Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (118)

Search Parameters:
Keywords = cosmetic powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1443 KiB  
Article
Effect of Addition of Spheroidal Cellulose Powders on Physicochemical and Functional Properties of Cosmetic Emulsions
by Emilia Klimaszewska, Marta Ogorzałek, Małgorzata Okulska-Bożek, Ewa Jabłońska, Hanna Wyłup, Zofia Nizioł-Łukaszewska and Ryszard Tomasiuk
Polymers 2025, 17(14), 1926; https://doi.org/10.3390/polym17141926 - 12 Jul 2025
Viewed by 413
Abstract
The purpose of this study was to demonstrate the feasibility of using spheroidal cellulose powders with different particle sizes (2 and 7 µm) in face creams and to evaluate their effect on selected physicochemical and performance properties of these products. A series of [...] Read more.
The purpose of this study was to demonstrate the feasibility of using spheroidal cellulose powders with different particle sizes (2 and 7 µm) in face creams and to evaluate their effect on selected physicochemical and performance properties of these products. A series of prototypes of facial creams with spheroidal cellulose were prepared. The following tests were carried out: stability, dynamic viscosity, texture analysis, degree of skin hydration, and evaluation of sensory appeal by consumers. It was observed that none of the creams showed instability over time. The addition of powdered spheroidal cellulose was found to increase dynamic viscosity and hardness and reduce the adhesion strength of the tested emulsions to the base face cream. A positive effect of the presence of polymeric raw materials on the level of skin hydration was observed. The most favorable results were obtained for the E4 cream prototype containing spheroidal powders of both 2 and 7 µm particle size at a weight ratio of 2.5 to 2.5. In addition, according to the members of the sensory panel, the E4 face cream was best evaluated and showed sensory benefits. The study concluded that spheroidal cellulose powders are a promising biodegradable alternative to microplastics in cosmetics. Full article
Show Figures

Figure 1

35 pages, 1062 KiB  
Review
Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review
by Anna Kochanek, Katarzyna Grąz, Halina Potok, Anna Gronba-Chyła, Justyna Kwaśny, Iwona Wiewiórska, Józef Ciuła, Emilia Basta and Jacek Łapiński
Toxics 2025, 13(7), 564; https://doi.org/10.3390/toxics13070564 - 2 Jul 2025
Viewed by 2134
Abstract
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary [...] Read more.
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary microplastics. Microplastics, or particles smaller than 5 mm, and nanoplastics, or particles smaller than 1 μm, are the products of degradation and, in particular, disintegration processes that occur in nature as a result of several physical, chemical, and biological variables. Polypropylene, polyethylene, polyvinyl chloride (PVC), polystyrene, polyurethane, and polyethylene terephthalate (PET) are among the chemicals included in this contamination in decreasing order of quantity. Micro- and nanoplastics have been detected in the air, water, and soil, confirming their ubiquitous presence in natural environments. Their widespread distribution poses significant threats to human health, including oxidative stress, inflammation, cellular damage, and potential carcinogenic effects. The aim of this article is to review the current literature on the occurrence of micro- and nanoplastics in various environmental compartments and to analyze the associated health consequences. The article also discusses existing legal regulations and highlights the urgent need for intensified research into the toxicological mechanisms of microplastics and the development of more effective strategies for their mitigation. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

22 pages, 2478 KiB  
Article
Optimized Spirulina Fermentation with Lacticaseibacillus rhamnosus: Bioactive Properties and Pilot-Scale Validation
by Akif Emre Kavak, Didem Balkanlı, Osman Sagdıc, Akın Özdemir and Enes Dertli
Fermentation 2025, 11(5), 248; https://doi.org/10.3390/fermentation11050248 - 1 May 2025
Viewed by 1074
Abstract
Sustainable bio-based products derived from fermentation are gaining increasing interest. The present study was designed to determine the interaction of Lacticaseibacillus rhamnosus 23.2 bacteria with spirulina in a 3 L glass bioreactor and the effect of aeration and agitation speed on the final [...] Read more.
Sustainable bio-based products derived from fermentation are gaining increasing interest. The present study was designed to determine the interaction of Lacticaseibacillus rhamnosus 23.2 bacteria with spirulina in a 3 L glass bioreactor and the effect of aeration and agitation speed on the final product biomass and antioxidant capacity. The fermentation medium contained only glucose, an inorganic salt mixture, and spirulina powder. The estimated biomass and antioxidant activity were found to be 3.74 g/L and 84.72%, respectively, from the results of the optimization model. Scale-up was performed with the obtained optimization data, and three pilot-scale fermentations were carried out in a 30 L stainless steel bioreactor. As a result of pilot production, the obtained bioactive products were freeze-dried, and their antibacterial, antioxidant, total phenolic properties, and cytotoxic activity were investigated. The pilot production results showed that the increase in bacterial cell number was around 3–4 log after 24 h of fermentation. An inhibitory effect against pathogenic bacteria was observed. A strong radical scavenging effect was found in antioxidant analyses. Total phenolic substance content was 26.5 mg gallic acid equivalent (GAE) g−1, which was the highest level in this study. Cytotoxic activity showed that bioactive products had a cytotoxic effect against Caco-2 adenocarcinoma cells. This study emphasizes the potential of Arthrospira platensis biomass as a substrate for the production of lactic acid bacteria (LAB)-based bioproducts. It is thought that the results obtained from this study may position potential innovative strategies in the food, pharmaceutical, agriculture, and cosmetic industries. Full article
Show Figures

Figure 1

14 pages, 853 KiB  
Article
Improving the Value Utilization of Tuna Peptide Powder for the Cosmetics Field Through Ozone Oxidation
by Haolong Zheng, Shiyang Gu, Shiqi Huang, Yan Zhang, Feng Xu, Daofei Lv, Wenbing Yuan, Kongyu Zhu and Xin Chen
Mar. Drugs 2025, 23(5), 191; https://doi.org/10.3390/md23050191 - 28 Apr 2025
Viewed by 738
Abstract
The existing in vitro and clinical trial evidence supports the health and wellness benefits of collagen peptides sourced from various origins. Despite this, research on collagen peptides from tuna remains limited. Notably, tuna-derived peptides possess an inherent fishy odor, rendering them unsuitable for [...] Read more.
The existing in vitro and clinical trial evidence supports the health and wellness benefits of collagen peptides sourced from various origins. Despite this, research on collagen peptides from tuna remains limited. Notably, tuna-derived peptides possess an inherent fishy odor, rendering them unsuitable for direct application in humans. This study explores the enhancement of tuna peptides’ applicability in cosmetics through odor mitigation. We developed a dual-phase ozone treatment, employing both dry and wet ozone, to deodorize tuna peptide powder, enabling its use in cosmetic formulations. The deodorized tuna peptide powder can be used in cosmetics. We optimized the ozone nitrification and deodorization conditions for tuna peptide powder by adjusting the treatment time, ozone concentration, and temperature. Sensory evaluation and GC-MS analysis confirmed the effectiveness of fishy odor removal, offering a comprehensive understanding of the deodorization process. The findings reveal that wet ozonation at 50 °C with an ozone concentration of 99.1 mg/L for 40 min significantly reduces the fishy odor of tuna peptide powder. Notably, n-Hexaldehyde, the primary odor-contributing volatile compound, decreased by 66.5%, confirming the efficacy of ozone treatment in odor mitigation. Moreover, the protein activity within the powder remained unaffected, ensuring the preservation of its functional properties. This study demonstrates the efficacy of ozone oxidation in adapting tuna peptide powder for cosmetic use. Full article
(This article belongs to the Special Issue Marine Cosmeceuticals)
Show Figures

Figure 1

24 pages, 2809 KiB  
Article
Physicochemical, Functional, and Antibacterial Properties of Inulin-Type Fructans Isolated from Dandelion (Taraxacum officinale) Roots by “Green” Extraction Techniques
by Nadezhda Petkova, Ivanka Hambarliyska, Ivan Ivanov, Manol Ognyanov, Krastena Nikolova, Sevginar Ibryamova and Tsveteslava Ignatova-Ivanova
Appl. Sci. 2025, 15(8), 4091; https://doi.org/10.3390/app15084091 - 8 Apr 2025
Viewed by 1544
Abstract
The current study aims for the isolation and physicochemical characterization of inulin from defatted dandelion roots using green extraction techniques, including microwave extraction (MAE) and ultrasound-assisted extraction (UAE). The structure and degree of polymerization of inulin were elucidated by chromatographic techniques, as well [...] Read more.
The current study aims for the isolation and physicochemical characterization of inulin from defatted dandelion roots using green extraction techniques, including microwave extraction (MAE) and ultrasound-assisted extraction (UAE). The structure and degree of polymerization of inulin were elucidated by chromatographic techniques, as well as by FTIR and NMR spectroscopies. The color characteristics, water- and oil-holding capacity, solubility, swelling properties, wettability, angle of repose, flowability, and cohesiveness of dandelion inulin were evaluated. Moreover, the antioxidant and antibacterial potential of dandelion inulin were revealed. The results were compared with the conventional extraction and inulin from chicory. Dandelion inulin was evaluated as a powder substance with a degree of polymerization (DP) of 17–24. The highest yield (20%) was obtained by classical extraction; however, UAE and MAE demonstrated the highest purity. FT-IR and NMR spectra revealed that dandelion inulin is glucofructan with a molecular weight of 2.7–3.2 kDa that consists mainly of fructosyl units β-(2→1) linked to one α-D-glucose unit UAE was evaluated as the most perspective technique for the simultaneous extraction of inulin from dandelion roots, with the highest average DP 24 and high purity (82%), molecular mass, total fructose content, swelling index, and oil-holding capacity. Dandelion inulin exhibited intermediate cohesiveness, fair flowability, and moderate antimicrobial activity against Listeria monocytogenes 863 and Bacillus subtilis 6633. The physicochemical and functional properties of dandelion inulin reveal its future potential as an additive in food, cosmetic, and pharmaceutics formulations as a texture modifier, a fat replacer, and a drug carrier. Full article
(This article belongs to the Special Issue Novel Extraction Methods and Applications)
Show Figures

Figure 1

23 pages, 5930 KiB  
Article
Modulation of Structural and Physical-Chemical Properties of Fish Gelatin Hydrogel by Natural Polysaccharides
by Aidar T. Gubaidullin, Aliya I. Galeeva, Yuriy G. Galyametdinov, Georgiy G. Ageev, Alexey A. Piryazev, Dimitri A. Ivanov, Elena A. Ermakova, Alena A. Nikiforova, Svetlana R. Derkach, Olga S. Zueva and Yuriy F. Zuev
Int. J. Mol. Sci. 2025, 26(7), 2901; https://doi.org/10.3390/ijms26072901 - 22 Mar 2025
Viewed by 1050
Abstract
Gelatin, a water-soluble protein, shows unique gellification properties, which determine the active commercial availability of gelatin hydrogels in modern alimentary, cosmetic, and pharmaceutical applications. The traditional sources of gelatin for industrial technologies are pork and bovine skin and bones, which sometimes produce religious [...] Read more.
Gelatin, a water-soluble protein, shows unique gellification properties, which determine the active commercial availability of gelatin hydrogels in modern alimentary, cosmetic, and pharmaceutical applications. The traditional sources of gelatin for industrial technologies are pork and bovine skin and bones, which sometimes produce religious and some other restrictions. In recent years, there has been a significant increase in the production of gelatin from alternative sources, such as raw fish materials. Unfortunately, fish gelatin is characterized by weak gelling ability and a decrease in gelation and melting temperature, which are a consequence of the amino acid composition and structural features of fish gelatin. One of the ways to strengthen the natural gelling properties of fish gelatin is the structural modification of gelatin hydrogels by the introduction of polysaccharides of various natural origins. We have studied the association of our laboratory-made fish gelatin with three polysaccharides, namely, κ-carrageenan, alginate, and chitosan, which have distinct chemical structures and gelling capabilities. Structural features of the studied systems were analyzed by small-angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). We applied computer modeling of molecular interactions between fish gelatin and polysaccharides by means of molecular docking and molecular dynamics approaches. The existence of a correlation between the structure of gelatin-polysaccharide systems and their physicochemical properties was demonstrated by wetting angles (flow angles) and dynamic light scattering (DLS) studies of hydrodynamic sizes and surface ζ-potential. Full article
(This article belongs to the Special Issue New Trends and Challenges in Polysaccharide Biomaterials)
Show Figures

Figure 1

34 pages, 3999 KiB  
Review
Aromatic Herbs as a Source of Bioactive Compounds: An Overview of Their Antioxidant Capacity, Antimicrobial Activity, and Major Applications
by Leontina Grigore-Gurgu, Loredana Dumitrașcu and Iuliana Aprodu
Molecules 2025, 30(6), 1304; https://doi.org/10.3390/molecules30061304 - 14 Mar 2025
Cited by 6 | Viewed by 1835
Abstract
Many aromatic herbs are conventionally used for flavoring various foods, but receive wide attention because of the variety of health-related properties. The aromatic herbs can be used either fresh or as dried powders and in the form of extracts, essential oils, or purified [...] Read more.
Many aromatic herbs are conventionally used for flavoring various foods, but receive wide attention because of the variety of health-related properties. The aromatic herbs can be used either fresh or as dried powders and in the form of extracts, essential oils, or purified metabolites. In this review, the main functional properties, in terms of antioxidant and antimicrobial properties, and the applications of some of the commonly used aromatic herbs from the Lamiaceae family, are discussed. Herbs like oregano, rosemary, sage, thyme, summer savory, marjoram, and basil possess high levels of bioactive phytochemicals. They are particularly rich in phenolic acids, flavones, phenolic diterpenes, and flavanones, with various beneficial effects. The phytochemical profile of aromatic plants is highly influenced by genetic factors, environmental conditions, and their interaction. In cases of the extracts and essential oils, the extraction method has a strong effect on the final composition of the herb products. Most of the applications of these aromatic herbs are related to their antioxidant, antimicrobial, and flavoring properties. In particular, aromatic herb extracts and essential oils have multiple applications in fields like food, feed, pharmaceutical, cosmetics, biopesticides, and textile industries. Full article
Show Figures

Figure 1

18 pages, 5176 KiB  
Article
The Establishment and Application of a Method for the Systematic Evaluation, Screening, and Efficacy Verification of Various Cosmetic Ingredients Based on the Inhibition and Degradation of Advanced Glycation End Products
by Linlin Xu, Yuxin Song, Daichi Murata, Linxin Zheng, Guhui Chen, Junyong Song and Congfen He
Cosmetics 2025, 12(2), 43; https://doi.org/10.3390/cosmetics12020043 - 3 Mar 2025
Viewed by 1669
Abstract
Advanced glycation end products (AGEs) formed via glycation reactions negatively impact skin health by diminishing barrier function and elasticity and causing dullness. This study systematically evaluated the inhibitory and degradative capabilities of 24 cosmetic ingredients against AGEs using BSA-glucose and ELISA-based screening systems. [...] Read more.
Advanced glycation end products (AGEs) formed via glycation reactions negatively impact skin health by diminishing barrier function and elasticity and causing dullness. This study systematically evaluated the inhibitory and degradative capabilities of 24 cosmetic ingredients against AGEs using BSA-glucose and ELISA-based screening systems. We identified 21 ingredients that inhibit fluorescent AGEs, 22 that degrade AGEs-collagen crosslinks, and 19 with both properties. Further investigation of six key ingredients, including freeze-dried Rosa rugosa powder (Rosa rugosa cv. Plena) and freeze-dried Camellia sinensis flower powder (Camellia sinensis (L.) O. Kuntze), revealed their notable ability to degrade AGEs monomers and dimers. Freeze-dried Rosa rugosa powder achieved a 19% inhibition rate in an MGO-induced HDFs glycation model. Our findings provide valuable insights for selecting anti-glycation agents and developing effective anti-glycation products. Full article
Show Figures

Figure 1

26 pages, 34392 KiB  
Article
Silk Sericin-Based Electrospun Nanofibers Forming Films for Cosmetic Applications: Preparation, Characterization, and Efficacy Evaluation
by Ivana Dragojlov, Rony Aad, Diletta Ami, Marco Mangiagalli, Antonino Natalello and Simone Vesentini
Molecules 2025, 30(3), 715; https://doi.org/10.3390/molecules30030715 - 5 Feb 2025
Cited by 4 | Viewed by 1720
Abstract
This study investigates the extraction, characterization, and cosmetic application of silk sericin, a protein derived from Bombyx mori silkworm cocoons, with a focus on its potential in sustainable and biodegradable cosmetic formulations. Sericin was extracted using a high-temperature, high-pressure autoclave degumming method and [...] Read more.
This study investigates the extraction, characterization, and cosmetic application of silk sericin, a protein derived from Bombyx mori silkworm cocoons, with a focus on its potential in sustainable and biodegradable cosmetic formulations. Sericin was extracted using a high-temperature, high-pressure autoclave degumming method and spray-dried into a stable powder. The molecular weight distribution of sericin was analyzed, revealing fractions ranging from 10 to 37 kDa in Elution 1A and 25–40 kDa in Elution 1B. Electrospinning of sericin led to increased β-sheet content compared to raw sericin, as shown by secondary structure analyses. The electrospun sericin was then blended with gelatin to enhance mechanical strength and stability, resulting in robust films suitable for cosmetic applications. These films were developed into eye contour patches designed to deliver moisturizing, elasticizing, and smoothing effects. The efficacy of the patches was evaluated in 20 participants, showing increased skin elasticity (+35.1%) and smoothness (Ra: −30.7%, Rz: −26.6%), though a decline in hydration was observed, potentially indicating opportunities for further optimization. Full article
Show Figures

Graphical abstract

31 pages, 12584 KiB  
Article
Potential of Encapsulated Bovine Colostrum in Powder-Based Formulations for Facial Clay, Peel-Off Gel, and Sleeping Gel Masks
by Pornpansa Chuesomboon, Thomas Rades and Wantida Chaiyana
Gels 2025, 11(2), 111; https://doi.org/10.3390/gels11020111 - 4 Feb 2025
Viewed by 2429
Abstract
Bovine colostrum is a bioactive compound with potential in cosmetic applications but has a limited shelf life. This study aimed to develop an effective encapsulation system for bovine colostrum using the complex coacervation method and incorporate it into powder formulations for facial masks. [...] Read more.
Bovine colostrum is a bioactive compound with potential in cosmetic applications but has a limited shelf life. This study aimed to develop an effective encapsulation system for bovine colostrum using the complex coacervation method and incorporate it into powder formulations for facial masks. The research explored various gelatin-to-gum Arabic ratios to optimize the physical and chemical stability, encapsulation efficiency, and loading capacity of the encapsulated bovine colostrum (EBC). The EBC was further incorporated into powder formulations for clay masks, peel-off gel masks, and sleeping gel masks. The optimal gelatin-to-gum Arabic ratio was found to be 2:1, yielding the highest entrapment efficiency (66.6 ± 3.3% w/w) and loading capacity (67.6 ± 3.4% w/w) of bovine colostrum. For clay masks, the most effective powder blend incorporating EBC enhanced the moisture content, water solubility, and hygroscopicity, without affecting the drying time (9.7 ± 0.6 min). Additionally, peel-off gel masks incorporating EBC significantly reduced water activity and improved moisture content and hygroscopicity, while the drying time decreased from 44.3 ± 0.6 to 25.0 ± 1.7 min. For sleeping gel masks, the formulation with EBC increased water activity, while other parameters remained stable. In conclusion, the EBC with enhanced stability was effectively integrated into various powders for facial mask formulations. Full article
(This article belongs to the Special Issue Natural Bioactive Compounds and Gels)
Show Figures

Graphical abstract

19 pages, 3197 KiB  
Article
Utility Assessment of Isolated Starch and Extract from Thai Yam (Dioscorea hispida Dennst.) for Cosmetic via In Vitro and In Vivo Studies
by Suthinee Sangkanu, Jiraporn Khanansuk, Sathianpong Phoopha, Wandee Udomuksorn, Thitiporn Phupan, Jirapa Puntarat, Sucharat Tungsukruthai and Sukanya Dej-adisai
Life 2025, 15(2), 151; https://doi.org/10.3390/life15020151 - 22 Jan 2025
Cited by 1 | Viewed by 1329
Abstract
In Thailand, wild yam, or Dioscorea hispida Dennst., is a starchy crop that is usually underutilized in industry. The purpose of this study was to isolate the starch and extract the phytochemical from D. hispida and use them in cosmetics. Starch was used [...] Read more.
In Thailand, wild yam, or Dioscorea hispida Dennst., is a starchy crop that is usually underutilized in industry. The purpose of this study was to isolate the starch and extract the phytochemical from D. hispida and use them in cosmetics. Starch was used instead of talcum, which can cause pulmonary talcosis in dusting powder formulas (DP 1-5). GC-MS was used to identify the bioactive components present in the ethanolic extract of D. hispida. The main compounds were identified as 9,12-octadecadienoic acid (Z,Z)- (6.51%), stigmasta-5,22-dien-3-ol, (3.beta.,22E)- (6.41%), linoleic acid ethyl ester (5.72%), (Z,Z)-9,12-octadeca-dienoic acid, 2,3-dihydroxy-propyl (3.89%), and campesterol (3.40%). Then, the extract was used as an ingredient in facial sleeping mask gel formulas (SM 1–SM 5). Stability tests, physical characteristics, enzyme inhibitions, and sensitization dermal toxicity tests were used to evaluate the DP and SM formulations. The results showed that the fresh tubers of D. hispida showed a 12.5% w/w starch content. The findings demonstrated that starch powder had a restricted size distribution, ranging from 2 to 4 μm, and a smooth surface that was polygonal. Following stability testing, the color, odor, size, and flowability of all DP formulations did not significantly differ. The SEM investigation revealed that DP particles were homogenous. For the sensitization dermal toxicity test, DP denoted no erythema or skin irritation in the guinea pigs. After stability testing, the colors of the SM formulas were deeper, and their viscosity slightly increased. The pH did not significantly change. After the stability test, SM formulas that contained Glycyrrhiza glabra and D. hispida extracts exhibited stable tyrosinase and elastase inhibitory activities, respectively. In the sensitization dermal toxicity test, guinea pigs showed skin irritation at level 2 (not severe) from SM, indicating that redness developed. All of these findings indicate that D. hispida is a plant that has potential for use in the cosmetics industry. Furthermore, D. hispida starch can be made into a beauty dusting powder, and more research should be conducted to develop an effective remedy for patients or those with skin problems. Full article
(This article belongs to the Special Issue Advances in the Biomedical Applications of Plants and Plant Extracts)
Show Figures

Figure 1

18 pages, 1913 KiB  
Review
Resveratrol in Grapevine Components, Products and By-Products—A Review
by Ramona Căpruciu
Horticulturae 2025, 11(2), 111; https://doi.org/10.3390/horticulturae11020111 - 21 Jan 2025
Cited by 4 | Viewed by 3505
Abstract
Resveratrol, a valuable compound found in grapevines, is found in significant amounts in grapes and wine, but also in other parts of the plant (leaves, roots, shoots) and derived products (juice, raisins, powders, grape pomace). Synthesis factors considerably influence the resveratrol content, and [...] Read more.
Resveratrol, a valuable compound found in grapevines, is found in significant amounts in grapes and wine, but also in other parts of the plant (leaves, roots, shoots) and derived products (juice, raisins, powders, grape pomace). Synthesis factors considerably influence the resveratrol content, and research aims to optimise these factors to maximise yield, with applications in agriculture, food, cosmetics, and medicine. This literature survey aims to review and synthesise existing knowledge on aspects of resveratrol’s chemical structure and isomers, biological properties, and the factors influencing resveratrol synthesis and content in grapevine and sources of resveratrol in grapevine components, products, and by-products. Current research is focusing on methods to stabilise resveratrol to increase the functionality of food products and the bioavailability of the compound in the colon, thereby contributing to human health, which reflects the interdisciplinary interest in the use of resveratrol as an ingredient with nutraceutical properties. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

15 pages, 2566 KiB  
Article
Evaluation of Ceramic Membrane Filtration for Alternatives to Microplastics in Cosmetic Formulations Using FlowCam Analysis
by Seung Yeon Kim, Soyoun Kim and Chanhyuk Park
Membranes 2025, 15(1), 35; https://doi.org/10.3390/membranes15010035 - 19 Jan 2025
Viewed by 1674
Abstract
The rapid expansion of the cosmetics industry has significantly increased the adoption of alternative microplastics in response to increasingly stringent global environmental regulations. This study presents a comparative analysis of the treatment performance of silica powder and cornstarch—common alternatives for microplastics in cosmetics—using [...] Read more.
The rapid expansion of the cosmetics industry has significantly increased the adoption of alternative microplastics in response to increasingly stringent global environmental regulations. This study presents a comparative analysis of the treatment performance of silica powder and cornstarch—common alternatives for microplastics in cosmetics—using ceramic membrane filtration combined with flow imaging microscopy (FlowCam) to analyze particle behavior. Bench-scale crossflow filtration experiments were performed with commercially available alumina ceramic membranes. By analyzing high-resolution images from FlowCam, the transport and retention behaviors of the two microplastic alternatives were examined by comparing their morphological properties. Despite their similar particle sizes, the cornstarch demonstrated a higher removal efficiency (82%) than the silica (72%) in the ceramic membrane filtration due to its greater tendency to aggregate. This increased tendency for aggregation suggests that cornstarch may contribute to faster fouling, while the stability and uniformity of silica particles result in less fouling. The FlowCam analysis revealed that the cornstarch particles experienced a slight increase in circularity and compactness over time, likely due to physical swelling and aggregation, while the silica particles retained their shape and structural integrity. These findings highlight the impact of the morphological properties of alternative microplastics on their filtration behavior and fouling potential. Full article
(This article belongs to the Special Issue Ceramic Membranes for Removal of Emerging Pollutants)
Show Figures

Figure 1

24 pages, 5476 KiB  
Article
Sustainable Skincare Innovation: Cork Powder Extracts as Active Ingredients for Skin Aging
by Ana Silva, Cláudia Pinto, Sara Cravo, Sandra Mota, Liliana Rego, Smeera Ratanji, Clara Quintas, Joana Rocha e Silva, Carlos Afonso, Maria Elizabeth Tiritan, Honorina Cidade, Teresa Cruz and Isabel F. Almeida
Pharmaceuticals 2025, 18(1), 121; https://doi.org/10.3390/ph18010121 - 17 Jan 2025
Cited by 2 | Viewed by 3419
Abstract
Background: An emerging practice within the concept of circular beauty involves the upcycling of agro-industrial by-products. Cork processing, for instance, yields by-products like cork powder, which presents an opportunity to create value-added cosmetic ingredients. Building upon our previous research, demonstrating the antioxidant [...] Read more.
Background: An emerging practice within the concept of circular beauty involves the upcycling of agro-industrial by-products. Cork processing, for instance, yields by-products like cork powder, which presents an opportunity to create value-added cosmetic ingredients. Building upon our previous research, demonstrating the antioxidant potential of hydroalcoholic extracts derived from two distinct cork powders (P0 and P1), in this work, aqueous extracts were prepared and analyzed. The safety and bioactivities of the newly obtained aqueous extracts, as well as the 30% ethanol extracts, previously reported to be the most promising for skin application, were also evaluated. Methods: Aqueous extracts were obtained from cork powders (P0 and P1) and the identification and quantification of some polyphenols was achieved by liquid chromatography (LC). Antioxidant potential was screened by DPPH method and the bioactivity and safety of extracts were further explored using cell-based assays. Results: All extracts exhibited a reduction in age-related markers, including senescence-associated beta-galactosidase (SA-β-gal) activity. Additionally, they demonstrated a pronounced anti-inflammatory effect by suppressing the production of several pro-inflammatory mediators in macrophages upon lipopolysaccharide stimulation. Moreover, the extracts upregulated genes and proteins associated with antioxidant activity, such as heme oxygenase 1. The aqueous extract from P1 powder was especially active in reducing pro-inflammatory mediators, namely the Nos2 gene, inducible nitric oxide protein levels, and nitric oxide production. Moreover, it did not induce skin irritation, as assessed by the EpiSkin test, in compliance with the OECD Test Guidelines. Conclusions: Overall, our findings underscore the potential of aqueous extracts derived from cork waste streams to mitigate various hallmarks of skin aging, including senescence and inflammaging, and their suitability for incorporation into cosmetics formulations. These results warrant further exploration for their application in the pharmaceutical and cosmetic industries and could foster a sustainable and circular bioeconomy. Full article
(This article belongs to the Special Issue Natural-Based Skincare Solutions)
Show Figures

