Utility Assessment of Isolated Starch and Extract from Thai Yam (Dioscorea hispida Dennst.) for Cosmetic via In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of D. hispida Starch
2.2. Extraction of Pectin from Dragon Fruit Peel
2.3. Preparation of D. hispida Extract
2.4. Glycyrrhiza glabra Extraction
2.5. Gas Chromatography–Mass Spectrometry Analysis (GC–MS Analysis)
2.6. Preparation of Dusting Powder (DP) from D. hispida Starch
2.7. Preparation of Sleeping Mask (SM) from Pectin of Dragon Fruit Peels
2.8. Accelerated Stability Testing
2.9. Particle Size
2.10. Test for Flowability
2.11. Scanning Electron Microscopy (SEM)
2.12. Anti-Tyrosinase Activity
2.13. Anti-Elastase Activity
2.14. Sensitization Dermal Toxicity Test
number of observation × highest score (4) × skin response*)
3. Results
3.1. Identification of D. hispida Ethanol Extract Using GC-MS
3.2. Enzyme Inhibitory Activity of G. glabra and D. hispida Extracts
3.3. Starch Isolation and Dusting Powder (DP) Formulation
3.4. SEM Study of Starch Particle Morphology
3.5. Isolation of Dragon Fruit Pectin and Sleeping Mask (SM) Formulation
3.6. Stability Study
3.6.1. Characteristics of Dusting Powder (DP) Formulation
3.6.2. Characteristics of Sleeping Mask (SM) Formulation
3.7. Sensitization Dermal Toxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Khayri, J.M.; Rashmi, R.; Toppo, V.; Chole, P.B.; Banadka, A.; Sudheer, W.N.; Nagella, P.; Shehata, W.F.; Al-Mssallem, M.Q.; Alessa, F.M.; et al. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023, 13, 716. [Google Scholar] [CrossRef]
- Korkina, L.; Kostyuk, V.; Potapovich, A.; Mayer, W.; Talib, N.; De Luca, C. Secondary Plant Metabolites for Sun Protective Cosmetics: From Pre-Selection to Product Formulation. Cosmetics 2018, 5, 32. [Google Scholar] [CrossRef]
- Chen, D.; Mubeen, B.; Hasnain, A.; Rizwan, M.; Adrees, M.; Naqvi, S.A.H.; Iqbal, S.; Kamran, M.; El-Sabrout, A.M.; Elansary, H.O.; et al. Role of Promising Secondary Metabolites to Confer Resistance Against Environmental Stresses in Crop Plants: Current Scenario and Future Perspectives. Front. Plant Sci. 2022, 13, 881032. [Google Scholar] [CrossRef]
- Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol. 2014, 2, 377–392. [Google Scholar]
- Gyawali, R.; Paudel, P.N. Herbal remedies in Cosmeceuticals formulation: A review on Nepalese perspectives. Annapurna J. Health Sci. 2022, 2, 59–65. [Google Scholar] [CrossRef]
- Luo, G.F.; Podolyan, A.; Kidanemariam, D.B.; Pilotti, C.; Houliston, G. A review of viruses infecting Yam (Dioscorea spp.). Viruses 2022, 14, 662. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Thiphaphorn, N.; Thamthurasan, W.; Unartngam, J.; Okane, I. Two Dioscorea rust fungi found in Thailand. Jpn. J. Mycol. 2021, 62, 43–50. [Google Scholar]
- Liu, Y.; Li, H.; Fan, Y.; Man, S.; Liu, Z.; Gao, W.; Wang, T. Antioxidant and antitumor activities of the extracts from Chinese Yam (Dioscorea opposite Thunb.) flesh and peel and the effective compounds. J. Food Sci. 2016, 81, H1553–H1564. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Liu, D.; Huang, L. Metabolome profiling of eight Chinese yam (Dioscorea polystachya Turcz.) varieties reveals metabolite diversity and variety specific uses. Life 2021, 11, 687. [Google Scholar] [CrossRef] [PubMed]
