Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = corundum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3232 KiB  
Article
Residual Flexural Behavior of Hybrid Fiber-Reinforced Geopolymer After High Temperature Exposure
by Yiyang Xiong, Ruiwen Jiang, Yi Li and Peipeng Li
Materials 2025, 18(15), 3572; https://doi.org/10.3390/ma18153572 - 30 Jul 2025
Viewed by 213
Abstract
Cement-based building materials usually exhibit weak flexural behavior under high temperature or fire conditions. This paper develops a novel geopolymer with enhanced residual flexural strength, incorporating fly ash/metakaolin precursors and corundum aggregates based on our previous study, and further improves flexural performance using [...] Read more.
Cement-based building materials usually exhibit weak flexural behavior under high temperature or fire conditions. This paper develops a novel geopolymer with enhanced residual flexural strength, incorporating fly ash/metakaolin precursors and corundum aggregates based on our previous study, and further improves flexural performance using hybrid fibers. The flexural load–deflection response, strength, deformation capacity, toughness and microstructure are investigated by a thermal exposure test, bending test and microstructure observation. The results indicate that the plain geopolymer exhibits a continuously increasing flexural strength from 10 MPa at 20 °C to 25.9 MPa after 1000 °C exposure, attributed to thermally induced further geopolymerization and ceramic-like crystalline phase formation. Incorporating 5% wollastonite fibers results in slightly increased initial and residual flexural strength but comparable peak deflection, toughness and brittle failure. The binary 5% wollastonite and 1% basalt fibers in geopolymer obviously improve residual flexural strength exposed to 400–800 °C. The steel fibers show remarkable reinforcement on flexural behavior at 20–800 °C exposure; however, excessive steel fiber content such as 2% weakens flexural properties after 1000 °C exposure due to severe oxidation deterioration and thermal incompatibility. The wollastonite/basalt/steel fibers exhibit a positive synergistic effect on flexural strength and toughness of geopolymers at 20–600 °C. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

17 pages, 7274 KiB  
Article
Sol–Gel-Derived Silica/Alumina Particles for Enhancing the Mechanical Properties of Acrylate Composite Materials
by Khaled Altwair, Vladisav Tadić, Miloš Petrović, Andrija Savić, Vesna Radojević, Radmila Jančić Heinemann and Marija M. Vuksanović
Gels 2025, 11(8), 575; https://doi.org/10.3390/gels11080575 - 24 Jul 2025
Viewed by 281
Abstract
Silica/alumina composite particles were synthesized via the sol–gel method to promote fine dispersion and homogenous mixing. Aluminum chloride hydroxide served as the alumina precursor, while amorphous silica, obtained from rice husk, was directly incorporated into the alumina sol. Following synthesis, the material was [...] Read more.
Silica/alumina composite particles were synthesized via the sol–gel method to promote fine dispersion and homogenous mixing. Aluminum chloride hydroxide served as the alumina precursor, while amorphous silica, obtained from rice husk, was directly incorporated into the alumina sol. Following synthesis, the material was calcined at 1000 °C, yielding an α-cristobalite form of silica and corundum-phase alumina. These hybrid particles were introduced into polymer composites at reinforcement levels of 1 wt.%, 3 wt.%, and 5 wt.%. Mechanical behavior was evaluated through three-point bending tests, Shore D hardness measurements, and controlled-energy impact testing. Among the formulations, the 3 wt.% composite exhibited optimal performance, displaying the highest flexural modulus and strength, along with enhanced impact resistance. Hardness increased with rising particle content. Fractographic analysis revealed that the 3 wt.% loading produced a notably rougher fracture surface, correlating with improved energy absorption. In contrast, the 5 wt.% composite, although harder than the matrix and other composites, exhibited diminished toughness due to particle agglomeration. Full article
(This article belongs to the Special Issue Advances in Composite Gels (3rd Edition))
Show Figures

Figure 1

14 pages, 2825 KiB  
Article
Effects of Pressure on Hydrogen Diffusion Behaviors in Corundum
by Shun-Feng Yan, Lin Li, Xiao Dong, Xiao-Wei Li, Mao-Wen Yuan and Sheng-Rong Li
Crystals 2025, 15(8), 672; https://doi.org/10.3390/cryst15080672 - 23 Jul 2025
Viewed by 144
Abstract
Hydrogen, as the smallest atom and a key component of water, can penetrate minerals in various forms (e.g., atoms, molecules), significantly influencing their properties. The hydrogen diffusion behavior in corundum (α-Al2O3) under high pressure was systematically investigated using the [...] Read more.
Hydrogen, as the smallest atom and a key component of water, can penetrate minerals in various forms (e.g., atoms, molecules), significantly influencing their properties. The hydrogen diffusion behavior in corundum (α-Al2O3) under high pressure was systematically investigated using the DFT + NEB method. The results indicate that H atoms tend to aggregate into H2 molecules within corundum under both ambient and high-pressure conditions. However, hydrogen predominantly migrates in its atomic form (H) under both low- and high-pressure environments. The energy barriers for H and H2 diffusion increase with pressure, and hydrogen diffusion weakens the chemical bonds nearby. Using the Arrhenius equation, we calculated the diffusion coefficient of H in corundum, which increases with temperature but decreases with pressure. On geological time scales, hydrogen diffusion is relatively slow, potentially resulting in a heterogeneous distribution of water in the lower mantle. These findings provide novel insights into hydrogen diffusion mechanisms in corundum under extreme conditions, with significant implications for hydrogen behavior in mantle minerals at high pressures. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

19 pages, 1343 KiB  
Article
Two-Step Plasma Electrolytic Oxidation of Advanced High-Strength Steel in Aluminate and Silicate Solutions
by Roy Morgenstern, Thomas Mehner and Thomas Lampke
Coatings 2025, 15(7), 850; https://doi.org/10.3390/coatings15070850 - 19 Jul 2025
Viewed by 295
Abstract
This work aims to clarify whether the individual advantages of the two commonly used silicate- and aluminate-based electrolytes for the plasma electrolytic oxidation (PEO) of steel can be combined in a two-step process. The first PEO step was carried out in an aluminate–phosphate [...] Read more.
This work aims to clarify whether the individual advantages of the two commonly used silicate- and aluminate-based electrolytes for the plasma electrolytic oxidation (PEO) of steel can be combined in a two-step process. The first PEO step was carried out in an aluminate–phosphate electrolyte with pulsed voltage and anodic amplitudes between 150 V and 200 V. The second PEO step was carried out at an increased anodic voltage amplitude of 400 V in a silicate–phosphate electrolyte. As a reference, PEO was conducted in a single step in the same silicate–phosphate electrolyte at an increased anodic voltage amplitude of up to 400 V. The microstructural layer analysis was carried out using SEM and EDX analyses, Raman spectroscopy and XRD analysis. Heterogeneous layers containing iron oxide and iron phosphate form in the silicate–phosphate electrolyte at anodic voltage amplitudes up to 300 V by electrochemical reactions. Further increasing the anodic voltage amplitude up to 400 V results in heterogeneous layers, too. PEO in the aluminate–phosphate electrolyte at 150 V causes the formation of thin, amorphous layers mainly consisting of aluminum and iron oxides. At 200 V amplitude, a PEO layer with pronounced open porosity is formed, which primarily consists of the crystalline phases corundum and hercynite. During subsequent PEO in the silicate–phosphate electrolyte, the previously formed layers were replaced by a macroscopically homogeneous layer that is mostly nanocrystalline and may contain amorphous iron(-aluminum) phosphates and oxides as well as silicon oxide. It can be concluded that the two-step PEO process is suitable for the production of more homogeneous PEO layers. Full article
Show Figures

Figure 1

17 pages, 6250 KiB  
Article
Microstructure and Chemical Stability of Al2O3-ZrO2-ReB2 Composite Coatings Obtained by Air Plasma Spraying
by Adriana Wrona, Kinga Czechowska, Katarzyna Bilewska, Monika Czerny, Anna Czech, Marcin Lis, Anna Brudny, Grzegorz Muzia and Lucyna Jaworska
Materials 2025, 18(14), 3363; https://doi.org/10.3390/ma18143363 - 17 Jul 2025
Viewed by 290
Abstract
This study investigated the effect of adding superhard ReB2 to atmospheric plasma sprayed (APS) coatings based on 60 wt% Al2O3 and 40 wt% ZrO2. The amorphous phases commonly present in such coatings are known to impair their [...] Read more.
This study investigated the effect of adding superhard ReB2 to atmospheric plasma sprayed (APS) coatings based on 60 wt% Al2O3 and 40 wt% ZrO2. The amorphous phases commonly present in such coatings are known to impair their performance. ReB2 was introduced as a crystallization nucleus due to its high melting point. ReB2 decomposes in the presence of moisture and oxygen into H3BO3, ReO3, HBO2, and HReO4. ReB2 was encapsulated with Al2O3 via metallothermic synthesis to improve moisture stability, yielding a powder with d90 = 15.1 μm. After milling, it was added at 20 wt% to the Al2O3-ZrO2 feedstock. Agglomeration parameters were optimized, and coatings were deposited under varying APS conditions onto 316L steel substrates with a NiAl bond coat. In the coating with the highest ReB2 content, the identified phases included ReB2 (2.6 wt%), Re (0.8 wt%), α-Al2O3 (30.9 wt%), η-Al2O3 (32.4 wt%), and monoclinic and tetragonal ZrO2. The nanohardness of the coating, measured using a Vickers indenter at 96 mN and calculated via the Oliver–Pharr method, was 9.2 ± 1.0 GPa. High abrasion resistance was obtained for the coating with a higher content of η-Al2O3 (48.7 wt%). The coefficient of friction, determined using a ball-on-disc test with a corundum ball, was 0.798 ± 0.03. After 15 months, the formation of (H3O)(ReO4) was observed, suggesting initial moisture-induced changes. The results confirm that Al2O3-encapsulated ReB2 can enhance phase stability and crystallinity in APS coatings. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

22 pages, 4482 KiB  
Article
Cu-Doping Induced Structural Transformation and Magnetocaloric Enhancement in CoCr2O4 Nanoparticles
by Ming-Kang Ho, Yun-Tai Yu, Hsin-Hao Chiu, K. Manjunatha, Shih-Lung Yu, Bing-Li Lyu, Tsu-En Hsu, Heng-Chih Kuo, Shuan-Wei Yu, Wen-Chi Tu, Chiung-Yu Chang, Chia-Liang Cheng, H. Nagabhushana, Tsung-Te Lin, Yi-Ru Hsu, Meng-Chu Chen, Yue-Lin Huang and Sheng Yun Wu
Nanomaterials 2025, 15(14), 1093; https://doi.org/10.3390/nano15141093 - 14 Jul 2025
Viewed by 328
Abstract
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a [...] Read more.
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a progressive structural transformation from a cubic spinel to a trigonal corundum phase, as confirmed by X-ray diffraction and Raman spectroscopy. The doping process also leads to increased particle size, improved crystallinity, and reduced agglomeration. Magnetic measurements reveal a transition from hard to soft ferrimagnetic behavior with increasing Cu content, accompanied by a notable rise in the Curie temperature from 97.7 K (x = 0) to 140.2 K (x = 20%). The magnetocaloric effect (MCE) is significantly enhanced at higher doping levels, with the 20% Cu-doped sample exhibiting a maximum magnetic entropy change (−ΔSM) of 2.015 J/kg-K and a relative cooling power (RCP) of 58.87 J/kg under a 60 kOe field. Arrott plot analysis confirms that the magnetic phase transitions remain second-order in nature across all compositions. These results demonstrate that Cu doping is an effective strategy for tuning the magnetostructural response of CoCr2O4 nanoparticles, making them promising candidates for low-temperature magnetic refrigeration applications. Full article
Show Figures

Figure 1

16 pages, 8495 KiB  
Article
Utilization of Waste Clay–Diatomite in the Production of Durable Mullite-Based Insulating Materials
by Svetlana Ilić, Jelena Maletaškić, Željko Skoko, Marija M. Vuksanović, Željko Radovanović, Ivica Ristović and Aleksandra Šaponjić
Appl. Sci. 2025, 15(13), 7512; https://doi.org/10.3390/app15137512 - 4 Jul 2025
Viewed by 288
Abstract
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 [...] Read more.
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 wt%) and a moderately high content of Al2O3 (13.8 wt%). In order to achieve the stoichiometric mullite composition (3Al2O3-2SiO2), the raw material was mixed with an appropriate amount of Al(NO3)3·9H2O. After preparing the precursor powder, the green compacts were sintered at 1300, 1400 and 1500 °C for 2 h. During the process, rod-shaped mullite grains were formed, measuring approximately 5 µm in length and a diameter of 500 nm (aspect ratio 10:1). The microstructure of the sample sintered at 1500 °C resulted in a well-developed, porous, nest-like morphology. According to the X-ray diffraction analysis, the sample at 1400 °C consisted of mullite, cristobalite and corundum phases, while the sample sintered at 1500 °C contained mullite (63.24 wt%) and an amorphous phase that reached 36.7 wt%. Both samples exhibited exceptional compressive strength—up to 188 MPa at 1400 °C. However, the decrease in compressive strength to 136 MPa at 1500 °C is attributed to changes in the phase composition, the disappearance of the corundum phase and alterations in the microstructure. This occurred despite an increase in bulk density to 2.36 g/cm3 (approximately 82% of theoretical density) and a complete reduction in open porosity. The residual glassy phase (36.7 wt% at 1500 °C) is probably the key factor influencing the mechanical properties at room temperature in these ceramics produced from waste clay–diatomite. However, the excellent mechanical stability of the samples sintered at 1400 and 1500 °C, achieved without binders or additives and using mined diatomaceous earth, supports further research into mullite-based insulating materials. Mullite-based materials obtained from mining waste might be successfully used in the field of energy-efficient refractory materials and thermal insulators. for high-temperature applications Full article
Show Figures

Figure 1

15 pages, 3411 KiB  
Article
Investigation of Surface Oxidation of Cast Austenitic 304 Stainless Steel at High Temperatures
by Tatiana Ivanova, Michal Kořenek, Miroslav Mashlan and Martin Fryšák
Metals 2025, 15(7), 748; https://doi.org/10.3390/met15070748 - 2 Jul 2025
Viewed by 312
Abstract
The microstructure and surface behavior of iron-based 304 stainless steel after temperature exposure was studied by Mössbauer spectroscopy, powder X-ray diffraction, scanning electron microscopy, energy dispersive analysis and positron annihilation. The tested specimens were in the form of cylinders produced by the casting [...] Read more.
The microstructure and surface behavior of iron-based 304 stainless steel after temperature exposure was studied by Mössbauer spectroscopy, powder X-ray diffraction, scanning electron microscopy, energy dispersive analysis and positron annihilation. The tested specimens were in the form of cylinders produced by the casting process. The samples were annealed in air in the 600–1000 °C temperature range for 36 h. Under the influence of temperature, cast 304 stainless steel underwent austenitic–ferritic transformation and tended to form an oxide layer on the surface. The oxides were mainly found in the thin surface layer (0.3 μm) and consisted of Fe oxides and oxides of alloying elements (Cr and Mn) in the form of corundum, while, in the bulk region (10 μm), the phase transformation of austenite to ferrite occurred. Surface phase inhomogeneity was studied by Mössbauer spectroscopy. The method of positron annihilation was used to study defects and the effect of annealing on the formation and removal of a defect structure. Full article
Show Figures

Figure 1

16 pages, 1496 KiB  
Article
Annealing of Oxygen-Related Frenkel Defects in Corundum Single Crystals Irradiated with Energetic Xenon Ions
by Kotomin A. Eugene, Ruslan Assylbayev, Guldar Baubekova, Irina Kudryavtseva, Vladimir N. Kuzovkov, Alise Podelinska, Viktor Seeman, Evgeni Shablonin and Aleksandr Lushchik
Crystals 2025, 15(6), 573; https://doi.org/10.3390/cryst15060573 - 18 Jun 2025
Viewed by 307
Abstract
The recovery of radiation damage induced by 231-MeV xenon ions with varying fluence (from 5 × 1011 to 2 × 1014 cm−2) in α-Al2O3 (corundum) single crystals has been studied by means of isochronal thermal annealing [...] Read more.
The recovery of radiation damage induced by 231-MeV xenon ions with varying fluence (from 5 × 1011 to 2 × 1014 cm−2) in α-Al2O3 (corundum) single crystals has been studied by means of isochronal thermal annealing of radiation-induced optical absorption (RIOA). The integral of elementary Gaussians (product of RIOA spectrum decomposition) OK has been considered as a concentration measure of relevant oxygen-related Frenkel defects (neutral and charged interstitial-vacancy pairs, F-H, F+-H). The annealing kinetics of these four ion-induced point lattice defects has been modelled in terms of diffusion-controlled bimolecular recombination reactions and compared with those carried out earlier for the case of corundum irradiation by fast neutrons. The changes in the parameters of interstitial (mobile component in the recombination process) annealing kinetics—activation energy E and pre-exponential factor X—in ion-irradiated crystals are considered. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

9 pages, 3220 KiB  
Article
Enhancement of Intermediate-Temperature Strength of Corundum-Spinel Castables via Incorporation of Zn(OH)2 Powders
by Yifan Dong, Mantang He, Mengyang Sang, Xin Qiu, Pengyu Xu, Xinhong Liu and Quanli Jia
Materials 2025, 18(12), 2777; https://doi.org/10.3390/ma18122777 - 12 Jun 2025
Cited by 1 | Viewed by 329
Abstract
Corundum-spinel based purging plugs are extensively employed in steel ladle refining processes. Traditionally, these plugs are manufactured through a high-temperature firing process that not only demanded substantial energy consumption but also resulted in a dense microstructure with higher strength; however, they often led [...] Read more.
Corundum-spinel based purging plugs are extensively employed in steel ladle refining processes. Traditionally, these plugs are manufactured through a high-temperature firing process that not only demanded substantial energy consumption but also resulted in a dense microstructure with higher strength; however, they often led to undesirable consequences such as fracture and thermal spalling, significantly impeding the enhancement of their service life. In recent years, the steel industry has witnessed the emergence of unfired purging plugs as an alternative solution. Unfortunately, there are some shortcomings including low strength at intermediate-temperature and poor volume stability, which easily lead to a short life and lower blowing rate of the unfired purging plug, thereby restricting their utilization. Aiming to improve the intermediate-temperature properties of the unfired purging plug, the effect of Zn(OH)2 on the properties of the castables was investigated. The results show that the cold strength of the specimens sintered at different temperatures remarkably increased with rising Zn(OH)2 content, for instance, CMOR values of the specimens sintered at 800 °C escalated from 3.19 MPa to 14.98 MPa. Furthermore, the incorporation of Zn(OH)2 led to a reduction in permanent linear change and a marked increase in hot strength. The remarkable improvement in intermediate-temperature strength can be attributed to the formation of ZnCr2O4 and ZnAl2O4 spinel phases originating from the reaction between ZnO derived from the decomposition of Zn(OH)2, and the existing Cr2O3 or Al2O3. These spinel phases create a reinforcing effect, thereby substantially enhancing the mechanical properties of the specimens after firing at intermediate temperatures. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

19 pages, 8020 KiB  
Article
Homrit Akarem Post-Collisional Intrusion, Southeastern Desert, Egypt: Petrogenesis of Greisen Formed in a Cupola Structure and Enrichment in Strategic Minerals
by Mokhles K. Azer, Adel A. Surour, Hilmy E. Moussa, Ayman E. Maurice, Mabrouk Sami, Moustafa A. Abou El Maaty, Adel I. M. Akarish, Mohamed Th. S. Heikal, Ahmed A. Elnazer, Mustafa A. Elsagheer, Heba S. Mubarak, Amany M. A. Seddik, Hadeer Sobhy and Mohamed O. Osama
Geosciences 2025, 15(6), 200; https://doi.org/10.3390/geosciences15060200 - 26 May 2025
Viewed by 464
Abstract
The greisens discussed in the present study are associated with the Homrit Akarem post-collisional granites, which are exposed near the western edge of the Egyptian Nubian Shield in the Southeastern Desert of Egypt. The Homrit Akarem granites intruded into Neoproterozoic country rocks, with [...] Read more.
The greisens discussed in the present study are associated with the Homrit Akarem post-collisional granites, which are exposed near the western edge of the Egyptian Nubian Shield in the Southeastern Desert of Egypt. The Homrit Akarem granites intruded into Neoproterozoic country rocks, with sharp intrusive contacts. The marginal parts of the Homrit Akarem intrusion underwent extensive post-magmatic metasomatism, resulting in the formation of albitized granite and greisens. The Homrit Akarem greisens occur as veins and stockworks, which can be classified into four types: muscovite-rich, cassiterite-rich, topaz-rich, and beryl-rich greisens. Based on petrographic inspection, we identified ore minerals (cassiterite, beryl, topaz, muscovite, Nb-Ta oxides, tourmaline, fluorite, and corundum) in the greisens using electron probe microanalysis. The Homrit Akarem mineralized greisens were formed in a magmatic cupola above A-type magma, where fluid–rock interactions played a significant role in their formation. The accumulation of residual volatile-rich melt and exsolved fluids in the apical part of the magma chamber produced albitized granite, greisens, and quartz veins that intruded into the peripheries of the granitic intrusion and its surrounding country rocks. The variation in the mineralogy of the studied greisens indicates the diverse chemical composition of both the hydrothermal/magmatic fluids and the host granites. The simultaneous decrease in temperature and pressure is considered a crucial factor that controlled mineralization in the apical parts of the magma chamber. The occurrence of cassiterite, beryl, topaz, tourmaline, muscovite, and Nb-Ta oxides in the studied greisens suggests a potential polymetallic deposit of industrial minerals. Full article
Show Figures

Figure 1

12 pages, 2913 KiB  
Article
Structural and Magnetic Characterization of Mechanically Alloyed (Fe2O3)1−x(Al2O3)x Solid Solutions via Pulsed Neutron Powder Diffraction
by Dong Luo, Hayato Nakaishi, Takeshi Yabutsuka, Takashi Saito, Takashi Kamiyama, Masato Hagihala and Shigeomi Takai
Materials 2025, 18(9), 1911; https://doi.org/10.3390/ma18091911 - 23 Apr 2025
Cited by 1 | Viewed by 712
Abstract
Neutron powder diffraction experiments were carried out to characterize mechanochemically synthesized (Fe2O3)1−x(Al2O3)x solid solutions with corundum-type structure, focusing on their lattice and magnetic structures with varying temperature and composition. The neutron diffraction [...] Read more.
Neutron powder diffraction experiments were carried out to characterize mechanochemically synthesized (Fe2O3)1−x(Al2O3)x solid solutions with corundum-type structure, focusing on their lattice and magnetic structures with varying temperature and composition. The neutron diffraction experiments for (Fe2O3)0.5(Al2O3)0.5 in the temperature range between 4 K and 300 K reveal that no significant structural phase transition occurred. The behavior of temperature variation of lattice parameters is different from α-Fe2O3 and α-Al2O3 and reveals the thermal expansion coefficients of αa = 5.76(2) × 10−6 K−1 and αc = 6.19(5) × 10−6 K−1 between 200 K and 300 K. The room temperature neutron diffraction of (Fe2O3)1−x(Al2O3)x shows a linear decrease in lattice parameters with the aluminum substitution, following Vegard’s law, along with a decrease in the magnetic moment, indicating the dilution effect on spin interactions. With the increase in the aluminum substitution from x = 0 to 0.5, the deduced magnetic moment decreases from 2.224 μB to 0.862 μB. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

19 pages, 8444 KiB  
Article
Machine Learning-Assisted Multi-Property Prediction and Sintering Mechanism Exploration of Mullite–Corundum Ceramics
by Qingyue Chen, Weijin Zhang, Xiaocheng Liang, Hao Feng, Weibin Xu, Pengrui Wang, Jian Pan and Benjun Cheng
Materials 2025, 18(6), 1384; https://doi.org/10.3390/ma18061384 - 20 Mar 2025
Cited by 1 | Viewed by 766
Abstract
Mullite–corundum ceramics are pivotal in heat transfer pipelines and thermal energy storage systems due to their excellent mechanical properties, thermal stability, and chemical resistance. Establishing relationships and mechanisms through traditional experiments is time-consuming and labor-intensive. In this study, gradient boosting regression (GBR), random [...] Read more.
Mullite–corundum ceramics are pivotal in heat transfer pipelines and thermal energy storage systems due to their excellent mechanical properties, thermal stability, and chemical resistance. Establishing relationships and mechanisms through traditional experiments is time-consuming and labor-intensive. In this study, gradient boosting regression (GBR), random forest (RF), and artificial neural network (ANN) models were developed to predict essential properties such as apparent porosity, bulk density, water absorption, and flexural strength of mullite–corundum ceramics. The GBR model (R2 0.91–0.95) outperformed the RF and ANN models (R2 0.83–0.89 and 0.88–0.91, respectively) in accuracy. Feature importance and partial dependence analyses revealed that sintering temperature and K2O (~0.25%) positively affected bulk density while negatively influencing apparent porosity and water absorption. Additionally, sintering temperature, additives, and Fe2O3 (optimal content ~5% and 1%, respectively) were positively related to flexural strength. This approach provided new insight into the relationships between feedstock compositions and sintering process parameters and ceramic properties, and it explored the possible mechanisms involved. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing Processing of Ceramic Materials)
Show Figures

Graphical abstract

25 pages, 13880 KiB  
Article
Analysis of Corrosion-Mechanical Properties of Electroplated and Hot-Dip Zinc Coatings on Mechanically Pre-Treated Steel Substrate
by Jaroslav Lozrt, Jiří Votava, Vojtěch Kumbár and Adam Polcar
Appl. Sci. 2025, 15(5), 2626; https://doi.org/10.3390/app15052626 - 28 Feb 2025
Viewed by 954
Abstract
This study evaluates the effects of three mechanical pre-treatment methods on S235JRG2 steel sheets: blasting with a synthetic corundum (F40), blasting with steel shot (S170), and grinding with synthetic corundum (P40). Untreated samples served as a reference. The analysis of mechanical pre-treatments focused [...] Read more.
This study evaluates the effects of three mechanical pre-treatment methods on S235JRG2 steel sheets: blasting with a synthetic corundum (F40), blasting with steel shot (S170), and grinding with synthetic corundum (P40). Untreated samples served as a reference. The analysis of mechanical pre-treatments focused on surface integrity, including measurements of surface roughness parameters Ra and Rz (ISO 21920-2) and subsurface microhardness (ISO 6507-1). Zinc coatings were assessed through mechanical testing (cupping test, ISO 1520) and corrosion testing in a neutral salt spray environment (ISO 9227), with results evaluated using digital image analysis. Experimental findings indicate that electroplated zinc deposition rates are influenced by surface roughness, while subsurface microhardness has no significant effect. In contrast, for hot-dip galvanizing, both parameters impact the process. The mechanical properties of electroplated zinc coatings are further affected by steel surface integrity, whereas hot-dip zinc coatings are primarily governed by intermetallic phase formation, making the influence of steel surface integrity statistically negligible. Corrosion testing revealed that blasting with a synthetic corundum is particularly unsuitable, as it leads to numerous inhomogeneities in both coating types, accelerating corrosion degradation. Full article
Show Figures

Figure 1

25 pages, 15664 KiB  
Article
Color Mechanism Analysis and Origin Comparison of Pink-Purple Sapphires from Vietnam and Madagascar
by Qiurong Guo, Pengyu Li, Mingying Wang, Siyi Zhao, Sichun Yang and Guanghai Shi
Crystals 2025, 15(3), 229; https://doi.org/10.3390/cryst15030229 - 27 Feb 2025
Viewed by 729
Abstract
Extensive research has already been conducted on sapphires, yet there remains a notable absence of methods available to identify the provenance of pink-purple sapphires, particularly those originating from Vietnam and Madagascar. This study examined pink-purple sapphires from Vietnam and Madagascar by conducting basic [...] Read more.
Extensive research has already been conducted on sapphires, yet there remains a notable absence of methods available to identify the provenance of pink-purple sapphires, particularly those originating from Vietnam and Madagascar. This study examined pink-purple sapphires from Vietnam and Madagascar by conducting basic gemological tests, microscopic observations, infrared spectroscopy, Raman spectroscopy, UV–Vis–NIR spectroscopy, and LA ICP MS, while also drawing comparisons with pink-red corundum from other locations. In appearance, the Vietnamese samples have a foggy appearance and orange iridescence, while the Madagascan samples show a relatively strong purple hue. The color origin analysis reveals that the absorption peaks of the ultraviolet spectrum caused by Cr3+ in the yellow-green and blue-purple regions account for the pink color of the Vietnamese and Madagascan samples. The lower UV wavelength position of the two main peaks in the Madagascan samples, as compared to the Vietnamese ones, indicates that Fe3+ d–d transitions, as well as transitions between Fe2+—Ti4+ and Fe3+—Ti3+ ions, enhance blue light transmission and cause the samples to tend towards a purple hue. Regarding inclusions, the Vietnamese samples are characterized by white and blue bands, cloudy inclusions, and extensive yellow-orange staining, whereby the cloudy inclusions give them their special appearance, and their calcite and apatite inclusions indicate that they come from marble-type deposits. The presence of many small-grained zircon formations, especially clusters, in the Madagascan samples indicates that they come from alkaline basalt. Chemical analysis confirmed the origin of the samples from the two locations. Compared with the pink-red corundum of the same marble type (Myanmar and Yunnan, China), the Vietnamese samples have lower V, Mg, and Ga contents and a higher Fe content. Compared with the pink-red corundum of the high-iron type (Thailand, Cambodia, and Tanzania), the Madagascan samples have lower Fe and higher Ga contents overall. This study possesses considerable significance in tracing and identifying the origin of pink-purple sapphires. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

Back to TopTop