Graphical abstract

17 pages, 7718 KiB  
Article
Effect of Geographic Regions on the Flavor Quality and Non-Volatile Compounds of Chinese Matcha
by Hongchun Cui, Yun Zhao, Hongli Li, Min Ye, Jizhong Yu and Jianyong Zhang
Foods 2025, 14(1), 97; https://doi.org/10.3390/foods14010097 - 2 Jan 2025
Cited by 2 | Viewed by 1488
Abstract
Matcha is a very popular tea food around the world, being widely used in the food, beverage, health food, and cosmetic industries, among others. At present, matcha shade covering methods, matcha superfine powder processing technology, and digital evaluations of matcha flavor quality are [...] Read more.
Matcha is a very popular tea food around the world, being widely used in the food, beverage, health food, and cosmetic industries, among others. At present, matcha shade covering methods, matcha superfine powder processing technology, and digital evaluations of matcha flavor quality are receiving research attention. However, research on the differences in flavor and quality characteristics of matcha from the same tea tree variety from different typical regions in China is relatively weak and urgently required. Taking Japan Shizuoka matcha (R) as a reference, the differences in sensory quality characteristics and non-volatile substances of matcha processed with the same tea variety from different regions in China were analyzed. The samples were China Hangzhou matcha (Z1), China Wuyi matcha (Z2), China Enshi matcha (H), and China Tongren matcha (G), which represent the typical matcha of eastern, central, and western China. A total of 1131 differential metabolites were identified in the matcha samples, comprising 118 flavonoids, 14 tannins, 365 organic acids, 42 phenolic acids, 22 alkaloids, 39 saccharides, 208 amino acids and derivatives, 17 lignans and coumarins, seven quinones, 44 nucleotides and derivatives, 14 glycerophospholipids, two glycolipids, 15 alcohols and amines, 140 benzenes and substituted derivatives, 38 terpenoids, 30 heterocyclic compounds, and 15 lipids. Kaempferol-7-O-rhamnoside, 3,7-Di-O-methylquercetin, epigallocatechin gallate, epicatechin gallate, and epigallocatechin were detected in Z1, Z2, H, and G. A total of 1243 metabolites differed among Z1, Z2, and R. A total of 1617 metabolites differed among G, H, and R. The content of non-volatile difference metabolites of Z2 was higher than that of Z1. The content of non-volatile difference metabolites of G was higher than that of H. The 20 key differential non-volatile metabolites of Z1, Z2, G, and H were screened out separately. The types of non-volatile flavor differential metabolites of G and H were more numerous than those of Z1 and Z2. The metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of co-factors, flavonoid biosynthesis, biosynthesis of amino acids, biosynthesis of various plant secondary metabolites, and purine metabolism of metabolic pathways were the main KEGG pathways. This study provides new insights into the differences in metabolite profiles among typical Chinese matcha geographic regions with the same tea variety. Full article
(This article belongs to the Special Issue Tea: Processing Techniques, Flavor Chemistry and Health Benefits)
Show Figures

Figure 1

Back to TopTop