Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,552)

Search Parameters:
Keywords = correcting genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2005 KiB  
Article
Glyoxalase 1 Inducer, trans-Resveratrol and Hesperetin–Dietary Supplement with Multi-Modal Health Benefits
by Mingzhan Xue, Naila Rabbani and Paul J. Thornalley
Antioxidants 2025, 14(8), 956; https://doi.org/10.3390/antiox14080956 (registering DOI) - 4 Aug 2025
Abstract
A dietary supplement, trans-resveratrol and hesperetin (tRES+HESP)—also known as GlucoRegulate—induces increased expression of glyoxalase 1 (Glo1) by activation of transcription factor Nrf2, countering accumulation of the reactive dicarbonyl glycating agent, methylglyoxal. tRES+HESP corrected insulin resistance and decreased fasting and postprandial plasma glucose [...] Read more.
A dietary supplement, trans-resveratrol and hesperetin (tRES+HESP)—also known as GlucoRegulate—induces increased expression of glyoxalase 1 (Glo1) by activation of transcription factor Nrf2, countering accumulation of the reactive dicarbonyl glycating agent, methylglyoxal. tRES+HESP corrected insulin resistance and decreased fasting and postprandial plasma glucose and low-grade inflammation in overweight and obese subjects in a clinical trial. The aim of this study was to explore, for the first time, health-beneficial gene expression other than Glo1 induced by tRES+HESP in human endothelial cells and fibroblasts in primary culture and HepG2 hepatoma cell line and activity of cis-resveratrol (cRES) as a Glo1 inducer. We measured antioxidant response element-linked gene expression in these cells in response to 5 µM tRES+HESP by the NanoString method. tRES+HESP increases gene expression linked to the prevention of dicarbonyl stress, lipid peroxidation, oxidative stress, proteotoxicity and hyperglycemia-linked glycolytic overload. Downstream benefits were improved regulation of glucose and lipid metabolism and decreased inflammation, extracellular matrix remodeling and senescence markers. The median effective concentration of tRES was ninefold lower than cRES in the Glo1 inducer luciferase reporter assay. The GlucoRegulate supplement provides a new treatment option for the prevention of type 2 diabetes and metabolic dysfunction–associated steatotic liver disease and supports healthy aging. Full article
Show Figures

Figure 1

14 pages, 2128 KiB  
Article
Correlation Measures in Metagenomic Data: The Blessing of Dimensionality
by Alessandro Fuschi, Alessandra Merlotti, Thi Dong Binh Tran, Hoan Nguyen, George M. Weinstock and Daniel Remondini
Appl. Sci. 2025, 15(15), 8602; https://doi.org/10.3390/app15158602 (registering DOI) - 2 Aug 2025
Viewed by 137
Abstract
Microbiome analysis has revolutionized our understanding of various biological processes, spanning human health and epidemiology (including antimicrobial resistance and horizontal gene transfer), as well as environmental and agricultural studies. At the heart of microbiome analysis lies the characterization of microbial communities through the [...] Read more.
Microbiome analysis has revolutionized our understanding of various biological processes, spanning human health and epidemiology (including antimicrobial resistance and horizontal gene transfer), as well as environmental and agricultural studies. At the heart of microbiome analysis lies the characterization of microbial communities through the quantification of microbial taxa and their dynamics. In the study of bacterial abundances, it is becoming more relevant to consider their relationship, to embed these data in the framework of network theory, allowing characterization of features like node relevance, pathways, and community structure. In this study, we address the primary biases encountered in reconstructing networks through correlation measures, particularly in light of the compositional nature of the data, within-sample diversity, and the presence of a high number of unobserved species. These factors can lead to inaccurate correlation estimates. To tackle these challenges, we employ simulated data to demonstrate how many of these issues can be mitigated by applying typical transformations designed for compositional data. These transformations enable the use of straightforward measures like Pearson’s correlation to correctly identify positive and negative relationships among relative abundances, especially in high-dimensional data, without having any need for further corrections. However, some challenges persist, such as addressing data sparsity, as neglecting this aspect can result in an underestimation of negative correlations. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Data Analysis)
Show Figures

Figure 1

9 pages, 1157 KiB  
Article
Center Degenerated Walking-Primer PCR: A Novel and Universal Genome-Walking Method
by Dandan Gao, Zhenkang Pan, Hao Pan, Yinwei Gu and Haixing Li
Curr. Issues Mol. Biol. 2025, 47(8), 602; https://doi.org/10.3390/cimb47080602 - 1 Aug 2025
Viewed by 95
Abstract
Enhancing the specificity and applicability of PCR-based genome-walking methods is highly desirable. A new and universal genome-walking tool, called center degenerated walking-primer PCR (CDWP-PCR), is presented in this study. CDWP-PCR involves adopting a center degenerated walking primer (cdWP) in the secondary/tertiary round of [...] Read more.
Enhancing the specificity and applicability of PCR-based genome-walking methods is highly desirable. A new and universal genome-walking tool, called center degenerated walking-primer PCR (CDWP-PCR), is presented in this study. CDWP-PCR involves adopting a center degenerated walking primer (cdWP) in the secondary/tertiary round of amplification. This cdWP is generated by degenerating the seven central nucleotides of the normal walking primer (nWP) used in primary PCR to NNNNNNN (where N includes the bases A, T, C, and G). Clearly, a partially complementary structure is formed between the two primers. Accordingly, the primary CDWP-PCR non-target products defined by the nWP are diluted in secondary/tertiary CDWP-PCR, as these non-targets have difficulty in annealing with the cdWP; conversely, the primary target product can still be efficiently amplified. The working performance of the proposed CDWP-PCR is verified through cloning of the unknown flanks of three known genes. All the clear DNA bands in the tertiary CDWP-PCRs are confirmed to be correct, and the largest DNA band is 8.0 kb. Overall, CDWP-PCR can be considered as a reliable supplement to existing genome-walking methods. Full article
(This article belongs to the Special Issue Technological Advances Around Next-Generation Sequencing Application)
Show Figures

Figure 1

15 pages, 522 KiB  
Article
Contribution of PNPLA3, GCKR, MBOAT7, NCAN, and TM6SF2 Genetic Variants to Hepatocellular Carcinoma Development in Mexican Patients
by Alejandro Arreola Cruz, Juan Carlos Navarro Hernández, Laura Estela Cisneros Garza, Antonio Miranda Duarte, Viviana Leticia Mata Tijerina, Magda Elizabeth Hernández Garcia, Katia Peñuelas-Urquides, Laura Adiene González-Escalante, Mario Bermúdez de León and Beatriz Silva Ramirez
Int. J. Mol. Sci. 2025, 26(15), 7409; https://doi.org/10.3390/ijms26157409 - 1 Aug 2025
Viewed by 182
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent subtype of liver cancer with an increasing incidence worldwide. Single nucleotide polymorphisms (SNPs) may influence disease risk and serve as predictive markers. This study aimed to evaluate the association of PNPLA3 (rs738409 and rs2294918), GCKR (rs780094), [...] Read more.
Hepatocellular carcinoma (HCC) is the most prevalent subtype of liver cancer with an increasing incidence worldwide. Single nucleotide polymorphisms (SNPs) may influence disease risk and serve as predictive markers. This study aimed to evaluate the association of PNPLA3 (rs738409 and rs2294918), GCKR (rs780094), MBOAT7 (rs641738), NCAN (rs2228603), and TM6SF2 (rs58542926) SNPs with the risk of developing HCC in a Mexican population. A case-control study was conducted in unrelated Mexican individuals. Cases were 173 adults with biopsy-confirmed HCC and 346 were healthy controls. Genotyping was performed using TaqMan allelic discrimination assay. Logistic regression was applied to evaluate associations under codominant, dominant, and recessive inheritance models. p-values were corrected using the Bonferroni test (pC). Haplotype and gene–gene interaction were also analyzed. The GG homozygous of rs738409 and rs2294918 of PNPLA3, TT, and TC genotypes of GCKR, as well as the TT genotype of MBOAT7, were associated with a significant increased risk to HCC under different inheritance models (~Two folds in all cases). The genotypes of NCAN and TM6SF2 did not show differences. The haplotype G-G of rs738409 and rs2294918 of PNPLA3 was associated with an increased risk of HCC [OR (95% CI) = 2.2 (1.7–2.9)]. There was a significant gene–gene interaction between PNPLA3 (rs738409), GCKR (rs780094), and MBOAT7 (rs641738) (Cross-validation consistency (CVC): 10/10; Testing accuracy = 0.6084). This study demonstrates for the first time that PNPLA3 (rs738409 and rs2294918), GCKR (rs780094), and MBOAT7 (rs641738) are associated with an increased risk of developing HCC from multiple etiologies in Mexican patients. Full article
Show Figures

Figure 1

10 pages, 2981 KiB  
Article
Trans-eQTLs Can Be Used to Identify Tissue-Specific Gene Regulatory Networks
by Majid Nikpay
Curr. Issues Mol. Biol. 2025, 47(8), 594; https://doi.org/10.3390/cimb47080594 - 29 Jul 2025
Viewed by 243
Abstract
Previous high-throughput screening studies have indicated that trans-eQTLs tend to be tissue-specific. This study investigates whether this feature can be used to identify tissue-specific gene regulatory networks. eQTL data for 19,960 genes were obtained from the eQTLGen study. Next, eQTLs displaying both cis- [...] Read more.
Previous high-throughput screening studies have indicated that trans-eQTLs tend to be tissue-specific. This study investigates whether this feature can be used to identify tissue-specific gene regulatory networks. eQTL data for 19,960 genes were obtained from the eQTLGen study. Next, eQTLs displaying both cis- and trans-regulatory effects (p < 5 × 10−8) were selected, and the association between their corresponding genes was examined by Mendelian randomization. The findings were further validated using eQTL data from the INTERVAL study. The trans-regulatory impact of 138 genes on 342 genes was detected (p < 5 × 10−8). The majority of the identified gene-pairs were aggregated into networks with scale-free topology. An examination of the function of genes indicates they are involved in immune processes. The hub genes primarily shared transcription regulation activity and were associated with blood cell traits. The hub gene, DDAH2, impacted several metabolic and autoimmune disorders. On average, a gene in the network was under the regulatory control of 34 cis-eQTLs and 6 trans-eQTLs, and genes with higher heritabilities tended to exert higher regulatory impacts. This study reports tissue-specific gene regulatory networks can be detected by investigating their genomic underpinnings. The identified networks displayed scale-free topology, indicating that hub genes within a network could be targeted to correct abnormalities. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

15 pages, 946 KiB  
Article
Different Master Regulators Define Proximal and Distal Gastric Cancer: Insights into Prognosis and Opportunities for Targeted Therapy
by Luigi Marano, Salvatore Sorrenti, Silvia Malerba, Jaroslaw Skokowski, Karol Polom, Sergii Girnyi, Tomasz Cwalinski, Francesco Paolo Prete, Alejandro González-Ojeda, Clotilde Fuentes-Orozco, Aman Goyal, Rajan Vaithianathan, Miljana Vladimirov, Eleonora Lori, Daniele Pironi, Adel Abou-Mrad, Mario Testini, Rodolfo J. Oviedo and Yogesh Vashist
Curr. Oncol. 2025, 32(8), 424; https://doi.org/10.3390/curroncol32080424 - 28 Jul 2025
Viewed by 207
Abstract
Background: Gastric cancer (GC) represents a significant global health burden with considerable heterogeneity in clinical and molecular behavior. The anatomical site of tumor origin—proximal versus distal—has emerged as a determinant of prognosis and response to therapy. The aim of this paper is to [...] Read more.
Background: Gastric cancer (GC) represents a significant global health burden with considerable heterogeneity in clinical and molecular behavior. The anatomical site of tumor origin—proximal versus distal—has emerged as a determinant of prognosis and response to therapy. The aim of this paper is to elucidate the transcriptional and regulatory differences between proximal gastric cancer (PGC) and distal gastric cancer (DGC) through master regulator (MR) analysis. Methods: We analyzed RNA-seq data from TCGA-STAD and microarray data from GEO (GSE62254, GSE15459). Differential gene expression and MR analyses were performed using DESeq2, limma, corto, and RegEnrich pipelines. A harmonized matrix of 4785 genes was used for MR inference following normalization and batch correction. Functional enrichment and survival analyses were conducted to explore prognostic associations. Results: Among 364 TCGA and 492 GEO patients, PGC was associated with more aggressive clinicopathological features and poorer outcomes. We identified 998 DEGs distinguishing PGC and DGC. PGC showed increased FOXM1 (a key regulator of cell proliferation), STAT3, and NF-κB1 activity, while DGC displayed enriched GATA6, CDX2 (a marker of intestinal differentiation), and HNF4A signaling. Functional enrichment highlighted proliferative and inflammatory programs in PGC, and differentiation and metabolic pathways in DGC. MR activity stratified survival outcomes, reinforcing prognostic relevance. Conclusions: PGC and DGC are governed by distinct transcriptional regulators and signaling networks. Our findings provide a biological rationale for location-based stratification and inform targeted therapy development. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Figure 1

17 pages, 810 KiB  
Article
Association Analysis Between Ischemic Stroke Risk Single Nucleotide Polymorphisms and Alzheimer’s Disease
by Wei Dong, Wei Wang and Mingxuan Li
Bioengineering 2025, 12(8), 804; https://doi.org/10.3390/bioengineering12080804 - 26 Jul 2025
Viewed by 247
Abstract
Alzheimer’s disease (AD) and ischemic stroke (IS) are prevalent neurological disorders that frequently co-occur in the same individuals. Recent studies have demonstrated that AD and IS share several common risk factors and pathogenic elements, including an overlapping genomic architecture. However, the relationship between [...] Read more.
Alzheimer’s disease (AD) and ischemic stroke (IS) are prevalent neurological disorders that frequently co-occur in the same individuals. Recent studies have demonstrated that AD and IS share several common risk factors and pathogenic elements, including an overlapping genomic architecture. However, the relationship between IS risk gene polymorphisms and AD has been less extensively studied. We aimed at determining whether IS risk gene polymorphisms were associated with the risk of AD and the severity of AD in AD patients. We utilized data of AD patients and normal controls (NCs) sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. IS risk single nucleotide polymorphisms (SNPs) were identified through the most recent and largest IS genome-wide association study (GWAS) meta-analysis. Subsequently, we conducted SNP-based association analysis of IS-risk SNPs with the risk of AD, along with amyloid, tau, and neuroimaging for AD. The generalized multifactor dimensionality reduction (GMDR) model was used to assess the interactions among IS-risk SNPs and apolipoprotein E (ApoE) ε4. Protein–protein interactions (PPIs) of the IS-risk genes product and APOE were explored using the STRING database. Seven IS-risk SNPs were involved in the study. Five SNPs were found to be associated with at least one measurement of cerebrospinal fluid (CSF) levels of amyloid-beta 1–42 (Aβ42), total tau (t-tau), and phosphorylated tau 181 (p-tau181), as well as the volumes of the hippocampus, whole brain, entorhinal cortex, and mid-temporal regions. After multiple testing corrections, we found that T allele of rs1487504 contributed to an increased risk of AD in non-ApoE ε4 carriers. The combination of rs1487504 and ApoE ε4 emerged as the optimal two-factor model, and its interaction was significantly related to the risk of AD. Additionally, C allele of rs880315 was significantly associated with elevated levels of CSF Aβ42 in AD patients, and A allele of rs10774625 was significantly related to a reduction in the volume of the entorhinal cortex in AD patients. This study found that IS risk SNPs were associated with both the risk of AD and AD major indicators in the ADNI cohort. These findings elucidated the role of IS in AD from a genetic perspective and provided an innovative approach to predict AD through IS-risk SNPs. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

18 pages, 3973 KiB  
Article
Identification and Characterization of Static Craniofacial Defects in Pre-Metamorphic Xenopus laevis Tadpoles
by Emilie Jones, Jay Miguel Fonticella and Kelly A. McLaughlin
J. Dev. Biol. 2025, 13(3), 26; https://doi.org/10.3390/jdb13030026 - 25 Jul 2025
Viewed by 309
Abstract
Craniofacial development is a complex, highly conserved process involving multiple tissue types and molecular pathways, with perturbations resulting in congenital defects that often require invasive surgical interventions to correct. Remarkably, some species, such as Xenopus laevis, can correct some craniofacial abnormalities during [...] Read more.
Craniofacial development is a complex, highly conserved process involving multiple tissue types and molecular pathways, with perturbations resulting in congenital defects that often require invasive surgical interventions to correct. Remarkably, some species, such as Xenopus laevis, can correct some craniofacial abnormalities during pre-metamorphic stages through thyroid hormone-independent mechanisms. However, the full scope of factors mediating remodeling initiation and coordination remain unclear. This study explores the differential remodeling responses of craniofacial defects by comparing the effects of two pharmacological agents, thioridazine-hydrochloride (thio) and ivermectin (IVM), on craniofacial morphology in X. laevis. Thio-exposure reliably induces a craniofacial defect that can remodel in pre-metamorphic animals, while IVM induces a permanent, non-correcting phenotype. We examined developmental changes from feeding stages to hindlimb bud stages and mapped the effects of each agent on the patterning of craniofacial tissue types including: cartilage, muscle, and nerves. Our findings reveal that thio-induced craniofacial defects exhibit significant consistent remodeling, particularly in muscle, with gene expression analysis revealing upregulation of key remodeling genes, matrix metalloproteinases 1 and 13, as well as their regulator, prolactin.2. In contrast, IVM-induced defects show no significant remodeling, highlighting the importance of specific molecular and cellular factors in pre-metamorphic craniofacial correction. Additionally, unique neuronal profiles suggest a previously underappreciated role for the nervous system in tissue remodeling. This study provides novel insights into the molecular and cellular mechanisms underlying craniofacial defect remodeling and lays the groundwork for future investigations into tissue repair in vertebrates. Full article
Show Figures

Figure 1

20 pages, 2498 KiB  
Review
CRISPR/Cas-Based Ex Vivo Gene Therapy and Lysosomal Storage Disorders: A Perspective Beyond Cas9
by Andrés Felipe Leal, Luis Eduardo Prieto and Harry Pachajoa
Cells 2025, 14(15), 1147; https://doi.org/10.3390/cells14151147 - 25 Jul 2025
Viewed by 447
Abstract
Lysosomal storage disorders (LSDs) are inherited metabolic conditions characterized by lysosomal enzyme deficiencies leading to substrate accumulation. As genetic diseases, LSDs can be treated with gene therapies (GT), including the CRISPR/Cas systems. The CRISPR/Cas systems enable precise and programmable genome editing, leading to [...] Read more.
Lysosomal storage disorders (LSDs) are inherited metabolic conditions characterized by lysosomal enzyme deficiencies leading to substrate accumulation. As genetic diseases, LSDs can be treated with gene therapies (GT), including the CRISPR/Cas systems. The CRISPR/Cas systems enable precise and programmable genome editing, leading to targeted modifications at specific genomic loci. While the classical CRISPR/Cas9 system has been extensively used to generate LSD disease models and correct disease-associated genetic alterations through homologous recombination (HR), recently described Cas proteins as well as CRISPR/Cas9-derived strategies such as base editing, prime editing, and homology-independent targeted integration (HITI) offer a novel way to develop innovative treatments for LSDs. The direct administration of the CRISPR/Cas9 system remains the primary strategy evaluated in several LSDs; nevertheless, the ex vivo CRISPR/Cas9-based approach has been recently explored, primarily in central nervous system-affecting LSDs. Ex vivo approaches involve genetically modifying, in theory, any patient cells in the laboratory and reintroducing them into the patient to provide a therapeutic effect. This manuscript reviews the molecular aspects of the CRISPR/Cas technology and its implementation in ex vivo strategies for LSDs while discussing novel approaches beyond the classical CRISPR/Cas9 system. Full article
(This article belongs to the Special Issue Gene Therapy for Rare Diseases)
Show Figures

Figure 1

33 pages, 8165 KiB  
Review
The Era of Gene Therapy: The Advancement of Lentiviral Vectors and Their Pseudotyping
by Bat-Erdene Jargalsaikhan, Masanaga Muto and Masatsugu Ema
Viruses 2025, 17(8), 1036; https://doi.org/10.3390/v17081036 - 24 Jul 2025
Viewed by 711
Abstract
Over 35 years of history, the field of gene therapy has undergone much progress. The initial concept—the replacement of dysfunctional genes with correct ones—has advanced to the next stage and reached the level of precise genome editing. Dozens of gene therapy products based [...] Read more.
Over 35 years of history, the field of gene therapy has undergone much progress. The initial concept—the replacement of dysfunctional genes with correct ones—has advanced to the next stage and reached the level of precise genome editing. Dozens of gene therapy products based on viral and non-viral delivery platforms have been approved, marking the dawn of the gene therapy era. These viral vector strategies rely on adenoviruses, adeno-associated viruses, lentivirus-derived tools, and so on. From the middle of the gene therapy transition, despite the challenges and serious negative consequences, the lentiviral vector has emerged as a cornerstone and demonstrated benefits in fields ranging from basic science to gene therapy. Therefore, we outline the importance of lentiviral vectors in the gene therapy era by focusing on their roles in the clinical usage, derivation, and development of next-generation platforms, as well as their pseudotyping. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

17 pages, 1042 KiB  
Article
Association of VAX1, MAFB, WNT3 with Non-Syndromic Cleft Lip with or without Cleft Palate in a Japanese Population
by Tran Phuong Thao, Teruyuki Niimi, Satoshi Suzuki, Toko Hayakawa, Chisato Sakuma, Ken Kitagawa, Hideto Imura, Hisataka Kondo, Nguyen Huu Tu, Tong Minh Son, Vo Truong Nhu Ngoc, Le Kha Anh, Pham Nguyen Gia Loc, Hiroo Furukawa, Nagana Natsume and Nagato Natsume
Genes 2025, 16(8), 862; https://doi.org/10.3390/genes16080862 - 24 Jul 2025
Viewed by 309
Abstract
Background/Objectives: Non-syndromic cleft lip with or without palate (NSCL/P) is a common, multifactorial congenital anomaly. As genetic associations can be population-specific, this study aimed to investigate single-nucleotide polymorphisms (SNPs) in the VAX1, MAFB, and WNT3 genes for association with NSCL/P in [...] Read more.
Background/Objectives: Non-syndromic cleft lip with or without palate (NSCL/P) is a common, multifactorial congenital anomaly. As genetic associations can be population-specific, this study aimed to investigate single-nucleotide polymorphisms (SNPs) in the VAX1, MAFB, and WNT3 genes for association with NSCL/P in a Japanese cohort. Methods: A case–control study was conducted with 310 Japanese patients with NSCL/P and 308 ethnically matched healthy controls from Aichi Gakuin Dental Hospital. We genotyped SNPs rs7078160 (VAX1), rs13041247 (MAFB), and rs3809857 (WNT3) using TaqMan assays. Associations were assessed using chi-squared tests, with results stratified by sex and corrected for multiple comparisons using the Bonferroni method. Results: The VAX1 rs7078160 A allele was significantly associated with an increased risk for NSCL/P (OR = 1.67, p < 0.00001). The association was particularly strong in females (OR = 1.93, p < 0.00001) but not significant in males after correction. The MAFB rs13041247 variant showed a nominal protective association with the NSCLO subtype that was not significant after Bonferroni correction. No significant association was found for WNT3. A notable gene–gene interaction was observed, where carrying risk alleles for both VAX1 and MAFB significantly increased overall NSCL/P risk (OR = 2.65, p = 0.00008). Conclusions: VAX1 rs7078160 is a significant risk factor for NSCL/P in the Japanese population, with a pronounced female-specific effect. A synergistic interaction between VAX1 and MAFB elevates disease risk, whereas WNT3 was not implicated in this cohort. These findings underscore the population-specific genetic architecture of NSCL/P. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

4 pages, 144 KiB  
Correction
Correction: Holmes, T.R.; Paller, A.S. Gene Regulation Using Spherical Nucleic Acids to Treat Skin Disorders. Pharmaceuticals 2020, 13, 360
by Thomas R. Holmes and Amy S. Paller
Pharmaceuticals 2025, 18(8), 1091; https://doi.org/10.3390/ph18081091 - 23 Jul 2025
Viewed by 165
Abstract
Update to Table [...] Full article
(This article belongs to the Section Pharmaceutical Technology)
17 pages, 2895 KiB  
Article
Salivary Proteome Profile of Xerostomic Patients Reveals Pathway Dysregulation Related to Neurodegenerative Diseases: A Pilot Study
by Abhijeet A. Henry, Micaela F. Beckman, Thomas S. Fry, Michael T. Brennan, Farah Bahrani Mougeot and Jean-Luc C. Mougeot
Int. J. Mol. Sci. 2025, 26(15), 7037; https://doi.org/10.3390/ijms26157037 - 22 Jul 2025
Viewed by 354
Abstract
Xerostomia, the subjective complaint of a dry mouth, is frequently associated with salivary flow reduction and/or salivary gland hypofunction. This condition significantly impacts an individual’s quality of life and oral health, including difficulties in speaking, chewing, and swallowing. Xerostomia may be caused by [...] Read more.
Xerostomia, the subjective complaint of a dry mouth, is frequently associated with salivary flow reduction and/or salivary gland hypofunction. This condition significantly impacts an individual’s quality of life and oral health, including difficulties in speaking, chewing, and swallowing. Xerostomia may be caused by autoimmune diseases, xerogenic medications, and radiation therapy. Our objective was to identify differentially expressed proteins in the saliva of patients with medication and autoimmune disease-associated xerostomia compared to non-xerostomic control subjects. Two groups of individuals (N = 45 total) were recruited: non-xerostomic subjects (NX-group; n = 18) and xerostomic patients (XP-group; n = 27). Dried saliva spot samples were collected from major salivary glands, i.e., parotid (left and right) and submandibular glands. Proteomic analysis was performed by deep nanoLC-MS/MS. Differential protein expression in the XP-group relative to the NX-group was determined by the Mann–Whitney U-test with FDR Benjamini–Hochberg correction (padj < 0.05). The Search Tool for Recurring Instances of Neighboring Genes (STRINGv12.0) was used to generate interaction networks and perform pathway analysis. A total of 1407 proteins were detected. Of these, 86 from the left parotid gland, 112 from the right parotid gland, and 73 from the submandibular gland were differentially expressed proteins (DEPs). Using STRING analysis, we identified, for the first time, several neurodegenerative disease-associated networks, primarily involving the downregulation of the 20S proteasome core complex and glyoxalase proteins across salivary glands. In this study, we determined neuronal dysregulation and impaired methylglyoxal (MGO) detoxification, possibly through reduced protein expression of glyoxalase Parkinson’s Disease (PD) Protein 7 (encoded by the PARK7 gene) in major salivary glands of xerostomic patients. Indeed, impaired MGO detoxification has been previously shown to cause salivary gland dysfunction in a mouse model of type 2 diabetes. Based on other DEPs associated with neurodegenerative disorders, our results also suggest a possible deficiency in the parasympathetic nervous system innervation of salivary glands, warranting further investigation. Full article
(This article belongs to the Special Issue Molecular Perspective in Autoimmune Diseases)
Show Figures

Figure 1

10 pages, 1183 KiB  
Article
Novel Association of rs17111557(T) in PCSK9 with Higher Diastolic Blood Pressure in Northern Ghanaian Adults: Candidate Gene Analysis from an AWI-Gen Sub-Study
by Joseph A. Aweeya, Lord J. J. Gowans, Engelbert A. Nonterah, Victor Asoala, Patrick Ansah, Michele Ramsay and Godfred Agongo
BioMed 2025, 5(3), 15; https://doi.org/10.3390/biomed5030015 - 22 Jul 2025
Viewed by 253
Abstract
Background/Objectives: Cardiovascular diseases are a global health issue with an increasing burden and are exacerbated by hypertension. High blood pressure is partly attributed to genetic variants that are generally not well understood or extensively studied in sub-Saharan African populations. Variants linked to [...] Read more.
Background/Objectives: Cardiovascular diseases are a global health issue with an increasing burden and are exacerbated by hypertension. High blood pressure is partly attributed to genetic variants that are generally not well understood or extensively studied in sub-Saharan African populations. Variants linked to blood pressure have been found through genome-wide association studies (GWASs), which were mostly conducted among European ancestry populations; however, limited research has been undertaken in Africa. The current study evaluated single-nucleotide polymorphisms (SNPs) of PCSK9, ABCA1, LPL, and PON1 in relation to blood pressure measurements of 1839 Ghanaian adults. Methods: Genotypes were extracted from data generated by the H3Africa SNP array. After adjusting for sex, age, smoking, and body mass index (BMI), inferential statistics were used to investigate the relationships between SNPs and blood pressure (BP) indices. Additionally, Bonferroni correction was used to adjust for multiple testing. Results: Diastolic blood pressure (DBP) and the minor allele T of the PCSK9 variant (rs17111557) were positively associated at p = 0.006 after covariate adjustments. Although this novel DBP-associated variant is located in the 3′ untranslated region (3′ UTR) of the PCSK9 gene, in silico functional prediction suggests it is an expression quantitative trait locus (eQTL) that may change the binding site of transcription factors, potentially altering the rate of transcription and impacting DBP in this Ghanaian population. Conclusions: Our findings highlight the role of genetics in hypertension risk and the potential of discovering new therapies targeting isolated diastolic blood pressure in this rural African population. Full article
Show Figures

Figure 1

28 pages, 2258 KiB  
Review
CRISPR in Neurodegenerative Diseases Treatment: An Alternative Approach to Current Therapies
by Amna Akbar, Rida Haider, Luisa Agnello, Bushra Noor, Nida Maqsood, Fatima Atif, Wajeeha Ali, Marcello Ciaccio and Hira Tariq
Genes 2025, 16(8), 850; https://doi.org/10.3390/genes16080850 - 22 Jul 2025
Viewed by 620
Abstract
Neurodegenerative diseases (NDs) pose a major challenge to global healthcare systems owing to their devastating effects and limited treatment options. These disorders are characterized by progressive loss of neuronal structure and function, resulting in cognitive and motor impairments. Current therapies primarily focus on [...] Read more.
Neurodegenerative diseases (NDs) pose a major challenge to global healthcare systems owing to their devastating effects and limited treatment options. These disorders are characterized by progressive loss of neuronal structure and function, resulting in cognitive and motor impairments. Current therapies primarily focus on symptom management rather than on targeting the underlying causes. However, clustered regularly interspaced short palindromic repeat (CRISPR) technology offers a promising alternative by enabling precise genetic modifications that could halt or even reverse ND progression. CRISPR-Cas9, the most widely used CRISPR system, acts as a molecular scissor targeting specific DNA sequences for editing. By designing guide RNAs (gRNAs) to match sequences in genes associated with NDs, researchers can leverage CRISPR to knockout harmful genes, correct mutations, or insert protective genes. This review explores the potential of CRISPR-based therapies in comparison with traditional treatments for NDs. As research advances, CRISPR has the potential to revolutionize ND treatment by addressing its genetic underpinnings. Ongoing clinical trials and preclinical studies continue to expand our understanding and application of this powerful tool to fight debilitating conditions. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

Back to TopTop