- Obidiegwu, J.E.; Lyons, J.B.; Chilaka, C.A. The Dioscorea Genus (Yam)—An appraisal of nutritional and therapeutic potentials. Foods 2020, 9, 1304. [Google Scholar] [CrossRef]
- Epping, J.; Laibach, N. An underutilized orphan tuber crop-Chinese yam: A review. Planta 2020, 252, 58. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, K.Z.; Sapuan, S.M.; Zuhri, M.Y.M.; Jumaidin, R. Extraction and Characterization of Potential Biodegradable Materials Based on Dioscorea hispida Tubers. Polymers 2021, 13, 584. [Google Scholar] [CrossRef] [PubMed]
- Oni, S.O. Physical characteristics and nutritional analysis of native and chemically modified starches obtained from Yam (Dioscorea rotundata) and Cassava (Manihot esculeta) Tubers. J. Food Nutr. 2020, 6, 1–7. [Google Scholar]
- Ashri, A.; Yusof, M.S.M.; Jamil, M.S.; Abdullah, A.; Yusoff, S.F.M.; Arip, M.N.M.; Lazim, A.M. Physicochemical characterization of starch extracted from Malaysian wild yam (Dioscorea hispida Dennst.). Emir. J. Food Agric. 2014, 26, 652. [Google Scholar] [CrossRef]
- Sheikh, F.A.; Baheti, M.G. Formulation and evaluation of antimicrobial dusting powder. Int. J. Pharm. Pharm. Sci. 2020, 11, 6850–6857. [Google Scholar]
- Chang, H.; Zhang, J.; Xia, J.; Kang, C.; Yan, Y. Influence of waxy proteins on wheat resistant starch formation, molecular structure and physicochemical properties. Food Chem. 2022, 376, 131944. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, L.; Wang, B.; Yang, X.; Chen, Z.; Zhong, Y.; Zhang, L.; Mao, Z.; Xu, H.; Sui, X. Polysaccharide-based edible emulsion gel stabilized by regenerated cellulose. Food Hydrocoll. 2019, 91, 232–237. [Google Scholar] [CrossRef]
- Rincón, A.M.; Pérez, R.M.N.; Reyes, A.; Romero, A.; Orfila, L.; Padilla, F.C. ‘Guapo’ (Myrosma cannifolia) starch: A natural product with potential use in cosmetic formulations. Int. J. Cosmet. Sci. 2005, 27, 107–114. [Google Scholar] [CrossRef]
- Boonme, P.; Aporn, M.; Khwankaew, S.; Pichayakorn, W.; Prapruti, P.; Boromthanarat, S. Feasibility study of sago starch for perfumed and cooling body powders. Cosm. Toil 2009, 124, 30–37. [Google Scholar]
- Nilforoushzadeh, M.A.; Amirkhani, M.A.; Zarrintaj, P.; Salehi Moghaddam, A.; Mehrabi, T.; Alavi, S.; Mollapour Sisakht, M. Skin care and rejuvenation by cosmeceutical facial mask. J. Cosmet. Dermatol. 2018, 17, 693–702. [Google Scholar] [CrossRef]
- Morganti, P.; Morganti, G.; Chen, H.D.; Gagliardini, A. Beauty mask: Market and environment. J. Clin. Cosmet. Dermatol. 2019, 3, 2576–2826. [Google Scholar]
- Masdar, N.D.; Roslan, R.A.B.; Hasan, S.B.; Kamal, M.L. Determination of antioxidant from UBI gadong tubers for facial soap bar. In Charting the Sustainable Future of ASEAN in Science and Technology: Proceedings of the 3rd International Conference on the Future of ASEAN (ICoFA) 2019-Volume 2; Springer: Singapore, 2020; pp. 193–201. [Google Scholar] [CrossRef]
