advanced construction technologies and drive interest in innovative solutions such as the platform approach to design. This study assessed platform-based building design through (1) interviews with practitioners from China, Jordan, and the UK, which helped to define the platform approach in the AEC industry and the challenges involved, and (2) a residential building design simulation conducted to evaluate the potential of the platform approach. The simulated design’s materials costs, energy efficiency, and construction time were compared with those of the traditional building design. The results of the comparison corroborate the interview findings concerning practitioners’ perspectives on platform definition, benefits, challenges, and implementation. The findings also demonstrate the potential of the platform approach to enhance productivity and scalability through modularization, kit-of-parts configuration, and standardization. This research bridges the gap between theory and practice by supporting shareholder perspectives on building design and construction with the results of a simulated platform approach to a real-world design project. This research addresses the urgent need to better understand and test the platform approach to achieve material, energy, and construction time savings through collaborative and practice-informed design. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 1703 KiB  
Article
Towards Personalized Precision Oncology: A Feasibility Study of NGS-Based Variant Analysis of FFPE CRC Samples in a Chilean Public Health System Laboratory
by Eduardo Durán-Jara, Iván Ponce, Marcelo Rojas-Herrera, Jessica Toro, Paulo Covarrubias, Evelin González, Natalia T. Santis-Alay, Mario E. Soto-Marchant, Katherine Marcelain, Bárbara Parra and Jorge Fernández
Curr. Issues Mol. Biol. 2025, 47(8), 599; https://doi.org/10.3390/cimb47080599 - 30 Jul 2025
Viewed by 244
Abstract
Massively parallel or next-generation sequencing (NGS) has enabled the genetic characterization of cancer patients, allowing the identification of somatic and germline variants associated with their diagnosis, tumor classification, and therapy response. Despite its benefits, NGS testing is not yet available in the Chilean [...] Read more.
Massively parallel or next-generation sequencing (NGS) has enabled the genetic characterization of cancer patients, allowing the identification of somatic and germline variants associated with their diagnosis, tumor classification, and therapy response. Despite its benefits, NGS testing is not yet available in the Chilean public health system, rendering it both costly and time-consuming for patients and clinicians. Using a retrospective cohort of 67 formalin-fixed, paraffin-embedded (FFPE) colorectal cancer (CRC) samples, we aimed to implement the identification, annotation, and prioritization of relevant actionable tumor somatic variants in our laboratory, as part of the public health system. We compared two different library preparation methodologies (amplicon-based and capture-based) and different bioinformatics pipelines for sequencing analysis to assess advantages and disadvantages of each one. We obtained 80.5% concordance between actionable variants detected in our analysis and those obtained in the Cancer Genomics Laboratory from the Universidad de Chile (62 out of 77 variants), a validated laboratory for this methodology. Notably, 98.4% (61 out of 62) of variants detected previously by the validated laboratory were also identified in our analysis. Then, comparing the hybridization capture-based library preparation methodology with the amplicon-based strategy, we found ~94% concordance between identified actionable variants across the 15 shared genes, analyzed by the TumorSecTM bioinformatics pipeline, developed by the Cancer Genomics Laboratory. Our results demonstrate that it is entirely viable to implement an NGS-based analysis of actionable variant identification and prioritization in cancer samples in our laboratory, being part of the Chilean public health system and paving the way to improve the access to such analyses. Considering the economic realities of most Latin American countries, using a small NGS panel, such as TumorSecTM, focused on relevant variants of the Chilean and Latin American population is a cost-effective approach to extensive global NGS panels. Furthermore, the incorporation of automated bioinformatics analysis in this streamlined assay holds the potential of facilitating the implementation of precision medicine in this geographic region, which aims to greatly support personalized treatment of cancer patients in Chile. Full article
(This article belongs to the Special Issue Linking Genomic Changes with Cancer in the NGS Era, 2nd Edition)
Show Figures

Figure 1

18 pages, 4697 KiB  
Article
Audouin’s Gull Colony Itinerancy: Breeding Districts as Units for Monitoring and Conservation
by Massimo Sacchi, Barbara Amadesi, Adriano De Faveri, Gilles Faggio, Camilla Gotti, Arnaud Ledru, Sergio Nissardi, Bernard Recorbet, Marco Zenatello and Nicola Baccetti
Diversity 2025, 17(8), 526; https://doi.org/10.3390/d17080526 - 28 Jul 2025
Viewed by 366
Abstract
We investigated the spatial structure and colony itinerancy of Audouin’s gull (Ichthyaetus audouinii) adult breeders across multiple breeding sites in the central Mediterranean Sea during 25 years of fieldwork. Using cluster analysis of marked individuals from different years and sites, we [...] Read more.
We investigated the spatial structure and colony itinerancy of Audouin’s gull (Ichthyaetus audouinii) adult breeders across multiple breeding sites in the central Mediterranean Sea during 25 years of fieldwork. Using cluster analysis of marked individuals from different years and sites, we identified five spatial breeding units of increasing hierarchical scale—Breeding Sites, Colonies, Districts, Regions and Marine Sectors—which reflect biologically meaningful boundaries beyond simple geographic proximity. To determine the most appropriate scale for monitoring local populations, we applied multievent capture–recapture models and examined variation in survival and site fidelity across these units. Audouin’s gulls frequently change their location at the Breeding Site and Colony levels from one year to another, without apparent survival costs. In contrast, dispersal beyond Districts boundaries was found to be rare and associated with reduced survival rates, indicating that breeding Districts represent the most relevant biological unit for identifying local populations. The survival disadvantage observed in individuals leaving their District likely reflects increased extrinsic mortality in unfamiliar environments and the selective dispersal of lower-quality individuals. Within breeding Districts, birds may benefit from local knowledge and social information, supporting demographic stability and higher fitness. Our findings highlight the value of adopting a District-based framework for long-term monitoring and conservation of this endangered species. At this scale, demographic trends such as population growth or decline emerge more clearly than when assessed at the level of singular colonies. This approach can enhance our understanding of population dynamics in other mobile species and support more effective conservation strategies aligned with natural population structure. Full article
(This article belongs to the Special Issue Ecology, Diversity and Conservation of Seabirds—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop