Annealing of Oxygen-Related Frenkel Defects in Corundum Single Crystals Irradiated with Energetic Xenon Ions
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Thermal Annealing of RIOA Bands Related to Radiation-Induced Frenkel Defects
3.2. Method and Kinetics Modelling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, W.E.; Lagerlof, K.P.D. Structural and electron diffraction data for sapphire (α-Al2O3). J. Electron Microsc. Tech. 1985, 2, 247–258. [Google Scholar] [CrossRef]
- Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Galtier, S.; Pivard, C.; Morville, J.; Rairoux, P. High-resolution dual comb spectroscopy using a free-running, bidirectional ring titanium sapphire laser. Opt. Express 2022, 30, 21148–21158. [Google Scholar] [CrossRef] [PubMed]
- Xuan, L.; Duffar, T. The growth of titanium doped sapphire for laser application. Prog. Cryst. Growth Charact. Mater. 2025, 71, 100666. [Google Scholar] [CrossRef]
- Basiev, T.T.; Mirov, S.B.; Osiko, V.V. Room-temperature color center lasers. IEEE J. Quantum Electron. 1988, 24, 1052–1069. [Google Scholar] [CrossRef]
- Dobrovinskaya, E.R.; Lytvynov, L.A.; Pishchik, V. Application of Sapphire. In Sapphire; Springer: Boston, MA, USA, 2009; pp. 1–54, Chapter 1. [Google Scholar]
- Luca, S.M.; Coron, N.; Dujardin, C.; Kraus, H.; Mikhailik, V.B.; Verdier, M.-A.; Di Stefano, P.C.F. Scintillating and optical spectroscopy of Al2O3:Ti for dark matter searches. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 606, 545–551. [Google Scholar] [CrossRef]
- Akselrod, M.S.; Kortov, V.S.; Kravetsky, D.J.; Gotlib, V.I. Highly sensitive thermoluminescent anion-defective α-Al2O3:C single crystal detectors. Radiat. Prot. Dosim. 1990, 32, 15–20. [Google Scholar]
- McKeever, S.W.S.; Akselrod, M.S.; Colyott, L.E.; Larsen, N.A.; Polf, J.C.; Whitley, V.H. Characterisation of Al2O3 for use in thermally and optically stimulated luminescence dosimetry. Radiat. Prot. Dosim. 1999, 84, 163–168. [Google Scholar] [CrossRef]
- Kortov, V.S.; Zvonarev, S.V.; Kiryakov, A.N.; Ananchenko, D.V. Dosimetric phosphor based on oxygen-deficient alumina ceramics. Radiat. Meas. 2016, 90, 196–200. [Google Scholar] [CrossRef]
- Kusumoto, T.; Akselrod, M.S.; Harrison, J.; Kodaira, S. Correction method of the coloration in fluorescent nuclear track detector. Radiat. Meas. 2023, 161, 106898. [Google Scholar] [CrossRef]
- Hu, J.; Kusumoto, T.; Kodaira, S. Coloration-dependent correction for heavy ion measurements in an Al2O3:C,Mg-based fluorescent nuclear track detector. Radiat. Meas. 2025, 181, 107384. [Google Scholar] [CrossRef]
- Pells, G.P. Radiation damage effects in alumina. J. Am. Ceram. Soc. 1994, 77, 368–377. [Google Scholar] [CrossRef]
- De Vicente, S.M.G.; Hodgson, E.R.; Shikama, T. Functional materials for tokamak in-vessel systems—Status and applications. Nucl. Fusion 2017, 57, 092009. [Google Scholar] [CrossRef]
- Blokhin, D.A.; Chernov, V.M.; Blokhin, A.I. Nuclear and physical properties of dielectrics under neutron irradiation in fast (BN-600) and fusion (DEMO-S) reactors. Phys. At. Nucl. 2017, 80, 1279–1284. [Google Scholar] [CrossRef]
- Was, G.S.; Petti, D.; Ukai, S.; Zinkle, S. Materials for future nuclear energy systems. J. Nucl. Mater. 2019, 527, 151837. [Google Scholar] [CrossRef]
- Gamble, F.T.; Bartram, R.H.; Young, C.G.; Gilliam, O.R.; Levy, P.W. Electron-spin resonances in reactor-irradiated aluminum oxide. Phys. Rev. 1965, 138, A577–A583. [Google Scholar] [CrossRef]