- Lim, T.K. Dioscorea hispida. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Neag, E.; Stupar, Z.; Torok, A.I.; Surupaceanu, I.; Senila, M.; Cadar, O. Exploring the properties of micronized natural zeolitic volcanic tuff as cosmetic ingredient. Materials 2022, 15, 2405. [Google Scholar] [CrossRef]
- Carr, R.L. Evaluating flow properties of solids. Chem. Eng. 1965, 18, 163–168. [Google Scholar]
- Dej-adisai, S.; Parndaeng, K.; Wattanapiromsakul, C. Determination of phytochemical compounds, and tyrosinase inhibitory and antimicrobial activities of bioactive compounds from Streblus ilicifolius (S Vidal) Corner. Trop. J. Pharm. Res. 2016, 15, 497–506. [Google Scholar] [CrossRef]
- Lee, K.K.; Cho, J.J.; Park, E.J.; Choi, J.D. Anti-elastase and anti-hyaluronidase of phenolic substance from Areca catechu as a new anti-ageing agent. Int. J. Cosmet. Sci. 2001, 23, 341–346. [Google Scholar] [CrossRef]
- Sumit, K.; Vivek, S.; Sujata, S.; Ashish, B. Herbal cosmetics: Used for skin and hair. Inven. J. 2012, 2012, 1–7. [Google Scholar]
- Denham, T.; Iriarte, J.; Vrydaghs, L. Rethinking Agriculture: Archaeological and Ethnoarchaeological Perspective; Left Coast Press, Inc.: New York, NY, USA, 2007; pp. 60–70. [Google Scholar]
- Hudzari, R.M.; Ssomad, M.A.H.A.; Rizuwan, Y.M.; Asimi, M.N.N.; Abdullah, A.B.C.; Fauzan, M.Z.M. Modification of automatic alkaloid removal system for dioscorine. Int. J. Agron. Plant Prod. 2011, 2, 155–161. [Google Scholar]
- Xia, Y.; Gao, W.; Wang, H.; Jiang, Q.; Li, X.; Huang, L.; Xiao, P. Characterization of tradition Chinese medicine (TCM) starch for potential cosmetics industry application. Starch-Stärke 2013, 65, 367–373. [Google Scholar] [CrossRef]
- Lindeboom, N.; Chang, P.R.; Tyler, R.T. Analytical, biochemical and physicochemical aspects of starch granulesize, with emphasis on small granule starches: A review. Starch-Stärke 2004, 56, 89–99. [Google Scholar] [CrossRef]
- Cho, A.; Amirahmadi, R.; Ajmeri, A.; Deepak, J. Pulmonary talcosis in the setting of cosmetic talcum powder use. Respir. Med. Case Rep. 2021, 34, 101489. [Google Scholar] [CrossRef]
- Jasuja, S.; Kuhn, B.T.; Schivo, M.; Adams, J.Y. Cosmetic talc–related pulmonary granulomatosis. J. Investig. Med. High Impact Case Rep. 2017, 5, 2324709617728527. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Maity, N.; Nema, N.K.; Sarkar, B.K. Bioactive compounds from natural resources against skin aging. Phytomedicine 2011, 19, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Sittek, L.M.; Schmidts, T.M.; Schlupp, P. Potential Application of a Wine Extract in Skin Care: How to Benefit from the Antibacterial, Antioxidant and Elastase Inhibiting Properties. J. Cosmet. Dermatol. Sci. Appl. 2023, 13, 136–155. [Google Scholar] [CrossRef]
- Thring, T.S.; Hili, P.; Naughton, D.P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef]
- Binic, I.; Lazarevic, V.; Ljubenovic, M.; Mojsa, J.; Sokolovic, D. Skin ageing: Natural weapons and strategies. Evid.-Based Complement. Altern. Med. 2013, 2013, 827248. [Google Scholar] [CrossRef]
- Sen, R.; Baruah, A.M. Phenolic profile and pigment stability of Hylocereus species grown in North-East India. J. Food Compos. Anal. 2023, 116, 105078. [Google Scholar] [CrossRef]
- Tanjung, Y.P. Formulation and evaluation of peel off gel facial mask from arabica coffee fruit peel extract (Coffea arabica L.). Arabica 2021, 1, F3. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, J.H.; Song, H.; Seok, J.K.; Hong, S.S.; Boo, Y.C. Luteolin 7-Sulfate Attenuates Melanin Synthesis through Inhibition of CREB- and MITF-Mediated Tyrosinase Expression. Antioxidants 2019, 8, 87. [Google Scholar] [CrossRef]
- Hałdys, K.; Goldeman, W.; Jewgiński, M.; Wolińska, E.; Anger, N.; Rossowska, J.; Latajka, R. Inhibitory properties of aromatic thiosemicarbazones on mushroom tyrosinase: Synthesis, kinetic studies, molecular docking and effectiveness in melanogenesis inhibition. Bioorg. Chem. 2018, 81, 577–586. [Google Scholar] [CrossRef]
- Dej-adisai, S.; Koyphokaisawan, N.; Wattanapiromsakul, C.; Nuankaew, W.; Kang, T.H.; Pitakbut, T. In Vitro, In Vivo, and In Silico Analyses of Molecular Anti-Pigmentation Mechanisms of Selected Thai Rejuvenating Remedy and Bioactive Metabolites. Molecules 2023, 28, 958. [Google Scholar] [CrossRef] [PubMed]
- Panzella, L.; Napolitano, A. Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: Recent Advances. Cosmetics 2019, 6, 57. [Google Scholar] [CrossRef]
- Ebanks, J.P.; Wickett, R.R.; Boissy, R.E. Mechanisms regulating skin pigmentation: The rise and fall of complexion coloration. Int. J. Mol. Sci. 2009, 10, 4066–4087. [Google Scholar] [CrossRef]
- Nerya, O.; Vaya, J.; Musa, R.; Izrael, S.; Ben-Arie, R.; Tamir, S. Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. Agric. Food Chem. 2003, 51, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Gao, J. The Use of Botanical Extracts as Topical Skin-Lightening Agents for the Improvement of Skin Pigmentation Disorders. J. Investig. Dermatol. Symp. Proc. 2008, 13, 20–24. [Google Scholar] [CrossRef]
- Kim, D.-S.; Jeon, B.-K.; Mun, Y.-J.; Kim, Y.-M.; Lee, Y.-E.; Woo, W.-H. Effect of Dioscorea aimadoimo on Anti-Aging and Skin Moisture Capacity. J. Physiol. Pathol. Korean Med. 2011, 25, 425–430. [Google Scholar]
- Tada, Y.; Kanda, N.; Haratake, A.; Tobiishi, M.; Uchiwa, H.; Watanabe, S. Novel effects of diosgenin on skin aging. Steroids 2009, 74, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; An, H.; Kim, W.; Lu, X.; Jeon, H.; Park, H.W.; Ha, J.; Cho, J. Anti-aging Effect of Mixed Extract from Medicinal Herbs. Asian J. Beauty Cosmetol. 2021, 19, 679–692. [Google Scholar] [CrossRef]
- Xie, M.; Jiang, Z.; Lin, X.; Wei, X. Application of plant extracts cosmetics in the field of anti-aging. J. Dermatol. Sci. Cosmet. Technol. 2024, 1, 100014. [Google Scholar] [CrossRef]
