Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (314)

Search Parameters:
Keywords = corrosion of titanium implants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3425 KB  
Article
Enhanced Cell Adhesion on Biofunctionalized Ti6Al4V Alloy: Immobilization of Proteins and Biomass from Spirulina platensis Microalgae
by Maria Fernanda Hart Orozco, Rosalia Seña, Lily Margareth Arrieta Payares, Alex A. Saez, Arturo Gonzalez-Quiroga and Virginia Paredes
Int. J. Mol. Sci. 2026, 27(2), 1041; https://doi.org/10.3390/ijms27021041 - 20 Jan 2026
Viewed by 291
Abstract
Titanium (Ti) and its alloys are widely used in biomedical applications due to their biocompatibility and corrosion resistance; however, surface modifications are required to enhance biological functionality. Surface functionalization using natural biomolecules has emerged as a promising strategy to improve early cell–surface interactions [...] Read more.
Titanium (Ti) and its alloys are widely used in biomedical applications due to their biocompatibility and corrosion resistance; however, surface modifications are required to enhance biological functionality. Surface functionalization using natural biomolecules has emerged as a promising strategy to improve early cell–surface interactions and biocompatibility of implant materials. In this study, Ti6Al4V alloy surfaces were biofunctionalized using Spirulina platensis (S. platensis) biomass and protein extract to evaluate morphological, chemical, and biological effects. The functionalization process involved activation with piranha solution, silanization with 3-aminopropyltriethoxysilane (APTES), and subsequent biomolecule immobilization. Surface characterization by scanning electron microscopy (SEM), inductively coupled plasma mass spectrometry (ICP-MS), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) confirmed the successful incorporation of microalgal components, including nitrogen-, phosphorus-, and oxygen-rich organic groups. Biomass-functionalized surfaces exhibited higher phosphorus and oxygen content, while protein-coated surfaces showed nitrogen-enrich chemical signatures, reflecting the distinct molecular compositions of the immobilized biomolecules. Cell adhesion assays demonstrated enhanced early cell attachment on biofunctionalized surfaces, particularly in samples functionalized with 5 g/L biomass for three hours, which showed significantly greater cell attachment than both the control and protein-treated samples. These findings highlight the complementary yet distinct roles of S. platensis biomass and protein extract in modulating surface chemistry and cell–material interactions, emphasizing the importance of tailoring biofunctionalization strategies to optimize early biological responses on titanium-based implants. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

15 pages, 1161 KB  
Article
Electrochemical Interactions of Titanium and Cobalt–Chromium–Molybdenum Alloy in Different Solutions
by Anja Ivica, Matea Nimac, Ivica Pelivan, Matija Roglić, Tomislav Kovačević, Mario Cifrek and Jurica Matijević
Materials 2026, 19(2), 367; https://doi.org/10.3390/ma19020367 - 16 Jan 2026
Viewed by 256
Abstract
Pure titanium (Ti) and its alloys are the gold standard for dental implants because a stable titanium dioxide passive film provides excellent corrosion resistance in physiological environments. In this study, we aimed to examine electrochemical interactions between Ti and cobalt–chromium–molybdenum alloy (CoCrMo), and [...] Read more.
Pure titanium (Ti) and its alloys are the gold standard for dental implants because a stable titanium dioxide passive film provides excellent corrosion resistance in physiological environments. In this study, we aimed to examine electrochemical interactions between Ti and cobalt–chromium–molybdenum alloy (CoCrMo), and between a novel Ti–magnesium composite (BIACOM TiMg) and CoCrMo, when immersed in everyday solutions representing beverage or oral hygiene exposure. Test solutions included Coca-Cola®, lemon juice, Elmex® fluoride gel, Listerine® Cool Mint, and Sensodyne® fluoride paste. Immersion experiments paired Ti sticks with CoCrMo sticks and, separately, BIACOM TiMg with CoCrMo sticks, with three measurements per configuration. When galvanically coupled with CoCrMo, immersion in Coca-Cola produced galvanic potential differences of ~983 mV for the BIACOM TiMg-CoCrMo couple and 830 mV for the commercially pure grade 4 (CP4) Ti-CoCrMo couple, indicating significant electrochemical instability. Both materials showed significant potential increases in Elmex fluoride gel. Listerine Cool Mint and Sensodyne fluoride exposure produced electrochemical interactions exceeding 200 mV. Significant differences in corrosion stability were observed between CP4 Ti and BIACOM TiMg. These findings indicate that material pairing and electrolyte environment significantly influence galvanic behavior, with the Ti-Mg composite showing greater susceptibility than CP4 Ti, informing dental/biomedical material selection in oral environments. Full article
Show Figures

Graphical abstract

31 pages, 7726 KB  
Review
Titanium Alloys at the Interface of Electronics and Biomedicine: A Review of Functional Properties and Applications
by Alex-Barna Kacsó, Ladislau Matekovits and Ildiko Peter
Electron. Mater. 2026, 7(1), 1; https://doi.org/10.3390/electronicmat7010001 - 1 Jan 2026
Viewed by 312
Abstract
Recent studies show that titanium (Ti)-based alloys combine established mechanical strength, corrosion resistance, and biocompatibility with emerging electrical and electrochemical properties relevant to bioelectronics. The main goal of the present manuscript is to give a wide-ranging overview on the use of Ti-alloys in [...] Read more.
Recent studies show that titanium (Ti)-based alloys combine established mechanical strength, corrosion resistance, and biocompatibility with emerging electrical and electrochemical properties relevant to bioelectronics. The main goal of the present manuscript is to give a wide-ranging overview on the use of Ti-alloys in electronics and biomedicine, focusing on a comprehensive analysis and synthesis of the existing literature to identify gaps and future directions. Concurrently, the identification of possible correlations between the effects of the manufacturing process, alloying elements, and other degrees of freedom influencing the material characteristics are put in evidence, aiming to establish a global view on efficient interdisciplinary efforts to realize high-added-value smart devices useful in the field of biomedicine, such as, for example, implantable apparatuses. This review mostly summarizes advances in surface modification approaches—including anodization, conductive coatings, and nanostructuring that improve conductivity while maintaining biological compatibility. Trends in applications demonstrate how these alloys support smart implants, biosensors, and neural interfaces by enabling reliable signal transmission and long-term integration with tissue. Key challenges remain in balancing electrical performance with biological response and in scaling laboratory modifications for clinical use. Perspectives for future work include optimizing alloy composition, refining surface treatments, and developing multifunctional designs that integrate mechanical, biological, and electronic requirements. Together, these directions highlight the potential of titanium alloys to serve as foundational materials for next-generation bioelectronic medical technologies. Full article
Show Figures

Figure 1

26 pages, 6160 KB  
Review
Plasma Cleaning of Metal Surfaces: From Contaminant Removal to Surface Functionalization
by Ran Yang, Jing Kang, Zhiqiang Tian, Longfei Qie and Ruixue Wang
Surfaces 2026, 9(1), 4; https://doi.org/10.3390/surfaces9010004 - 26 Dec 2025
Viewed by 536
Abstract
The cleanliness and functionalization of metal surfaces are critical factors to determining their performance in high-performance microelectronic packaging, reliable biomedical implants, advanced composite bonding, and other fields. Compared to traditional wet cleaning methods, plasma cleaning technology has emerged as a research hotspot in [...] Read more.
The cleanliness and functionalization of metal surfaces are critical factors to determining their performance in high-performance microelectronic packaging, reliable biomedical implants, advanced composite bonding, and other fields. Compared to traditional wet cleaning methods, plasma cleaning technology has emerged as a research hotspot in surface engineering due to its unique advantages, such as high efficiency and environmental friendliness. It operates under versatile conditions (e.g., power: tens of watts to several kilowatts; pressure: atmospheric to low vacuum; treatment time: seconds to minutes), enabling not only efficient contaminant removal but also targeted surface functionalization, including dramatically enhanced hydrophilicity (e.g., contact angles from >80° to <10°), significantly improved adhesion (e.g., up to 40% increase in bond strength), and modifications in surface roughness, corrosion resistance, and biocompatibility. This review systematically elaborates on the physical, chemical, and synergistic mechanisms of plasma cleaning technology as it acts on metal surfaces. It focuses on plasma cleaning applied to copper, aluminum, titanium and their respective alloys, as well as alloy steels, providing a detailed analysis of contaminant types, plasma cleaning methodologies, common challenges, surface functionalization responses, and subsequent functional applications. Furthermore, this review discusses the current challenges faced by plasma cleaning technology and offers perspectives on its future development directions. It aims to systematize the research progress in plasma cleaning of metal surfaces, thereby facilitating the transition of this technology towards large-scale industrial applications for metal surface functionalization. Full article
(This article belongs to the Special Issue Plasmonics Technology in Surface Science)
Show Figures