- La, S.Y.; Bartram, R.H.; Cox, R.T. The F+ center in reactor-irradiated aluminum oxide. J. Phys. Chem. Solids 1973, 34, 1079–1086. [Google Scholar] [CrossRef]
- Lee, K.H.; Crawford, J.H. Electron centers in single-crystal Al2O3. Phys. Rev. B 1977, 15, 4065–4070. [Google Scholar] [CrossRef]
- Evans, B.D.; Stapelbroek, M. Optical properties of the F+ center in crystalline Al2O3. Phys. Rev. B 1978, 18, 7089–7098. [Google Scholar] [CrossRef]
- Crawford, J.H. A review of neutron radiation damage on corundum crystals. J. Nucl. Mater. 1982, 108–109, 644–654. [Google Scholar] [CrossRef]
- Atobe, K.; Nishimoto, N.; Nakagawa, M. Irradiation-induced aggregate centers in single crystal Al2O3. Phys. Stat. Solidi A 1985, 89, 155–162. [Google Scholar] [CrossRef]
- Chen, Y.; Abraham, M.M.; Pedraza, D.F. Radiation damage in Al2O3 crystals implanted with 3.8 MeV Fe2+ ions. Nucl. Instrum. Methods Phys. Res. Sect. B 1991, 59–60, 1163–1166. [Google Scholar] [CrossRef]
- Evans, B.D. A review of the optical properties of anion lattice vacancies, and electrical conduction in α-Al2O3: Their relation to radiation-induced electrical degradation. J. Nucl. Mater. 1995, 219, 202–223. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Kinoshita, C. Defect production in ceramics. J. Nucl. Mater. 1997, 251, 200–217. [Google Scholar] [CrossRef]
- Surdo, A.I.; Kortov, V.S.; Pustovarov, V.A. Luminescence of F and F+ centers in corundum upon excitation in the interval from 4 to 40 eV. Radiat. Meas. 2001, 33, 587–591. [Google Scholar] [CrossRef]
- Skuratov, V.A.; Gun, K.J.; Stano, J.; Zagorski, D.L. In situ luminescence as monitor of radiation damage under swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2006, 245, 194–200. [Google Scholar] [CrossRef]
- Izerrouken, M.; Benyahia, T. Absorption and photoluminescence study of Al2O3 single crystal irradiated with fast neutrons. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 468, 2987–2990. [Google Scholar] [CrossRef]
- Petrie, C.M.; Windl, W.; Blue, T.E. In-situ reactor radiation-induced attenuation in sapphire optical fibers. J. Am. Ceram. Soc. 2014, 97, 3383–3389. [Google Scholar] [CrossRef]
- Izerrouken, M.; Djouadi, Y.; Zirour, H. Annealing process of F- and F+-centers in Al2O3 single crystal induced by fast neutrons irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2014, 319, 29–33. [Google Scholar] [CrossRef]
- Malo, M.; Moroño, A.; Hodgson, E.R. In situ luminescence qualification of radiation damage in aluminas: F-aggregation and Al colloids. Fusion Eng. Des. 2014, 89, 2179–2183. [Google Scholar] [CrossRef]
- Crespillo, M.L.; Graham, J.T.; Zhang, Y.; Weber, W.J. In-situ luminescence monitoring of ion-induced damage evolution in SiO2 and Al2O3. J. Lumin. 2016, 172, 208–218. [Google Scholar] [CrossRef]
- Costantini, J.M.; Watanabe, Y.; Yasuda, K.; Fasoli, M. Cathodo-luminescence of color centers induced in sapphire and yttria-stabilized zirconia by high-energy electrons. J. Appl. Phys. 2017, 121, 153101. [Google Scholar] [CrossRef]
- Grygiel, C.; Moisy, F.; Sall, M.; Lebius, H.; Balanzat, E.; Madi, T.; Been, T.; Marie, D.; Monnet, I. In-situ kinetics of modifications induced by swift heavy ions in Al2O3: Colour centre formation, structural modification and amorphization. Acta Mater. 2017, 140, 157–167. [Google Scholar] [CrossRef]
- Popov, A.I.; Lushchik, A.; Shablonin, E.; Vasil’Chenko, E.; Kotomin, E.A.; Moskina, A.M.; Kuzovkov, V.N. Comparison of the F-type center thermal annealing in heavy-ion and neutron irradiated Al2O3 single crystals. Nucl. Instrum. Methods Phys. Res. Sect. B 2018, 433, 93–97. [Google Scholar] [CrossRef]
- Seeman, V.; Lushchik, A.; Shablonin, E.; Prieditis, G.; Gryaznov, D.; Platonenko, A.; Kotomin, E.A.; Popov, A.I. Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated Al2O3 single crystals. Sci. Rep. 2020, 10, 15852. [Google Scholar] [CrossRef]
- Lushchik, A.; Kuzovkov, V.N.; Popov, A.I.; Prieditis, G.; Seeman, V.; Shablonin, E.; Vasil’Chenko, E.; Kotomin, E.A. Evidence for the formation of two types of oxygen interstitials in neutron-irradiated α-Al2O3 single crystals. Sci. Rep. 2021, 11, 20909. [Google Scholar] [CrossRef]
- Seeman, V.; Popov, A.I.; Shablonin, E.; Vasil’Chenko, E.; Lushchik, A. EPR-active dimer centers with S = 1 in α-Al2O3 single crystals irradiated by fast neutrons. J. Nucl. Mater. 2022, 569, 153933. [Google Scholar] [CrossRef]
- Baubekova, G.; Assylbayev, R.; Feldbach, E.; Krasnikov, A.; Kudryavtseva, I.; Podelinska, A.; Seeman, V.; Shablonin, E.; Vasil’Chenko, E.; Lushchik, A. Accumulation of oxygen interstitial-vacancy pairs under irradiation of corundum single crystals with energetic xenon ions. Radiat. Meas. 2024, 179, 107324. [Google Scholar] [CrossRef]
- Clinard, F.W., Jr.; Hobbs, L.W. Physics of Radiation Effects in Crystals; Johnson, R.A., Orlov, A.N., Eds.; Elsevier: Amsterdam, The Netherland, 1986; Chapter 7. [Google Scholar]
- Nordlund, K.; Zinkle, S.J.; Sand, A.E.; Granberg, F.; Averback, R.S.; Stoller, R.E.; Suzudo, T.; Malerba, L.; Banhart, F.; Weber, W.J.; et al. Primary radiation damage: A review of current understanding and models. J. Nucl. Mater. 2018, 512, 450–479. [Google Scholar] [CrossRef]
- Itoh, N.; Duffy, D.M.; Khakshouri, S.; Stoneham, A.M. Making tracks: Electronic excitation roles in forming swift heavy ion tracks. J. Phys. Condens. Matter 2009, 21, 474205. [Google Scholar] [CrossRef]
- Lushchik, A.; Kärner, T.; Lushchik, C.; Schwartz, K.; Savikhin, F.; Shablonin, E.; Shugai, A.; Vasil’Chenko, E. Electronic excitations and defect creation in wide-gap MgO and Lu3Al5O12 crystals irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 2012, 286, 200–208. [Google Scholar] [CrossRef]
- Wesch, W.; Wendler, E.E. Ion Beam Modification of Solids; Springer Series in Surface Sciences; Springer Nature: Berlin, Germany, 2016; Volume 61. [Google Scholar]
- Crespillo, M.L.; Agulló-López, F.; Zucchiatti, A. Cumulative approaches to track formation under swift heavy ion (SHI) irradiation: Phenomenological correlation with formation energies of Frenkel pairs. Nucl. Instrum. Methods Phys. Res. Sect. B 2017, 394, 20–27. [Google Scholar] [CrossRef]
- Lee, K.H.; Crawford, J.H. Additive coloration of sapphire. Appl. Phys. Lett. 1978, 33, 273–275. [Google Scholar] [CrossRef]
- Ramírez, R.; Tardío, M.; Gonzalez, R.; Santiuste, J.E.M.; Kokta, M.R. Optical properties of vacancies in thermochemically reduced Mg-doped sapphire single crystals. J. Appl. Phys. 2007, 101, 123520. [Google Scholar] [CrossRef]
- Zorenko, Y.; Fabisiak, K.; Zorenko, T.; Mandowski, A.; Xia, Q.; Batentschuk, M.; Fri, J.; Zhusupkalieva, G. Comparative study of the luminescence of Al2O3:C and Al2O3 crystals under synchrotron radiation excitation. J. Lumin. 2013, 144, 41–44. [Google Scholar] [CrossRef]
- Chen, Y.; Kolopus, J.L.; Sibley, W.A. Luminescence of the F+ center in MgO. Phys. Rev. 1969, 186, 865–870. [Google Scholar] [CrossRef]
- Kotomin, E.; Kuzovkov, V.; Popov, A.I.; Maier, J.; Vila, R. Anomalous kinetics of diffusion-controlled defect annealing in irradiated ionic solids. J. Phys. Chem. A 2018, 122, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Lushchik, A.; Seeman, V.; Shablonin, E.; Vasil’Chenko, E.; Kuzovkov, V.N.; Kotomin, E.A.; Popov, A.I. Detection of hidden oxygen interstitials in neutron-irradiated corundum crystals. Opt. Mater. X 2022, 14, 100151. [Google Scholar] [CrossRef]
- Lushchik, A.; Kuzovkov, V.N.; Kudryavtseva, I.; Popov, A.I.; Seeman, V.; Shablonin, E.; Vasil, E.; Kotomin, E.A. The two types of oxygen interstitials in neutron-irradiated corundum single crystals: Joint experimental and theoretical study. Phys. Stat. Solidi B 2022, 259, 2100317. [Google Scholar] [CrossRef]
- Halliburton, L.E.; Kappers, L.A. Radiation-induced oxygen interstitials in MgO. Solid State Commun. 1978, 26, 111–114. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Smoluchowski, M.V. Versuch Einer Mathematischen Theorie der Koagulationskinetik kolloider Losungen. Z. Phys. Chem. B 1917, 92, 129–168. [Google Scholar] [CrossRef]
- Kuzovkov, V.N.; Kotomin, E.A.; Lushchik, A.; Popov, A.I.; Shablonin, E. The annealing kinetics of the F-type defects in MgAl2O4 spinel single crystals irradiated by swift heavy ions. Opt. Mater. 2024, 147, 114733. [Google Scholar] [CrossRef]
- Meyer, W.; Neldel, H. Concerning the relationship between the energy constant epsilon and the quantum constant alpha in the conduction-temperature formula in oxydising semi conductors. Phys. Z. 1937, 38, 1014–1019. [Google Scholar]
- Jones, A.G. Compensation of the Meyer-Neldel Compensation Law for H diffusion in minerals. Geochem. Geophys. Geosyst. 2014, 15, 2616–2631. [Google Scholar] [CrossRef]
Irradiation Source | Fluence | Ea (eV) | Xa (K−1) | Eb (eV) | Xb (K−1) |
---|---|---|---|---|---|
Neutrons, Ref. [52] | 6.9 × 1018 cm−2 | 0.80 | 2 × 103 | 1.20 | 2 × 104 |
Xe-ions | 5.0 × 1013 cm−2 | 0.65 | 3 × 102 | 0.50 | 6 × 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eugene, K.A.; Assylbayev, R.; Baubekova, G.; Kudryavtseva, I.; Kuzovkov, V.N.; Podelinska, A.; Seeman, V.; Shablonin, E.; Lushchik, A. Annealing of Oxygen-Related Frenkel Defects in Corundum Single Crystals Irradiated with Energetic Xenon Ions. Crystals 2025, 15, 573. https://doi.org/10.3390/cryst15060573
Eugene KA, Assylbayev R, Baubekova G, Kudryavtseva I, Kuzovkov VN, Podelinska A, Seeman V, Shablonin E, Lushchik A. Annealing of Oxygen-Related Frenkel Defects in Corundum Single Crystals Irradiated with Energetic Xenon Ions. Crystals. 2025; 15(6):573. https://doi.org/10.3390/cryst15060573
Chicago/Turabian StyleEugene, Kotomin A., Ruslan Assylbayev, Guldar Baubekova, Irina Kudryavtseva, Vladimir N. Kuzovkov, Alise Podelinska, Viktor Seeman, Evgeni Shablonin, and Aleksandr Lushchik. 2025. "Annealing of Oxygen-Related Frenkel Defects in Corundum Single Crystals Irradiated with Energetic Xenon Ions" Crystals 15, no. 6: 573. https://doi.org/10.3390/cryst15060573
APA StyleEugene, K. A., Assylbayev, R., Baubekova, G., Kudryavtseva, I., Kuzovkov, V. N., Podelinska, A., Seeman, V., Shablonin, E., & Lushchik, A. (2025). Annealing of Oxygen-Related Frenkel Defects in Corundum Single Crystals Irradiated with Energetic Xenon Ions. Crystals, 15(6), 573. https://doi.org/10.3390/cryst15060573