- Bhandari, M.R.; Kawabata, J. Bitterness and toxicity in wild yam (Dioscorea spp.) tubers of Nepal. Plant Foods Hum. Nutr. 2005, 60, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Das, G.; Shin, H.S.; Patra, J.K. Dioscorea spp. (A Wild Edible Tuber): A study on its ethnopharmacological potential and traditional use by the local people of similipal biosphere reserve, India. Front. Pharmacol. 2017, 8, 52. [Google Scholar] [CrossRef]
- Rahmawanty, D.; Yulianti, N.; Fitriana, M. Formulation and evaluation of peel off face mask containing quercetin with gelatin and glycerin concentration variation. J. Media Farm. 2015, 12, 17–32. [Google Scholar] [CrossRef]
Ingredients | Function | Formular | ||
---|---|---|---|---|
DP 1 | DP 2 | DP 3 | ||
D. hispida powder (g) | Powder base | 86 | 78 | 78 |
G. glabra extract (g) | Whitening agent | - | 8 | 8 |
Zinc oxide (g) | Adhesive agent | 7.5 | 7.5 | 7.5 |
Magnesium stearate (g) | Absorbance agent | 1 | 1 | 1 |
Kaolin (g) | Lubricant | 5 | 5 | 5 |
Phenoxyethanol (g) | Preservative | 0.5 | 0.5 | 0.5 |
Uthaithip® Solution | Coloring agent | - | - | q.s. |
Ingredients | Function | Formular | ||||
---|---|---|---|---|---|---|
SM 1 | SM 2 | SM 3 | SM 4 | SM 5 | ||
Glycerine (mL) | Humectant | 2 | 2 | 2 | 2 | 2 |
Pectin of dragon fruit peels (g) | Gelling agent | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
Propylene glycol (mL) | Humectant | 1 | 1 | 1 | 1 | 1 |
Sodium benzoate (g) | Preservative | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 |
G. glabra extract (g) | Whitening agent | - | 0.25 | 0.25 | 0.25 | 0.25 |
D. hispida extract (g) | Anti-aging agent | - | - | 0.125 | 0.25 | 0.50 |
Uthaithip® Solution | Coloring agent | - | q.s. | q.s. | q.s. | q.s. |
Distilled water q.s.to | Solvent | 25 | 25 | 25 | 25 | 25 |
Flow Ability | Angle of Repose (Degrees) |
---|---|
Excellent | 25–30 |
Good | 31–35 |
Fair (aid not needed) | 36–40 |
Passable (may hang up) | 41–45 |
Poor (must agitate, vibrate) | 46–55 |
Very poor | 56–65 |
Very, very poor | >66 |
Skin Responses | Score |
---|---|
Erythema formation | |
No erythema | 0 |
Very slight erythema (barely perceptible) | 1 |
Well-defined erythema | 2 |
Moderate erythema (Redness occurs over more than half of the test area) | 3 |
Severe erythema (Redness appeared over the entire test area; redness from scabs) | 4 |
Edema formation | |
No edema | 0 |
Very slight edema (barely perceptible) | 1 |
Slight edema (edges of area well defined by definite raising) | 2 |
Moderate edema (raised approximately 1·0 mm) | 3 |
Severe edema (raised more than 1·0 mm and extending beyond exposure area) | 4 |
No. | RT | Name of Compound | Molecular Formula | Match Factor | Peak Area% |
---|---|---|---|---|---|
1 | 7.60 | 4-Hydroxy-2,5-dimethyl-3(2H)-furanone | C6H8O3 | 90.70 | 0.39 |
2 | 8.93 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | C6H8O4 | 97.40 | 2.77 |
3 | 11.80 | 1-Methyl-3,4-dihydroisoquinoline | C10H11N | 94.90 | 1.43 |
4 | 14.08 | Phenol, 2,4-bis(1,1-dimethylethyl)- | C14H22O | 93.50 | 0.28 |
5 | 21.06 | Hexadecanoic acid, methyl ester | C17H34O2 | 91.90 | 0.13 |
6 | 22.22 | n-Hexadecanoic acid | C16H32O2 | 90.80 | 0.29 |
7 | 22.75 | Hexadecanoic acid, ethyl ester | C18H36O2 | 98.50 | 2.84 |
8 | 24.86 | 9,12-Octadecadienoic acid (Z,Z)-, methyl ester | C19H34O2 | 94.10 | 0.22 |
9 | 26.08 | 9,12-Octadecadienoic acid (Z,Z)- | C18H32O2 | 94.70 | 6.51 |
10 | 26.36 | Linoleic acid ethyl ester | C20H36O2 | 96.70 | 5.72 |
11 | 26.52 | (E)-9-Octadecenoic acid ethyl ester | C20H38O2 | 91.50 | 1.26 |
12 | 27.10 | Octadecanoic acid, ethyl ester | C20H40O2 | 92.10 | 0.95 |
13 | 35.13 | (Z,Z)-9,12-octadeca-dienoic acid, 2,3-dihydroxy-propyl | C21H38O4 | 91.90 | 3.89 |
14 | 41.27 | Cholest-5-en-3-ol (3.beta.)- | C27H46O | 94.00 | 0.24 |
15 | 41.41 | dl-.alpha.-Tocopherol | C29H50O2 | 97.00 | 1.17 |
16 | 42.68 | Campesterol | C28H48O | 95.90 | 3.40 |
17 | 43.11 | Stigmasta-5,22-dien-3-ol, (3.beta.,22E)- | C29H48O | 93.40 | 6.41 |
18 | 43.77 | .gamma.-Sitosterol | C29H50O | 97.30 | 0.73 |
Sample | Characteristics | |
---|---|---|
Before Stability Testing | After Stability Testing | |
Color and odor | ||
DP 1 | White powder color with smooth and fine appearance with Dioscorea odor | White powder color with smooth and fine appearance with Dioscorea odor. |
DP 2 | Light yellow powder color with smooth and fine, with G. glabra extract odor | Light yellow powder color. Slightly clumped with G. glabra extract odor |
DP 3 | Pinkish-orange powder color with smooth and fine appearance with a mild perfume of coloring agent odor | Pinkish-orange powder color with smooth and fine appearance with a mild perfume of coloring agent odor. |
Particle size | ||
DP 1 | 2.31 ± 0.48 µm | 2.35 ± 0.43 µm |
DP 2 | 2.23 ± 0.34 µm | 2.29 ± 0.49 µm |
DP 3 | 2.26 ± 0.41 µm | 2.32 ± 0.42 µm |
Angle (°)/Flow property | ||
DP 1 | 45/passable | 41.0/passable |
DP 2 | 40/fair | 36.5/fair |
DP 3 | 39.3/fair | 35.0/good |
Tyrosinase inhibition (%) (20 µg/mL) | ||
DP 1 | - | - |
DP 2 | 71.53 ± 2.23 | 69.35 ± 2.58 |
DP 3 | 70.60 ± 1.89 | 67.90 ± 2.23 |
G. glabra extract | 69.84 ± 1.94 | 55.74 ± 1.10 |
kojic acid | 81.27 ± 1.00 | 74.23 ± 5.26 |
Sample | Characteristics | |
---|---|---|
Before Stability Testing | After Stability Testing | |
Color and odor | ||
SM 1 | Red with a fine appearance of dragon fruit peel odor | Yellow white with a fine appearance of dragon fruit peel odor |
SM 2 | Light-red with a mild perfume of coloring agent odor | Red-brown with a mild perfume of coloring agent odor |
SM 3 | Dark-red with a mild perfume of coloring agent odor | Red-brown with a mild perfume of coloring agent odor |
SM 4 | Dark-red with a mild perfume of coloring agent odor | Red-brown with a mild perfume of coloring agent odor |
SM 5 | Dark-red with a mild perfume of coloring agent odor | Red-brown with a mild perfume of coloring agent odor |
Texture | ||
SM 1 | Gel-like texture, easy to apply on skin, and no separation | Gel-like texture, easy to apply on skin, and no separation |
SM 2 | Gel-like texture, easy to apply on skin, and no separation | Gel-like texture, easy to apply on skin, and no separation |
SM 3 | Gel-like texture, easy to apply on skin, and no separation | Gel-like texture, easy to apply on skin, and no separation |
SM 4 | Gel-like texture, easy to apply on skin, and no separation | Gel-like texture, easy to apply on skin, and no separation |
SM 5 | Gel-like texture, easy to apply on skin, and no separation | Gel-like texture, easy to apply on skin, and no separation |
Viscosity (cPs) | ||
SM 1 | 11,233 | 11,147 |
SM 2 | 11,290 | 12,407 |
SM 3 | 11,891 | 12,050 |
SM 4 | 11,899 | 13,107 |
SM 5 | 11,903 | 12,870 |
pH | ||
SM 1 | 5.39 | 5.39 |
SM 2 | 5.36 | 5.34 |
SM 3 | 5.34 | 5.35 |
SM 4 | 5.37 | 5.37 |
SM 5 | 5.36 | 5.36 |
Tyrosinase inhibition (%) (20 µg/mL) | ||
SM 1 | - | - |
SM 2 | 82.85 ± 0.99 | 80.24 ± 1.75 |
SM 3 | 100.29 ± 1.60 | 84.24 ± 1.68 |
SM 4 | 94.12 ± 1.38 | 88.97 ± 1.83 |
SM 5 | 97.79 ± 1.73 | 86.50 ± 0.91 |
G. glabra extract | 74.49 ± 0.14 | 88.12 ± 0.77 |
kojic acid | 74.63 ± 0.44 | 86.18 ± 0.97 |
Elastase inhibition (%) (2 mg/mL) | ||
SM 1 | - | - |
SM 2 | - | - |
SM 3 | 89.82 ± 2.10 | 83.26 ± 3.64 |
SM 4 | 83.92 ± 0.95 | 81.96 ± 2.09 |
SM 5 | 89.94 ± 1.04 | 80.72 ± 2.21 |
D. hispida extract | 81.76 ± 1.51 | 75.02 ± 3.35 |
EGCG | 98.99 ± 0.72 | 98.96 ± 0.17 |
Formula | Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Level | Type of Skin Reaction |
---|---|---|---|---|---|---|
0.9% NSS | 1.04 | 0 | 0 | 0 | Level 1 | No irritated reaction |
D. hispida starch | 14.58 | 29.16 | 23.95 | 19.79 | Level 2–3 | Not severe to moderate |
DP 2 | 0 | 0 | 0 | 0 | Level 1 | No irritated reaction |
SM 1 | 3.13 | 8.33 | 15.65 | 16.66 | Level 2 | Not severe |
SM 2 | 8.33 | 10.41 | 18.75 | 21.87 | Level 2 | Not severe |
SM 3 | 10.41 | 12.50 | 20.83 | 18.75 | Level 2 | Not severe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangkanu, S.; Khanansuk, J.; Phoopha, S.; Udomuksorn, W.; Phupan, T.; Puntarat, J.; Tungsukruthai, S.; Dej-adisai, S. Utility Assessment of Isolated Starch and Extract from Thai Yam (Dioscorea hispida Dennst.) for Cosmetic via In Vitro and In Vivo Studies. Life 2025, 15, 151. https://doi.org/10.3390/life15020151
Sangkanu S, Khanansuk J, Phoopha S, Udomuksorn W, Phupan T, Puntarat J, Tungsukruthai S, Dej-adisai S. Utility Assessment of Isolated Starch and Extract from Thai Yam (Dioscorea hispida Dennst.) for Cosmetic via In Vitro and In Vivo Studies. Life. 2025; 15(2):151. https://doi.org/10.3390/life15020151
Chicago/Turabian StyleSangkanu, Suthinee, Jiraporn Khanansuk, Sathianpong Phoopha, Wandee Udomuksorn, Thitiporn Phupan, Jirapa Puntarat, Sucharat Tungsukruthai, and Sukanya Dej-adisai. 2025. "Utility Assessment of Isolated Starch and Extract from Thai Yam (Dioscorea hispida Dennst.) for Cosmetic via In Vitro and In Vivo Studies" Life 15, no. 2: 151. https://doi.org/10.3390/life15020151
APA StyleSangkanu, S., Khanansuk, J., Phoopha, S., Udomuksorn, W., Phupan, T., Puntarat, J., Tungsukruthai, S., & Dej-adisai, S. (2025). Utility Assessment of Isolated Starch and Extract from Thai Yam (Dioscorea hispida Dennst.) for Cosmetic via In Vitro and In Vivo Studies. Life, 15(2), 151. https://doi.org/10.3390/life15020151