Figure 1

28 pages, 4228 KB  
Article
Bactericidal Titanium Oxide Nanopillars for Intersomatic Spine Screws
by Mariano Fernández-Fairén, Luis M. Delgado, Matilde Roquette and Javier Gil
Prosthesis 2026, 8(1), 4; https://doi.org/10.3390/prosthesis8010004 - 26 Dec 2025
Viewed by 521
Abstract
Background: Postoperative infections remain a major complication in spinal surgeries involving intersomatic screws, often compromising osseointegration and long-term implant stability. Questions/Purposes: This study evaluated a nanotextured titanium oxide surface with nanopillar-like morphology designed to reduce bacterial colonization while preserving mechanical integrity [...] Read more.
Background: Postoperative infections remain a major complication in spinal surgeries involving intersomatic screws, often compromising osseointegration and long-term implant stability. Questions/Purposes: This study evaluated a nanotextured titanium oxide surface with nanopillar-like morphology designed to reduce bacterial colonization while preserving mechanical integrity and promoting bone integration. Methods: Ti6Al4V screws were studied in three batches: control, passivated with HCl and acid mixture treatment to obtain nanotopographies on the surfaces. To create the nanotopographies, the screws were treated with a 1:1 (v/v) sulfuric acid–hydrogen peroxide solution for 2 h. Surface morphology, roughness, wettability, and surface energy were analyzed by SEM, confocal microscopy, and contact angle measurements. Corrosion and ion release were assessed electrochemically and by ICP-MS, respectively. Mechanical behavior, cytocompatibility, mineralization, and antibacterial efficacy were evaluated in vitro. Osseointegration was analyzed in rabbit tibiae after 21 days by histology and bone–implant contact (BIC). Results: The treatment produced uniform nanopillars (Ra = 0.12 µm) with increased hydrophilicity (49° vs. 102° control) and higher surface energy. Mechanical properties and fatigue resistance (~600 N, 10 million cycles) were unaffected. Corrosion currents and Ti ion release remained low. Nanopillar surfaces enhanced osteoblast adhesion and mineralization and reduced bacterial viability by >60% for most strains. In vivo, Bone Index Contact (BIC) was higher for nanopillars (52.0%) than for HCl-treated (43.8%) and control (40.1%) screws, showing a positive osseointegration trend (p > 0.005). Conclusions: The proposed acid-etching process generates a stable, scalable nanotopography with promising antibacterial and osteogenic potential while maintaining the alloy’s mechanical and chemical integrity. Clinical relevance: This simple, scalable, and drug-free surface modification offers a promising approach to reduce postoperative infections and promote bone integration in spinal implants. Full article
(This article belongs to the Special Issue Managing the Challenge of Periprosthetic Joint Infection)
Show Figures

Figure 1

36 pages, 7024 KB  
Article
Multilayer Ti–Cu Oxide Coatings on Ti6Al4V: Balancing Antibacterial Activity, Mechanical Strength, Corrosion Resistance, and Cytocompatibility
by Stefan Valkov, Maria P. Nikolova, Tanya V. Dimitrova, Maria Elena Stancheva, Dimitar Dechev, Nikolay Ivanov, Yordan Handzhiyski, Andreana Andreeva, Maria Ormanova, Angel Anchev and Margarita D. Apostolova
J. Funct. Biomater. 2026, 17(1), 16; https://doi.org/10.3390/jfb17010016 - 26 Dec 2025
Viewed by 810
Abstract
Titanium alloys are widely used for biomedical implants, but their performance is limited by wear, corrosion, and susceptibility to bacterial colonisation. To overcome these drawbacks, multilayer Ti–Cu oxide coatings were deposited on Ti6Al4V substrates using direct current magnetron sputtering. Two multilayer architectures (6 [...] Read more.
Titanium alloys are widely used for biomedical implants, but their performance is limited by wear, corrosion, and susceptibility to bacterial colonisation. To overcome these drawbacks, multilayer Ti–Cu oxide coatings were deposited on Ti6Al4V substrates using direct current magnetron sputtering. Two multilayer architectures (6 × 2 and 12 × 2 TiO2/CuO bilayers) were fabricated and evaluated for their structural, mechanical, electrochemical, and biological properties. SEM/EDS and XRD confirmed well-adhered crystalline coatings consisting of rutile/anatase TiO2 and monoclinic CuO with uniform elemental distribution. The coatings increased surface roughness, improved adhesion, and enhanced hardness by up to ~180% compared to uncoated Ti6Al4V alloy. Compared to the bare substrate, electrochemical testing in simulated body fluid showed higher corrosion resistance of both coated samples, but particularly for the 12 × 2 multilayers. Both architectures provided sustained Cu2+ release over seven days without a burst effect. In vitro biological testing showed that both multilayer coatings achieved over 96% inhibition of Gram-positive bacteria such as Staphylococcus aureus and Bacillus subtilis, while exhibiting moderate antibacterial effects against Gram-negative strains (Escherichia coli, Pseudomonas aeruginosa). Despite the presence of copper, MG-63 osteoblast-like cells demonstrated sustained viability and successful extracellular matrix mineralisation, indicating excellent cytocompatibility of the coatings with bone-forming cells. These results demonstrate that multilayer Ti–Cu oxide coatings can effectively balance antibacterial performance, corrosion resistance, mechanical strength, and support bone cell integration, making them a promising strategy for the surface modification of titanium-based biomedical implants. Full article
(This article belongs to the Special Issue Design and Synthesis Composites for Biomedical Application)
Show Figures

Graphical abstract

17 pages, 8451 KB  
Article
Atomic Layer Deposition of Oxide-Based Nanocoatings for Regulation of AZ31 Alloy Biocorrosion in Ringer’s Solution
by Denis Nazarov, Lada Kozlova, Vladislava Vartiajnen, Sergey Kirichenko, Maria Rytova, Anton P. Godun, Maxim Maximov, Arina Ilina, Stephanie E. Combs, Mark Pitkin and Maxim Shevtsov
Corros. Mater. Degrad. 2026, 7(1), 3; https://doi.org/10.3390/cmd7010003 - 26 Dec 2025
Viewed by 373
Abstract
Research into methods for regulating the biocorrosion rate of biodegradable magnesium implants is one of the most urgent tasks in the field of biomedical materials science. Atomic layer deposition (ALD) is a highly effective method for the preparation of nanocoatings, which can be [...] Read more.
Research into methods for regulating the biocorrosion rate of biodegradable magnesium implants is one of the most urgent tasks in the field of biomedical materials science. Atomic layer deposition (ALD) is a highly effective method for the preparation of nanocoatings, which can be used to regulate the biodegradation rate. The present paper presents the findings of a research study in which the most commonly used simple oxide ALD coatings (Al2O3, TiO2, and ZnO) were examined, in addition to mixed coatings obtained by alternating ALD cycles of the application of ZnO-TiO2 (ZTO) and Al2O3-TiO2 (ATO). The coating thicknesses exhibited a variation within the most typical range for ALD coatings, measuring between 20 and 80 nanometres. The biocorrosion testing was conducted in Ringer’s physiological solution through the measurement of potentiodynamic polarisation curves and impedance spectroscopy. The findings demonstrated that, for Al2O3 coatings, the protective properties exhibited an increase with increasing thickness, while for TiO2, the trend was found to be dependent on the type of precursor utilised. The protective properties of titanium tetraisopropoxide (TTIP) have been observed to increase with increasing thickness. Conversely, the protective properties of titanium tetrachloride (TiCl4) have been observed to decrease. The application of mixed ZTO oxides with a thickness of 40 nm has been demonstrated to reduce the corrosion current by 1.7 and 3.4 times, depending on the use of TiCl4 or TTIP. Furthermore, the effectiveness of ATO coatings of similar thicknesses has been shown to be higher, with a reduction in corrosion currents of 54 and 24 times for samples obtained using TiCl4 and TTIP, respectively. A thorough analysis of the collected data unequivocally demonstrates the superior efficacy of mixed oxides in comparison to their pure oxide counterparts. Full article
(This article belongs to the Special Issue Advances in Material Surface Corrosion and Protection)
Show Figures

Figure 1

18 pages, 8978 KB  
Article
Biocompatibility Evaluation of Novel Experimental Titanium Alloys for Dental Implants
by Vlad-Gabriel Vasilescu, Lucian Toma Ciocan, Andreea Mihaela Custura, Miruna Stan, Florin Miculescu, Cosmin Mihai Cotrut, Diana Maria Vranceanu, Elisabeta Vasilescu, Marina Imre and Silviu Mirel Pițuru
Dent. J. 2026, 14(1), 6; https://doi.org/10.3390/dj14010006 - 22 Dec 2025
Viewed by 486
Abstract
Background/Objectives: The purpose of this study was to assess the in vitro biocompatibility and corrosion resistance of five titanium alloys that have been recently developed for dental implant applications, whose compositions were designed to align with current approaches in the development of [...] Read more.
Background/Objectives: The purpose of this study was to assess the in vitro biocompatibility and corrosion resistance of five titanium alloys that have been recently developed for dental implant applications, whose compositions were designed to align with current approaches in the development of novel biomaterials. Priority was given to limiting the harmfulness associated with specific chemical elements present in common conventional alloys and increasing corrosion resistance to improve the biomaterial–tissue cellular interaction. Methods: For this purpose, five types of titanium alloys with original chemical compositions (Ti1–Ti5) were developed. The electrochemical behavior of the alloys was analyzed by evaluating the corrosion resistance in environments that simulate the oral environment, as well as the cellular behavior, by evaluating the viability, growth, and proliferation of human cells on osteoblasts and gingival fibroblasts. Detailed analysis of the chemical composition by scanning electron microscope (SEM/EDS) methods was used. The corrosion rate of the alloys in artificial saliva was tested using the polarization resistance technique (Tafel). Human osteoblasts (hFOB cell line) and human gingival fibroblasts (hFIB-G cell line) were used to measure biocompatibility in vitro. Results: The Ti5 alloy demonstrated the highest cell viability and the lowest corrosion rate (0.114 μm/year) among all tested compositions, with the Ti3 alloy containing Mo and Zr following closely behind. The Ti2 alloy exhibited reduced biocompatibility because of the inclusion of Ni and Fe in its composition. Conclusions: Taken together, the results of this study provide useful information on the basic characteristics of titanium alloys with original chemical compositions. The titanium alloys were analyzed in comparison with common conventional alloys (Cp–Ti and Ti6Al4V) as well as alloys such as Ti–Zr, Ti–Nb, and Ti–Nb–Zr–Ta, which are considered to be viable alternatives to conventional materials for making dental implants. Full article
(This article belongs to the Special Issue Dental Materials Design and Application)
Show Figures

Figure 1

14 pages, 4845 KB  
Article
Elaboration of Natural Hydroxyapatite Coating by Plasma Spraying
by Maya Kebaili, Amina Ghedjemis, Lilia Benchikh, Yazid Aitferhat, Ilyes Abacha, Kamel Hebbache, Cherif Belebchouche and El Hadj Kadri
Physchem 2025, 5(4), 57; https://doi.org/10.3390/physchem5040057 - 17 Dec 2025
Viewed by 459
Abstract
Metallic implants used in orthopedics, such as titanium alloys, possess excellent mechanical strength but suffer from corrosion and poor bio-integration, often necessitating revision surgeries. Bioactive coatings, particularly hydroxyapatite, can enhance implant osteoconductivity, but high-purity synthetic hydroxyapatite is costly. This study investigates the development [...] Read more.
Metallic implants used in orthopedics, such as titanium alloys, possess excellent mechanical strength but suffer from corrosion and poor bio-integration, often necessitating revision surgeries. Bioactive coatings, particularly hydroxyapatite, can enhance implant osteoconductivity, but high-purity synthetic hydroxyapatite is costly. This study investigates the development and characterization of a low-cost, biocompatible coating using hydroxyapatite derived from an unconventional natural source dromedary bone applied onto a titanium substrate via plasma spraying. Hydroxyapatite powder was synthesized from dromedary femurs through a thermal treatment process at 1000 °C. The resulting powder was then deposited onto a sandblasted titanium dioxide substrate using an atmospheric plasma spray technique. The physicochemical, structural, and morphological properties of both the source powder and the final coating were comprehensively analyzed using Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, X-ray Diffraction, and Fourier-Transform Infrared Spectroscopy. Characterization of the powder confirmed the successful synthesis of pure, crystalline hydroxyapatite, with Fourier-Transform Infrared Spectroscopy analysis verifying the complete removal of organic matter. The plasma-sprayed coating exhibited good adhesion and a homogenous, lamellar microstructure typical of thermal spray processes, with an average thickness of approximately 95 μm. X-ray Diffraction analysis of the coating revealed that while hydroxyapatite remained the primary phase, partial decomposition occurred during spraying, leading to the formation of secondary phases, including tricalcium phosphate and calcium oxide. Scanning Electron Microscopy imaging showed a porous surface composed of fully and partially melted particles, a feature potentially beneficial for bone integration. The findings demonstrate that dromedary bone is a viable and low-cost precursor for producing bioactive hydroxyapatite coatings for orthopedic implants. The plasma spray method successfully creates a well-adhered, porous coating, though process-induced phase changes must be considered for biomedical applications. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

18 pages, 20231 KB  
Article
In Situ Alloying of Ti-6Al-7Nb with Copper Using Laser Powder Bed Fusion
by Paul Steinmeier, Kay-Peter Hoyer, Nelson Filipe Lopes Dias, Reiner Zielke, Wolfgang Tillmann and Mirko Schaper
Crystals 2025, 15(12), 1053; https://doi.org/10.3390/cryst15121053 - 12 Dec 2025
Viewed by 369
Abstract
Titanium alloys are widely employed for biomedical implants due to their high strength, biocompatibility, and corrosion resistance, yet their lack of intrinsic antibacterial activity remains a major limitation. Incorporating copper, an antibacterial and β-stabilising element, offers a promising strategy to enhance implant performance. [...] Read more.
Titanium alloys are widely employed for biomedical implants due to their high strength, biocompatibility, and corrosion resistance, yet their lack of intrinsic antibacterial activity remains a major limitation. Incorporating copper, an antibacterial and β-stabilising element, offers a promising strategy to enhance implant performance. This study investigates Ti-6Al-7Nb modified with 1–9 wt.% Cu via in situ alloying during metal-based laser powder bed fusion (PBF-LB/M), with the aim of assessing processability, microstructural evolution, and mechanical properties. Highly dense samples (>99.9%) were produced across all Cu levels, though chemical homogeneity strongly depended on processing parameters. Increasing Cu content promoted β-phase stabilisation, Ti2Cu precipitation, and pronounced grain refinement. Hardness and yield strength increased nearly linearly with Cu addition, while ductility decreased sharply at ≥5 wt.% Cu due to intermetallic formation, hot cracking, and brittle fracture. These results illustrate both the opportunities and constraints of rapid alloy screening via PBF-LB/M. Overall, moderate Cu additions of 1–3 wt.% provide the most favourable balance between mechanical performance, manufacturability, and potential antibacterial functionality. These findings provide a clear guideline for the design of Cu-functionalised titanium implants and demonstrate the efficiency of in situ alloy screening for accelerated materials development. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

18 pages, 639 KB  
Proceeding Paper
Mechanical Behavior of Bioinspired Nanocomposites for Orthopedic Applications
by Kalyani Pathak, Simi Deka, Elora Baruah, Partha Protim Borthakur, Rupam Deka and Nayan Medhi
Mater. Proc. 2025, 25(1), 12; https://doi.org/10.3390/materproc2025025012 - 9 Dec 2025
Viewed by 368
Abstract
The application of bioinspired nanocomposites in orthopedic implants marks a significant innovation in biomedical engineering, aimed at overcoming long-standing limitations of conventional implant materials. Traditional implants frequently suffer from poor osseointegration, mechanical mismatch with bone, and vulnerability to infection. Bioinspired nanocomposites, modeled after [...] Read more.
The application of bioinspired nanocomposites in orthopedic implants marks a significant innovation in biomedical engineering, aimed at overcoming long-standing limitations of conventional implant materials. Traditional implants frequently suffer from poor osseointegration, mechanical mismatch with bone, and vulnerability to infection. Bioinspired nanocomposites, modeled after the hierarchical structures found in natural tissues such as bone and nacre, offer the potential to enhance mechanical performance, biological compatibility, and implant functionality. This study reviews and synthesizes current advancements in the design, fabrication, and functionalization of bioinspired nanocomposite materials for orthopedic use. Emphasis is placed on the integration of nanocrystalline hydroxyapatite (nHA), carbon nanotubes (CNTs), titanium dioxide (TiO2) nanotubes, and other nanostructured coatings that mimic the extracellular matrix. Methods include comparative evaluations of mechanical properties, surface modifications for biocompatibility, and analyses of antibacterial efficacy through nano-topographical features. Bioinspired nanocomposites have been shown to improve osteoblast adhesion, proliferation, and differentiation, thereby enhancing osseointegration. Nanostructured coatings such as TiO2 nanotubes increase surface hydrophilicity and corrosion resistance, supporting long-term implant stability. Mechanically, these composites offer high stiffness, superior wear resistance, and improved strength-to-weight ratios. Biomimetic combinations of hydroxyapatite, zirconia, and biopolymers have demonstrated effective load transfer and reduced stress shielding. Additionally, antibacterial functionality has been achieved via nanostructured surfaces that deter bacterial adhesion while remaining cytocompatible with host tissues. The integration of bioinspired nanocomposites into orthopedic implants provides a multifunctional platform for enhancing clinical outcomes. These materials not only replicate the mechanical and biological properties of native bone but also introduce new capabilities such as infection resistance and stimuli-responsive behavior. Despite these advancements, challenges including manufacturing scalability, long-term durability, and regulatory compliance remain. Continued interdisciplinary research is essential for translating these innovations from laboratory to clinical practice. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

45 pages, 11101 KB  
Review
Processing and Development of Porous Titanium for Biomedical Applications: A Comprehensive Review
by Mayank Kumar Yadav, Akshay Yarlapati, Yarlapati Naga Aditya, Praveenkumar Kesavan, Vaibhav Pandey, Chandra Shekhar Perugu, Amit Nain, Kaushik Chatterjee, Satyam Suwas, Jayamani Jayaraj and Konda Gokuldoss Prashanth
J. Manuf. Mater. Process. 2025, 9(12), 401; https://doi.org/10.3390/jmmp9120401 - 4 Dec 2025
Viewed by 1400
Abstract
Titanium (Ti) and its alloys are widely used in orthopedic applications, including total hip and knee replacements, bone plates, and dental implants, because of their superior biocompatibility, bioactivity, corrosion resistance, and mechanical robustness. These alloys effectively overcome several limitations of conventional metallic implants, [...] Read more.
Titanium (Ti) and its alloys are widely used in orthopedic applications, including total hip and knee replacements, bone plates, and dental implants, because of their superior biocompatibility, bioactivity, corrosion resistance, and mechanical robustness. These alloys effectively overcome several limitations of conventional metallic implants, such as 316L stainless steel and Co-Cr alloys, particularly with respect to corrosion, fatigue performance, and biological response. However, dense Ti alloys possess a relatively high elastic modulus, which can cause stress shielding in load-bearing applications. This challenge has motivated significant research toward engineered porous Ti structures that exhibit a reduced and bone-matched modulus while preserving adequate mechanical integrity. This review provides a comprehensive examination of powder metallurgy and additive manufacturing approaches used to fabricate porous Ti and Ti-alloy scaffolds, including additive manufacturing and different powder metallurgy techniques. Processing routes are compared in terms of achievable porosity, pore size distribution, microstructural evolution, mechanical properties, and biological outcomes, with emphasis on the relationship between processing parameters, pore architecture, and functional performance. The reported findings indicate that optimized powder-metallurgy techniques can generate interconnected pores in the 100–500 μm range suitable for osseointegration while maintaining compressive strengths of 50–300 MPa, whereas additive manufacturing enables the precise control of hierarchical architectures but requires careful post-processing to remove adhered powder, stabilize microstructures, and ensure corrosion and wear resistance. In addition, this review integrates fundamental aspects of bone biology and bone implant interaction to contextualize the functional requirements of porous Ti scaffolds. Full article
Show Figures

Graphical abstract

26 pages, 8640 KB  
Article
Grain Size and Electrochemical Surface Modification Effects on Corrosion, Biological, and Technological Properties of CP Titanium Implants
by Josef Hlinka, Daniel Cvejn, Ludek Dluhos, Vaclav Babuska, Kristina Cabanova, Jana Dvorakova, Anastasia Volodarskaja, Ruslan Z. Valiev, Nadimul H. Faisal, Katerina Peterek Dedkova, Renata Palupcikova and Vlastimil Vodarek
J. Funct. Biomater. 2025, 16(12), 439; https://doi.org/10.3390/jfb16120439 - 25 Nov 2025
Viewed by 881
Abstract
Commercially pure (CP) titanium is widely used for long-term biomedical implants due to its high biocompatibility and corrosion resistance. However, its relatively low strength limits its use in highly loaded applications. Ultrafine-grained (UFG) titanium obtained through severe plastic deformation offers enhanced mechanical performance [...] Read more.
Commercially pure (CP) titanium is widely used for long-term biomedical implants due to its high biocompatibility and corrosion resistance. However, its relatively low strength limits its use in highly loaded applications. Ultrafine-grained (UFG) titanium obtained through severe plastic deformation offers enhanced mechanical performance while maintaining the stability of CP titanium. This study investigates how electrochemical surface modification by anodization affects the corrosion, biological performance, and technological behavior of UFG titanium. TiO2 layers with nanotubular and nanoporous morphologies were produced at anodization voltages between 20 and 60 V. Corrosion tests in physiological solution confirmed stable passive behavior with corrosion rates below 4 µm year−1, and surface wettability increased markedly with anodization. Osteoblast-like MG-63 cells exhibited good viability on all anodized surfaces, with improved adhesion and proliferation on samples anodized at 60 V. The porous TiO2 layers were successfully intercalated with dimethyl sulfoxide and ibuprofen, demonstrating potential for local drug delivery. Implantation simulations on real Nanoimplant® prototypes confirmed sufficient mechanical stability of the anodized layer. Overall, the optimized anodization of UFG titanium enhances its biological response while maintaining corrosion resistance, supporting its clinical use in long-term dental and orthopedic implants with integrated drug-release functionality. Full article
(This article belongs to the Special Issue Biomaterials Applied in Dental Sciences)
Show Figures

Graphical abstract

17 pages, 4746 KB  
Article
Analysis of the Effect of Fabrication Parameters on the Properties of Biopolymer Coatings Deposited on Ti13Zr13Nb Alloy
by Michał Bartmański and Kamila Sionek
Polymers 2025, 17(23), 3136; https://doi.org/10.3390/polym17233136 - 25 Nov 2025
Viewed by 633
Abstract
This work describes the preparation and characterization of chitosan-based biopolymer coatings containing silver, zinc, and hydroxyapatite nanoparticles deposited on the Ti13Zr13Nb alloy by the EPD method. It was intended to evaluate the influence of surface pretreatments and deposition parameters on the structural, electrochemical, [...] Read more.
This work describes the preparation and characterization of chitosan-based biopolymer coatings containing silver, zinc, and hydroxyapatite nanoparticles deposited on the Ti13Zr13Nb alloy by the EPD method. It was intended to evaluate the influence of surface pretreatments and deposition parameters on the structural, electrochemical, and biological properties of coatings. The morphology and composition were characterized by means of SEM/EDS, AFM, XRD, and FTIR analysis. The obtained results indicated uniform continuous layers with homogeneously distributed nanoparticles and the presence of characteristic functional groups originating from chitosan and hydroxyapatite. Corrosion investigations performed in SBF solution revealed a significant enhancement in corrosion resistance for chitosan/nanoAg/nanoZn/nanoHAp coatings, reflected in a drastic decrease in corrosion current density compared with uncoated Ti13Zr13Nb alloy. The contact angle measurements confirmed their hydrophilic nature, which favors better biointegration ability. Biological tests (MTT and LDH) performed on human osteoblasts (hFOB 1.19) confirmed high biocompatibility (>85% cell viability) in the case of all coatings with the addition of hydroxyapatite, whereas in the case of coatings without HAp, cytotoxicity was observed, probably due to the uncontrolled release of metallic nanoparticles. These findings suggest that the presence of hydroxyapatite in chitosan-based coatings efficiently enhances corrosion protection and cytocompatibility, showing very good prospects for biomedical applications such as the surface modification of titanium implants. Full article
Show Figures

Figure 1

18 pages, 3539 KB  
Article
Study on Synergistic Enhancement of Surface Properties of Ti-6Al-4V Alloy for Dental Applications by Magnetic Abrasive Finishing
by Lang Xiong, Hanqi Su, Junjiang Hao and Yucheng Su
Coatings 2025, 15(12), 1364; https://doi.org/10.3390/coatings15121364 - 22 Nov 2025
Viewed by 532
Abstract
Titanium alloys are widely used in dental implants due to their superior biocompatibility and mechanical strength. However, these alloys are prone to corrosion and wear in the oral environment, thereby shortening their clinical lifespan. This study investigates the enhancement of titanium alloy surface [...] Read more.
Titanium alloys are widely used in dental implants due to their superior biocompatibility and mechanical strength. However, these alloys are prone to corrosion and wear in the oral environment, thereby shortening their clinical lifespan. This study investigates the enhancement of titanium alloy surface properties using magnetic abrasive finishing (MAF) and examines the influence of magnetic needle diameters (0.2–1.5 mm) on surface modification. Titanium alloy samples were processed by MAF and systematically evaluated for surface morphology, grain size, surface hardness, residual stress, electrochemical corrosion behavior, and tribological performance. Results demonstrated that MAF improves surface morphology, significantly refines grain size, and enhances surface hardness and compressive residual stress, thereby optimizing surface properties. The 1.0 mm magnetic needle group demonstrated the best performance, achieving a Vickers hardness of 376.71 ± 12.48 HV and a compressive residual stress of −579.1 ± 8.49 MPa. In addition, this group showed a higher self-corrosion potential (−0.5661 V), a lower corrosion current density (0.0114 μA·cm−2), and the lowest wear rate ((4.49 ± 0.42) × 10−4 mm3/N·m) in artificial saliva, demonstrating superior corrosion and wear resistance. Overall, MAF technology markedly enhances the surface integrity of titanium alloys in artificial saliva through the synergistic effects of grain refinement and stress modulation. These findings provide valuable experimental evidence supporting future efforts to optimize the surface properties of titanium alloy dental implants. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

Back to TopTop