Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (253)

Search Parameters:
Keywords = corrosion of rebar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5479 KiB  
Article
Resilience Assessment for Corroded Reinforced Concrete Bridge Piers Against Vessel Impact
by Zhijun Ouyang, Xing Wang, Biao Nie, Yuangui Liu and Hua-Peng Chen
Buildings 2025, 15(15), 2750; https://doi.org/10.3390/buildings15152750 - 4 Aug 2025
Abstract
The resilience concept is well established in engineering, but the quantitative studies of vessel impact resilience for bridge structures remain limited. This paper presents an integrated framework for assessing vessel impact resilience under combined rebar corrosion and vessel collision effects. First, a corroded [...] Read more.
The resilience concept is well established in engineering, but the quantitative studies of vessel impact resilience for bridge structures remain limited. This paper presents an integrated framework for assessing vessel impact resilience under combined rebar corrosion and vessel collision effects. First, a corroded reinforced concrete bridge is considered for nonlinear static analysis to quantify initial corrosion damage and for nonlinear dynamic analysis to evaluate post-impact function loss. Then, recovery for each damage state is modeled by using both negative exponential and triangular recovery functions to estimate restoration times and to obtain a vessel impact resilience index. The results show that increasing corrosion severity markedly reduces resilience capacity. Furthermore, resilience indices obtained from the negative exponential function generally exceed those from the triangular function, and this improvement becomes more significant at lower resilience levels. Resilience indices calculated by using negative exponential and triangular recovery functions show negligible differences when the concrete bridge is in the uncorroded initial state and the vessel impact velocity is below 1.5 m/s. However, as reinforcement corrosion increases, the maximum discrepancy between these two recovery functions also increases, reaching a value of 67% at a corrosion level of 15.0%. From the numerical results obtained from a case study, it is important to select an appropriate recovery model when assessing vessel impact resilience. For rapid initial restoration followed by slower long-term recovery, the negative exponential model yields greater resilience gains compared to the triangular model. The proposed method thus provides an effective tool for engineers and decision makers to evaluate and improve the vessel impact resilience of aging bridges under the combined corrosion and impact effects. This proposes a quantitative metric for resilience-based condition assessment and maintenance planning. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 7211 KiB  
Article
Experimental and Numerical Analysis of Corrosion-Induced Cracking in Reinforced Concrete
by Olfa Loukil, Lucas Adelaide, Veronique Bouteiller and Marc Quiertant
Appl. Mech. 2025, 6(3), 57; https://doi.org/10.3390/applmech6030057 - 1 Aug 2025
Viewed by 151
Abstract
The aim of this paper is to present the results of an experimental and numerical investigation into the degradation of reinforced concrete (RC) specimens subjected to an accelerated corrosion process using impressed current in the presence of chloride ions. The corrosion of the [...] Read more.
The aim of this paper is to present the results of an experimental and numerical investigation into the degradation of reinforced concrete (RC) specimens subjected to an accelerated corrosion process using impressed current in the presence of chloride ions. The corrosion of the rebars was carried out using three current densities (50, 100, and 200 µA/cm2) and various exposure times. The experimental results characterised the internal degradation of the RC specimens through measurement of the corrosion product thicknesses at the steel–concrete interface; the widths, lengths and orientations of internal concrete cracks; and the external concrete crack widths. In addition, numerical modelling of the corroded RC specimens was conducted to describe the crack patterns. The comparison between the experimental and numerical results demonstrated a high degree of correlation, providing insights into the degradation process of RC specimens due to corrosion. Full article
Show Figures

Figure 1

25 pages, 12805 KiB  
Article
Efficient Probabilistic Modelling of Corrosion Initiation in RC Structures Considering Non-Diffusive Barriers and Censored Data
by Guilherme Henrique Rossi Vieira, Ritermayer Monteiro Teixeira, Leila Cristina Meneghetti and Sandoval José Rodrigues Júnior
Buildings 2025, 15(15), 2690; https://doi.org/10.3390/buildings15152690 - 30 Jul 2025
Viewed by 203
Abstract
This article presents a probabilistic methodology for assessing corrosion initiation in reinforced concrete structures exposed to chloride ingress. The approach addresses key limitations of conventional analytical models by accounting for non-diffusive barriers and incorporating a rigorous statistical treatment of censored data to mitigate [...] Read more.
This article presents a probabilistic methodology for assessing corrosion initiation in reinforced concrete structures exposed to chloride ingress. The approach addresses key limitations of conventional analytical models by accounting for non-diffusive barriers and incorporating a rigorous statistical treatment of censored data to mitigate biases introduced by limited simulation durations. A combination of analytical solutions for diffusion from opposite sides with time-dependent boundary conditions is also proposed and validated. The probabilistic study includes the depassivation assessment of a hollow pier section. The blocking effect caused by rebars is statistically characterised through correction factors derived from finite element simulations. These factors are used to adjust analytical solutions, which are computationally inexpensive. Results show that neglecting the rebar blocking effect can overestimate the mean corrosion initiation time by up to 42%, while the use of censored data reduces bias in lifetime estimates. The observed frequency of censored events reached up to 20% when simulations were truncated at 100 years. The corrected analytical models closely match the finite element results, statistically validating their application. The case study indicates premature corrosion initiation (less than 10 years to achieve target reliability), underscoring the need to better reconcile the desired levels of reliability with realistic input parameters for depassivation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 5397 KiB  
Article
Continuously Formed Fiber-Reinforced Thermoplastic Composite Rebar for Concrete Reinforcement
by Jacob C. Clark, William G. Davids, Roberto A. Lopez-Anido, Andrew P. Schanck and Cody A. Sheltra
J. Compos. Sci. 2025, 9(7), 378; https://doi.org/10.3390/jcs9070378 - 18 Jul 2025
Viewed by 445
Abstract
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during [...] Read more.
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during construction. FRP reinforcing bars made with fiber-reinforced thermoplastic polymers (FRTP) address this limitation; however, their high processing viscosity presents manufacturing challenges. In this study, the Continuous Forming Machine, a novel pultrusion device that uses pre-consolidated fiber-reinforced thermoplastic tapes as feedstock, is described and used to fabricate 12.7 mm nominal diameter thermoplastic composite rebars. Simple bend tests on FRTP rebar that rely on basic equipment are performed to verify its ability to be field-formed. The manual bending technique demonstrated here is practical and straightforward, although it does result in some fiber misalignment. Subsequently, surface deformations are introduced to the rebar to promote mechanical bonding with concrete, and tensile tests of the bars are conducted to determine their mechanical properties. Finally, flexural tests of simply-supported, 6 m long beams reinforced with FRTP rebar are performed to assess their strength and stiffness as well as the practicality of using FRTP rebar. The beam tests demonstrated the prototype FRTP rebar’s potential for reinforcing concrete beams, and the beam load–deformation response and capacity agree well with predictions developed using conventional structural analysis principles. Overall, the results of the research reported indicate that thermoplastic rebars manufactured via the Continuous Forming Machine are a promising alternative to both steel and conventional thermoset composite rebar. However, both the beam and tension test results indicate that improvements in material properties, especially elastic modulus, are necessary to meet the requirements of current FRP rebar specifications. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

20 pages, 8022 KiB  
Article
Corrosion Response of Steel to Penetration of Chlorides in DC-Treated Hardened Portland Cement Mortar
by Milan Kouřil, Jan Saksa, Vojtěch Hybášek, Ivona Sedlářová, Jiří Němeček, Martina Kohoutková and Jiří Němeček
Materials 2025, 18(14), 3365; https://doi.org/10.3390/ma18143365 - 17 Jul 2025
Viewed by 236
Abstract
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete [...] Read more.
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete or mortar, coupled with the migration of ions, concentration changes, and resulting phase changes, may alter its chloride penetration resistance and, subsequently, the time until rebar corrosion activation. Porosity changes in hardened Portland cement mortar were studied by means of mercury intrusion porosimetry (MIP) and electrochemical impedance spectroscopy (EIS), and alterations in the mortar surface phase composition were observed by means of X-ray diffraction (XRD). In order to innovatively investigate the impact of DC treatment on the properties of the mortar–electrolyte interface, the cathode-facing mortar surface and the anode-facing mortar surface were analyzed separately. The corrosion of steel coupons embedded in DC-treated hardened mortar was monitored by means of the free corrosion potential (Eoc) and polarization resistance (Rp). The results showed that the DC treatment affected the surface porosity of the hardened Portland cement mortar at the nanoscale. Up to two-thirds of the small pores (0.001–0.01 µm) were replaced by medium-sized pores (0.01–0.06 µm), which may be significant for chloride ingress. Although the porosity and phase composition alterations were confirmed using other techniques (EIS and XRD), corrosion tests revealed that they did not significantly affect the time until the corrosion activation of the steel coupons in the mortar. Full article
Show Figures

Figure 1

23 pages, 7058 KiB  
Article
Experimental Investigation of Steel Bar Corrosion in Recycled Plastic Aggregate Concrete Exposed to Calcium Chloride Cycles
by Federica Zanotto, Alice Sirico, Andrea Balbo, Patrizia Bernardi, Sebastiano Merchiori, Vincenzo Grassi, Beatrice Belletti and Cecilia Monticelli
Materials 2025, 18(14), 3361; https://doi.org/10.3390/ma18143361 - 17 Jul 2025
Viewed by 210
Abstract
Recycling plastics waste into concrete represents one of the possible approaches for its valorization, offering both economic and environmental benefits. Although numerous studies have explored the mechanical properties of concrete with plastics waste, its durability performance remains largely unexplored. In this context, this [...] Read more.
Recycling plastics waste into concrete represents one of the possible approaches for its valorization, offering both economic and environmental benefits. Although numerous studies have explored the mechanical properties of concrete with plastics waste, its durability performance remains largely unexplored. In this context, this study aims to assess the electrochemical behavior of rebars embedded in reinforced concrete modified by partially replacing natural aggregates with recycled plastics, comparing their behavior to that of conventional concrete. The corrosion of reinforcing steel bars was evaluated by wet and dry cycles (w/d) in calcium chloride solutions, monitoring corrosion potential and potentiostatic polarization resistance, and recording electrochemical impedance spectroscopy (EIS) and polarization curves. In addition, the chloride diffusion tendency and the mechanical performances were assessed in unreinforced samples. The findings indicate that in environments with lower chloride concentrations, concrete with plastic granules provides good protection against rebar corrosion. Although the mechanical results of the studied mixes confirmed that incorporating plastic granules as aggregates in the concrete matrix causes a reduction in compressive strength, as known in the literature, the modified concrete also exhibits improved post-cracking behavior, resulting in enhanced ductility and fracture toughness. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 2475 KiB  
Article
Bond Performance of Geopolymer Concrete with Steel and FRP Reinforcements
by Vincenzo Romanazzi, Marianovella Leone and Maria Antonietta Aiello
J. Compos. Sci. 2025, 9(6), 303; https://doi.org/10.3390/jcs9060303 - 14 Jun 2025
Viewed by 1066
Abstract
The increasing demand for sustainable construction materials has driven the exploration of alternatives to traditional cement-based concrete. In this context, this study investigates a cement-less material, specifically an alkali-activated or geopolymer concrete (GPC), which presents potential environmental benefits. The material has been characterized [...] Read more.
The increasing demand for sustainable construction materials has driven the exploration of alternatives to traditional cement-based concrete. In this context, this study investigates a cement-less material, specifically an alkali-activated or geopolymer concrete (GPC), which presents potential environmental benefits. The material has been characterized with respect to both its fresh and hardened properties, providing groundwork for future structural applications. A key focus of the research is the bond behavior between GPC and reinforcing bars, including both steel and non-metallic fiber-reinforced polymer (FRP) bars. The use of non-metallic bars is particularly relevant as they offer the potential to enhance the durability of structures by mitigating issues such as corrosion. Current research lacks comprehensive studies on factors affecting stress transfer at the GPC-reinforcing bar interface, such as bar diameter, bond length, and surface finish. This study aims to expand knowledge on the bond between GPC and steel/FRP rebars through experimental and analytical approaches. The tests, which included different bar types and bond lengths, showed that GPC exhibited similar bond behavior with steel and ribbed glass FRP bars in terms of bond strength and stress-slip curves. The results indicate that GPC exhibits comparable bond strength and stress-slip behavior when reinforced with either steel or ribbed glass FRP bars. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

17 pages, 3104 KiB  
Article
Investigating the Bond Performance of FRP Bars and Concrete Under Dynamic Loading Conditions
by Wenhui Bao, Yini Tan, Hao Li, Chenglong Liang, Hui Chen and Chuanqing Fu
Coatings 2025, 15(6), 716; https://doi.org/10.3390/coatings15060716 - 13 Jun 2025
Viewed by 519
Abstract
With growing emphasis on sustainable construction, fiber-reinforced polymer (FRP) bars are increasingly being used as alternatives to steel rebars due to their high strength-to-weight ratio, corrosion resistance, and environmental benefits. This study has investigated the bond behavior between FRP bars and concrete of [...] Read more.
With growing emphasis on sustainable construction, fiber-reinforced polymer (FRP) bars are increasingly being used as alternatives to steel rebars due to their high strength-to-weight ratio, corrosion resistance, and environmental benefits. This study has investigated the bond behavior between FRP bars and concrete of different strength grades under dynamic loading conditions. To analyze the microscopic properties of FRP bar surfaces, the study employs a variety of techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), and non-contact surface profilometry. In addition, X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) measurements, and energy dispersive spectrometry (EDS) are used to further investigate surface characteristics. The results reveal a direct correlation between the resin surface roughness of FRP bars and their wettability characteristics, which in turn influence the cement hydration process. Pull-out tests under different loading rates and concrete strength grades have been conducted to evaluate the bond–slip behavior and failure modes. The results indicate that bond strength increases with increasing concrete strength. Dynamic pull-out tests further reveal that higher loading rates generate heterogeneous stress fields, which limit the deformation of FRP bars and consequently diminish the contribution of mechanical interlock to interfacial bonding. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

26 pages, 3697 KiB  
Review
Chloride-Induced Corrosion Effects on the Structural Performance of Concrete with Rebar and Fibres: A Review
by Petar Bajić, Bruno Leporace-Guimil, Carmen Andrade, Nikola Tošić and Albert de la Fuente
Appl. Sci. 2025, 15(12), 6457; https://doi.org/10.3390/app15126457 - 8 Jun 2025
Viewed by 927
Abstract
Chloride-induced corrosion is a major contributor in the degradation of standardised steel-based products (e.g., rebars and fibres) commonly used for reinforcing concrete structures. Since cracked reinforced concrete elements are determined to be more susceptible to corrosion on the one hand, and fibres are [...] Read more.
Chloride-induced corrosion is a major contributor in the degradation of standardised steel-based products (e.g., rebars and fibres) commonly used for reinforcing concrete structures. Since cracked reinforced concrete elements are determined to be more susceptible to corrosion on the one hand, and fibres are effective in arresting crack growth and improving the post-cracking mechanical behaviour on the other hand, the use of fibres emerges as a promising strategy to enhance durability. This review is focused on the degradation of the load-bearing capacity, caused by chloride corrosion, in concrete elements reinforced with fibres and conventional rebar. Based on the recorded values of ultimate loads and the corresponding deflections in the reviewed studies, a lower decrease in the load-bearing capacity and less severe degradation of ductility were observed in elements where fibres (either steel or macro-synthetic) were used in combination with rebar compared with elements where only rebar was used. Furthermore, the recorded values of corrosion potential (Ecorr), corrosion current density (icorr) and gravimetric measurements indicated lower corrosion damage, delayed corrosion initiation and a prolonged propagation phase of corrosion. However, due to many differences in the methodology among the reviewed studies, the optimal fibre type or quantity cannot be identified unless more studies are performed. Full article
(This article belongs to the Special Issue Fiber-Reinforced Concrete: Recent Progress and Future Directions)
Show Figures

Figure 1

24 pages, 7912 KiB  
Article
Corrosion Performance and Post-Corrosion Evolution of Tensile Behaviors in Rebar Reinforced Ultra-High Performance Concrete
by Yuchen Zhang, Sumei Zhang, Xianzhi Luo and Chaofan Wang
Materials 2025, 18(11), 2661; https://doi.org/10.3390/ma18112661 - 5 Jun 2025
Viewed by 412
Abstract
The application of rebar reinforced ultra-high-performance concrete (R-UHPC) has been increasingly adopted in engineering structures due to its exceptional mechanical performance and durability characteristics. Nevertheless, when subjected to combined saline and stray current conditions, R-UHPC remains vulnerable to severe corrosion degradation. This investigation [...] Read more.
The application of rebar reinforced ultra-high-performance concrete (R-UHPC) has been increasingly adopted in engineering structures due to its exceptional mechanical performance and durability characteristics. Nevertheless, when subjected to combined saline and stray current conditions, R-UHPC remains vulnerable to severe corrosion degradation. This investigation examined the corrosion performance and tensile behavior evolution of R-UHPC containing 2.0 vol% copper-coated steel fiber content and HRB400 steel rebar with a reinforcement ratio of 3.1%. The accelerated corrosion process was induced through an impressed current method, followed by direct tensile tests at varying exposure periods. The findings revealed that the embedding of rebar in UHPC led to the formation of fiber-to-rebar (F-R) conductive pathways, generating radial cracks besides laminar cracks. The bonding between rebar and UHPC degraded as corrosion progressed, leading to the loss of characteristic multiple-cracking behavior of R-UHPC in tension. Meanwhile, R-UHPC load-bearing capacity, transitioning from gradual to accelerated deterioration phases with prolonged corrosion, aligns with steel fibers temporally. During the initial 4 days of corrosion, the specimens displayed surface-level corrosion features with negligible steel fiber loss, showing less than 4.0% reduction in ultimate bearing capacity. At 8 days of corrosion, the steel fiber decreased by 22.6%, accompanied by an 18.3% reduction in bearing capacity. By 16 days of corrosion, the steel fiber loss reached 41.5%, with a corresponding bearing capacity reduction of 29.1%. During the corrosion process, corrosion cracks and load-bearing degradation in R-UHPC could be indicated by the ultrasonic damage factor. Full article
Show Figures

Figure 1

21 pages, 6582 KiB  
Article
Experimental Study on the Effect of Abaca Fibers on Reinforced Concrete: Evaluation of Workability, Mechanical, and Durability-Related Properties
by Armando Arvizu-Montes, Stefany Alcivar-Bastidas and María José Martínez-Echevarría
Fibers 2025, 13(6), 75; https://doi.org/10.3390/fib13060075 - 4 Jun 2025
Cited by 1 | Viewed by 1591
Abstract
Interest in incorporating natural fibers as reinforcements in concrete has grown in parallel with the increasing need to reduce the environmental impact of construction. These fibers, known for their renewability, low cost, and life-cycle superiority, exhibit technical advantages such as light weight and [...] Read more.
Interest in incorporating natural fibers as reinforcements in concrete has grown in parallel with the increasing need to reduce the environmental impact of construction. These fibers, known for their renewability, low cost, and life-cycle superiority, exhibit technical advantages such as light weight and high tensile strength. This study experimentally evaluated the influence of abaca fibers (AF) previously subjected to alkaline treatment and incorporated in reinforced concrete on workability, mechanical behavior, and durability, with a particular focus on the mechanisms affecting steel rebar corrosion. The characterization techniques included compressive and flexural testing; porosity, capillary water absorption, ion chloride penetration, and carbonation depth measurements; and corrosion rate monitoring via electrochemical methods. The results indicated that the addition of AF did not compromise the fresh-state properties or compressive strength but improved the flexural strength by 7.3%. Regarding durability, the porosity and water absorption increased by 4.1% and 8.2%, respectively, whereas the chloride penetration and carbonation depth remained within the requirements. Notable effects were observed regarding steel corrosion performance, where the incorporation of AF led to higher variability and an increasing trend in the corrosion rate compared with that of the reference concrete. Nevertheless, estimations suggest that abaca-fiber-reinforced concrete can meet the 100-year service life. These findings support the potential of AF as a viable reinforcement material for mechanical improvement; however, their influence on long-term durability, particularly corrosion, requires further investigation to deepen their feasible application for sustainable construction. Full article
Show Figures

Figure 1

30 pages, 3568 KiB  
Article
Long-Term Corrosion Behavior of Reinforced Concrete: Impact of Supplementary Cementitious Materials and Reservoir Size Under Accelerated Chloride Ingress
by Kazi Naimul Hoque and Francisco Presuel-Moreno
Constr. Mater. 2025, 5(2), 33; https://doi.org/10.3390/constrmater5020033 - 24 May 2025
Viewed by 437
Abstract
This study investigates the long-term corrosion behavior of reinforced concrete (RC) under accelerated chloride exposure for about 1600 days, using electrochemical methods like galvanostatic pulse (GP) testing. Two concrete mixes (T1 and T2), incorporating distinct supplementary cementitious materials (SCMs), were evaluated to determine [...] Read more.
This study investigates the long-term corrosion behavior of reinforced concrete (RC) under accelerated chloride exposure for about 1600 days, using electrochemical methods like galvanostatic pulse (GP) testing. Two concrete mixes (T1 and T2), incorporating distinct supplementary cementitious materials (SCMs), were evaluated to determine their performance in aggressive environments. Specimens with varying reservoir lengths were exposed to a 10% NaCl solution (by weight), with electromigration applied to accelerate chloride transport. Electrochemical assessments, including measurements of rebar potential, concrete solution resistance, concrete polarization resistance, corrosion current, and mass loss, were conducted to monitor the degradation of embedded steel. The findings revealed that smaller reservoirs (2.5 cm) significantly restricted chloride and moisture penetration, reducing corrosion, while larger reservoirs (10 cm) resulted in greater exposure and higher corrosion activity. Additionally, T1 mixes (partial cement replacement with 20% fly ash and 50% slag) showed higher corrosion currents and mass loss, whereas T2 mixes (partial cement replacement with 20% fly ash and 8% silica fume) demonstrated enhanced matrix densification, reduced permeability, and superior durability. These results underscore the importance of mix design and exposure conditions in mitigating corrosion, providing critical insights for improving the longevity of RC structures in aggressive environments. Full article
Show Figures

Figure 1

23 pages, 6623 KiB  
Article
Enhanced Corrosion Resistance of Carbon Steel Rebar in Chloride-Containing Water Solutions: The Role of Lotus Extract in Corrosion Inhibition
by Dan Song, Juhang Wang, Hao Guan, Sijie Zhang, Zhou Zhou and Shuguang Zhang
Metals 2025, 15(5), 510; https://doi.org/10.3390/met15050510 - 30 Apr 2025
Viewed by 448
Abstract
Corrosion inhibitors play a crucial role in the corrosion protection of rebars in reinforced concrete structures under harsh service conditions. However, conventional corrosion inhibitors often suffer from low efficiency and environmental concerns. This study investigates a low-cost and environmentally friendly lotus leaf extract [...] Read more.
Corrosion inhibitors play a crucial role in the corrosion protection of rebars in reinforced concrete structures under harsh service conditions. However, conventional corrosion inhibitors often suffer from low efficiency and environmental concerns. This study investigates a low-cost and environmentally friendly lotus leaf extract (LLE) as a corrosion inhibitor and examines its effects on carbon steel rebar corrosion under various conditions. The structure and composition of LLE were characterized using SEM, FTIR, and LC-MS. The effects of LLE on rebar corrosion behavior under different environmental conditions were investigated using electrochemical tests, Mott–Schottky analysis, and XPS. The main findings indicate that LLE is rich in polar chemical bonds and functional groups, which facilitate adsorption and film formation on the rebar surface. In a 3.5% NaCl solution, rebar corrosion is primarily influenced by the solution pH, and low concentrations of LLE exhibit effective corrosion inhibition. In a simulated concrete pore solution, higher concentrations of LLE promote the formation of a passivation film in a chloride-alkaline environment. Studies on pre-passivated rebar indicate that LLE effectively protects the passivation film, with the optimal LLE concentration for passivation film protection and adsorption film quality being 0.5 wt%. This study contributes to the application and development of novel LLE-based corrosion inhibition technology for carbon steel rebar. Full article
(This article belongs to the Special Issue Corrosion Behavior of Alloys in Water Environments)
Show Figures

Figure 1

18 pages, 20703 KiB  
Article
Performance Evaluation of Reinforced Concrete Beams with Corroded Rebar Strengthened by Carbon Fiber-Reinforced Polymer
by Sangwoo Kim, Wonchang Choi and Jinsup Kim
Polymers 2025, 17(8), 1021; https://doi.org/10.3390/polym17081021 - 10 Apr 2025
Viewed by 762
Abstract
The inefficiency of unreinforced concrete beams as flexural members poses a challenge because concrete’s tensile strength is significantly lower than its compressive strength. In response to this challenge, reinforcement bars are commonly employed near the tension zone of reinforced concrete (RC) beams. Nonetheless, [...] Read more.
The inefficiency of unreinforced concrete beams as flexural members poses a challenge because concrete’s tensile strength is significantly lower than its compressive strength. In response to this challenge, reinforcement bars are commonly employed near the tension zone of reinforced concrete (RC) beams. Nonetheless, structures constructed with RC face challenges such as reduced live load capacity, concrete deterioration, and the corrosion of reinforcement bars over time. To address this, ongoing research is exploring maintenance and retrofitting techniques using high-strength, lightweight fiber-reinforced polymer (FRP) composite materials such as carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GFRP). In this study, the flexural performance of corroded RC beams was enhanced through retrofitting with CFRP plates and sheets. The corroded RC beams were fabricated using an applied-current method with a 5% NaCl solution to induce a 10% target corrosion level under controlled laboratory conditions. Flexural tests were conducted to evaluate the structural performance, failure modes, load–displacement relationships, and energy dissipation capacities. The results showed that CFRP reinforcement mitigates the adverse effects of corrosion-induced reduction in rebar cross-sectional areas, leading to increased stiffness and improved load-carrying capacity. In particular, CFRP reinforcement increased the yield load by up to 36.5% and the peak load by up to 90% in corroded specimens. The accumulated energy dissipation capacity also increased by 92%. These enhancements are attributed to the effective load-sharing behavior between the corroded rebar and the CFRP reinforcement. Full article
Show Figures

Figure 1

15 pages, 2303 KiB  
Article
Influence of Corrosion-Inhibiting Monolayers on the Bond Strength and Durability of Reinforced Concrete Structures Under Service Conditions
by Pablo Monzón-Bello, Roberto Vengut-Tro, Juan Soto-Camino and Manuel Octavio Valcuende-Payá
Materials 2025, 18(7), 1656; https://doi.org/10.3390/ma18071656 - 4 Apr 2025
Viewed by 489
Abstract
Corrosion protection in reinforced concrete structures exposed to aggressive environments remains a critical challenge in civil and architectural engineering. One promising approach involves the application of corrosion-inhibiting monolayers on the reinforcement, such as those formed using 4-aminobenzoic acid. Two methods have previously been [...] Read more.
Corrosion protection in reinforced concrete structures exposed to aggressive environments remains a critical challenge in civil and architectural engineering. One promising approach involves the application of corrosion-inhibiting monolayers on the reinforcement, such as those formed using 4-aminobenzoic acid. Two methods have previously been employed to generate these monolayers: one relying on the adhesion of an organic compound and the other utilising an externally modified approach via electrolysis. This study assesses the influence of this treatment on the steel–concrete bond strength and durability, both critical properties for the structural performance of reinforced concrete under service conditions. For this purpose, pull-out tests were performed on specimens subjected to load–unload cycles to analyse bond behaviour and monolayer integrity. The results indicate that these treatments do not adversely affect the bond strength between reinforcement and concrete. Furthermore, the rebars treated with the inhibitor exhibit less corrosion damage than the untreated rebars. This fact is particularly significant in the rebars treated using the natural adhesion method, with the steel section loss being 32–37% lower than in the untreated rebars. These findings support the feasibility of applying this treatment without compromising structural functionality. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop