Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = core microbial community

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2816 KiB  
Article
Influence of the Origin, Feeding Status, and Trypanosoma cruzi Infection in the Microbial Composition of the Digestive Tract of Triatoma pallidipennis
by Everardo Gutiérrez-Millán, Alba N. Lecona-Valera, Mario H. Rodriguez and Ana E. Gutiérrez-Cabrera
Biology 2025, 14(8), 984; https://doi.org/10.3390/biology14080984 (registering DOI) - 2 Aug 2025
Abstract
Triatoma pallidipennis, the main vector of Chagas disease in central Mexico, hosts a diverse and complex gut bacterial community shaped by environmental and physiological factors. To gain insight into these microbes’ dynamics, we characterised the gut bacterial communities of wild and insectary [...] Read more.
Triatoma pallidipennis, the main vector of Chagas disease in central Mexico, hosts a diverse and complex gut bacterial community shaped by environmental and physiological factors. To gain insight into these microbes’ dynamics, we characterised the gut bacterial communities of wild and insectary insects under different feeding and Trypanosoma cruzi infection conditions, using 16S rRNA gene sequencing. We identified 91 bacterial genera across 8 phyla, with Proteobacteria dominating most samples. Wild insects showed greater bacterial diversity, led by Acinetobacter and Pseudomonas, while insectary insects exhibited lower diversity and were dominated by Arsenophonus. The origin of the insects, whether they were reared in the insectary (laboratory) or collected from wild populations, was the principal factor structuring the gut microbiota, followed by feeding and T. cruzi infection. A stable core microbiota of 12 bacterial genera was present across all conditions, suggesting key functional roles in host physiology. Co-occurrence and functional enrichment analyses revealed that feeding and infection induced condition-specific microbial interactions and metabolic pathways. Our findings highlight the ecological plasticity of the triatomine gut microbiota and its potential role in modulating vector competence, providing a foundation for future microbiota-based control strategies. Full article
(This article belongs to the Special Issue Metabolic Interactions between the Gut Microbiome and Host)
Show Figures

Figure 1

24 pages, 2419 KiB  
Review
Arbuscular Mycorrhizal Fungi in the Ecological Restoration of Tropical Forests: A Bibliometric Review
by Yajaira Arévalo, María Eugenia Avila-Salem, Paúl Loján, Narcisa Urgiles-Gómez, Darwin Pucha-Cofrep, Nikolay Aguirre and César Benavidez-Silva
Forests 2025, 16(8), 1266; https://doi.org/10.3390/f16081266 (registering DOI) - 2 Aug 2025
Abstract
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological [...] Read more.
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological restoration, based on 3835 publications indexed in the Web of Science and Scopus databases from 2001 to 2024. An average annual growth rate of approximately 9.45% was observed, with contributions from 10,868 authors across 880 journals. The most prominent journals included Mycorrhiza (3.34%), New Phytologist (3.00%), and Applied Soil Ecology (2.79%). Thematically, dominant research areas encompassed soil–plant interactions, phytoremediation, biodiversity, and microbial ecology. Keyword co-occurrence analysis identified “arbuscular mycorrhizal fungi,” “diversity,” “soil,” and “plant growth” as core topics, while emerging topics such as rhizosphere interactions and responses to abiotic stress showed increasing prominence. Despite the expanding body of literature, key knowledge gaps remain, particularly concerning AMF–plant specificity, long-term restoration outcomes, and integration of microbial community dynamics. These findings offer critical insights into the development of AMF research and underscore its strategic importance in tropical forest restoration, providing a foundation for future studies and informing ecosystem management policies. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

14 pages, 4298 KiB  
Article
Construction of Synthetic Microbial Communities for Fermentation of Mung Bean Sour Pulp and Analysis of Nutritional Components
by Yanfang Zhang, Luwei Cao, Haining Yang, Peng Li and Dahong Wang
Fermentation 2025, 11(8), 443; https://doi.org/10.3390/fermentation11080443 (registering DOI) - 31 Jul 2025
Viewed by 153
Abstract
To explore an industrial fermentation approach for traditional mung bean sour pulp, this study isolated core microorganisms including lactic acid bacteria and yeasts from naturally fermented samples and constructed a synthetic microbial community. The optimized community consisted of Lactiplantibacillus pentosus, Lactococcus garvieae [...] Read more.
To explore an industrial fermentation approach for traditional mung bean sour pulp, this study isolated core microorganisms including lactic acid bacteria and yeasts from naturally fermented samples and constructed a synthetic microbial community. The optimized community consisted of Lactiplantibacillus pentosus, Lactococcus garvieae, and Cyberlindnera jadinii at a ratio of 7:3:0.1 and was used to ferment cooked mung bean pulp with a material-to-water ratio of 1:8 and 1% sucrose addition. Under these conditions, the final product exhibited significantly higher levels of protein (4.55 mg/mL), flavonoids (0.10 mg/mL), polyphenols (0.11 mg/mL), and vitamin C (7.75 μg/mL) than traditionally fermented mung bean sour pulp, along with enhanced antioxidant activity. The analysis of organic acids, free amino acids, and volatile compounds showed that lactic acid was the main acid component, the bitter amino acid content was reduced, the volatile flavor compounds were more abundant, and the level of harmful compound dimethyl sulfide was significantly decreased. These results indicate that fermentation using a synthetic microbial community effectively improved the nutritional quality, flavor, and safety of mung bean sour pulp. Full article
Show Figures

Figure 1

21 pages, 719 KiB  
Article
Changes in Ruminal Dynamics and Microbial Populations Derived from Supplementation with a Protein Concentrate for Cattle with the Inclusion of Non-Conventional Feeding Sources
by Diana Sofía Torres-Velázquez, Daniel Francisco Ramos-Rosales, Manuel Murillo-Ortiz, Jesús Bernardo Páez-Lerma, Juan Antonio Rojas-Contreras, Karina Aide Araiza-Ponce and Damián Reyes-Jáquez
Fermentation 2025, 11(8), 438; https://doi.org/10.3390/fermentation11080438 - 30 Jul 2025
Viewed by 243
Abstract
Feed supplementation strategies are essential for optimizing cattle productivity, and the incorporation of non-conventional feed resources may reduce both production costs and environmental impact. This study evaluated the effects of pelletized protein concentrates (including Acacia farnesiana, A. schaffneri, and Agave duranguensis [...] Read more.
Feed supplementation strategies are essential for optimizing cattle productivity, and the incorporation of non-conventional feed resources may reduce both production costs and environmental impact. This study evaluated the effects of pelletized protein concentrates (including Acacia farnesiana, A. schaffneri, and Agave duranguensis bagasse) on rumen fermentation parameters, microbial communities, and gas emissions. Fistulated bullocks received the concentrate daily, and ruminal contents were collected and filtered before and after supplementation to assess in vitro gas and methane production, pH, and microbial composition using high-throughput sequencing of 16S rRNA and mcrA amplicons. In addition, in situ degradability was evaluated during and after the supplementation period. Supplementation led to a significant (p < 0.05) reduction in degradability parameters and methane production, along with a marked decrease in the abundance of Methanobrevibacter and an increase in succinate-producing taxa. These effects were attributed to the enhanced levels of non-fiber carbohydrates, hemicellulose, crude protein, and the presence of bioactive secondary metabolites and methanol. Rumen microbiota composition was consistent with previously described core communities, and mcrA-based sequencing proved to be a valuable tool for targeted methanogen detection. Overall, the inclusion of non-conventional ingredients in protein concentrates may improve ruminal fermentation efficiency and contribute to methane mitigation in ruminants, although further in vivo trials on a larger scale are recommended. Full article
Show Figures

Figure A1

25 pages, 4954 KiB  
Article
Local Fungi Promote Plant Growth by Positively Affecting Rhizosphere Metabolites to Drive Beneficial Microbial Assembly
by Deyu Dong, Zhanling Xie, Jing Guo, Bao Wang, Qingqing Peng, Jiabao Yang, Baojie Deng, Yuan Gao, Yuting Guo, Xueting Fa and Jianing Yu
Microorganisms 2025, 13(8), 1752; https://doi.org/10.3390/microorganisms13081752 - 26 Jul 2025
Viewed by 349
Abstract
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi [...] Read more.
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi (DK; F18-3) and commercially available bacteria (B0) were used as materials to explore their regulatory mechanisms for plant growth, soil physicochemical factors, microbial communities, and metabolic profiles in the field. Compared to bacterial treatments, local fungi treatments exhibited stronger ecological restoration efficacy. In addition, the DK and F18-3 strains, respectively, increased shoot and root biomass by 23.43% and 195.58% and significantly enhanced soil nutrient content and enzyme activity. Microbiome analysis further implied that, compared with the CK, DK treatment could significantly improve the α-diversity of fungi in the rhizosphere soil (the Shannon index increased by 14.27%) and increased the amount of unique bacterial genera in the rhizosphere soil of plants, totaling fourteen genera. Meanwhile, this aggregated the most biomarkers and beneficial microorganisms and strengthened the interactions among beneficial microorganisms. After DK treatment, twenty of the positively accumulated differential metabolites (DMs) in the plant rhizosphere were highly positively associated with six plant traits such as shoot length and root length, as well as beneficial microorganisms (e.g., Apodus and Pseudogymnoascus), but two DMs were highly negatively related to plant pathogenic fungi (including Cistella and Alternaria). Specifically, DK mainly inhibited the growth of pathogenic fungi through regulating the accumulation of D-(+)-Malic acid and Gamma-Aminobutyric acid (Cistella and Alternaria decreased by 84.20% and 58.53%, respectively). In contrast, the F18-3 strain mainly exerted its antibacterial effect by enriching Acidovorax genus microorganisms. This study verified the core role of local fungi in the restoration of mining areas in the Qinghai–Tibet Plateau and provided a new direction for the development of microbial agents for ecological restoration in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

15 pages, 562 KiB  
Article
Transforming Agri-Waste into Health Innovation: A Circular Framework for Sustainable Food Design
by Smita Mortero, Jirarat Anuntagool, Achara Chandrachai and Sanong Ekgasit
Sustainability 2025, 17(15), 6712; https://doi.org/10.3390/su17156712 - 23 Jul 2025
Viewed by 365
Abstract
This study addresses the problem of agricultural waste utilization and nutrition for older adults by developing a food product based on a circular design approach. Pineapple core was used to produce a clean-label dietary powder without chemical or enzymatic treatment, relying on repeated [...] Read more.
This study addresses the problem of agricultural waste utilization and nutrition for older adults by developing a food product based on a circular design approach. Pineapple core was used to produce a clean-label dietary powder without chemical or enzymatic treatment, relying on repeated rinsing and hot-air drying. The development process followed a structured analysis of physical, chemical, and sensory properties. The powder contained 83.46 g/100 g dietary fiber, 0° Brix sugar, pH 4.72, low water activity (aw < 0.45), and no detectable heavy metals or microbial contamination. Sensory evaluation by expert panelists confirmed that the product was acceptable in appearance, aroma, and texture, particularly for older adults. These results demonstrate the feasibility and safety of valorizing agri-waste into functional ingredients. The process was guided by the Transformative Circular Product Blueprint, which integrates clean-label processing, IoT-enabled solar drying, and decentralized production. This model supports traceability, low energy use, and adaptation at the community scale. This study contributes to sustainable food innovation and aligns with Sustainable Development Goals (SDGs) 3 (Good Health and Well-being), 9 (Industry, Innovation and Infrastructure), and 12 (Responsible Consumption and Production). Full article
Show Figures

Figure 1

13 pages, 2193 KiB  
Article
Microbiota Anatomical Niche Partitioning of Simulium vanluni (Diptera: Simuliidae)
by Noor Izwan-Anas, Van Lun Low, Zubaidah Ya’cob, Sazaly AbuBakar and Kim-Kee Tan
Diversity 2025, 17(8), 504; https://doi.org/10.3390/d17080504 - 23 Jul 2025
Viewed by 256
Abstract
Background: Microbial communities of insects have distinct roles for their respective hosts. For the black fly (Diptera: Simuliidae), an important vector and ecological indicator, the representative microbiota from the different body regions are not known. Here, we investigated the microbial composition and diversity [...] Read more.
Background: Microbial communities of insects have distinct roles for their respective hosts. For the black fly (Diptera: Simuliidae), an important vector and ecological indicator, the representative microbiota from the different body regions are not known. Here, we investigated the microbial composition and diversity of the head, thorax, and abdomen of wild-caught Simulium vanluni. Methods: Adult Simulium vanluni were surface-sterilized and dissected into head, thorax, and abdomen. For each body region, 20 individuals were pooled into one sample with six replicates per region. DNA was extracted and sequenced using the 16S rRNA amplification method to assess for possible microbial diversity. Data were analyzed using MicrobiomeAnalyst, where we calculated alpha diversity, beta diversity, and tested compositional differences using PERMANOVA. Results: Across 17 pooled samples, three core genera, Wolbachia (78.33%), Rickettsia (9.74%), and Acinetobacter (9.20%), accounted for more than 97% of the 16S rRNA sequencing reads. Head communities were compositionally distinct compared to the thorax and abdomen (PERMANOVA, p < 0.05). Heads were nearly monodominated by Wolbachia (95–97%), exhibiting significantly lower diversity and evenness compared to other body regions. In contrast, the thoracic and abdominal communities were more even, where thoraces were enriched with Acinetobacter (19.16%) relative to Rickettsia (10.85%), while abdomens harbored higher Rickettsia (10.96%) than Acinetobacter (5.68%). Collectively, the near-monodominance of Wolbachia in heads and inverse abundances of Acinetobacter and Rickettsia in thoraces and abdomens suggest possible anatomical niche partitioning or competition exclusion of microbiota across body regions. Conclusions: Our findings reveal fine-scale anatomical niche partitioning in S. vanluni microbiota, with the heads being almost exclusively colonized by Wolbachia, while the thoracic and abdominal niche regions exhibit distinct enrichment patterns for Acinetobacter and Rickettsia. These spatially distinct microbial distributions suggest potential functional specialization across anatomical regions of S. vanluni. Full article
(This article belongs to the Special Issue Diversity, Biodiversity, Threats and Conservation of Arthropods)
Show Figures

Figure 1

18 pages, 29742 KiB  
Article
Enhanced Oilfield-Produced-Water Treatment Using Fe3+-Augmented Composite Bioreactor: Performance and Microbial Community Dynamics
by Qiushi Zhao, Chunmao Chen, Zhongxi Chen, Hongman Shan and Jiahao Liang
Bioengineering 2025, 12(7), 784; https://doi.org/10.3390/bioengineering12070784 - 19 Jul 2025
Viewed by 477
Abstract
The presence of recalcitrant organic compounds in oilfield-produced-water poses significant challenges for conventional biological treatment technologies. In this study, an Fe3+-augmented composite bioreactor was developed to enhance the multi-pollutant removal performance and to elucidate the associated microbial community dynamics. The Fe [...] Read more.
The presence of recalcitrant organic compounds in oilfield-produced-water poses significant challenges for conventional biological treatment technologies. In this study, an Fe3+-augmented composite bioreactor was developed to enhance the multi-pollutant removal performance and to elucidate the associated microbial community dynamics. The Fe3+-augmented system achieved efficient removal of oil (99.18 ± 0.91%), suspended solids (65.81 ± 17.55%), chemical oxygen demand (48.63 ± 15.15%), and polymers (57.72 ± 14.87%). The anaerobic compartment served as the core biotreatment unit, playing a pivotal role in microbial pollutant degradation. High-throughput sequencing indicated that Fe3+ supplementation strengthened syntrophic interactions between iron-reducing bacteria (Trichococcus and Bacillus) and methanogenic archaea (Methanobacterium and Methanomethylovorans), thereby facilitating the biodegradation of long-chain hydrocarbons (e.g., eicosane and nonadecane). Further metabolic function analysis identified long-chain-fatty-acid CoA ligase (EC 6.2.1.3) as a key enzyme mediating the interplay between hydrocarbon degradation and nitrogen cycling. This study elucidated the ecological mechanisms governing Fe3+-mediated multi-pollutant removal in a composite bioreactor and highlighted the potential of this approach for efficient, sustainable, and adaptable management of produced water in the petroleum industry. Full article
Show Figures

Figure 1

17 pages, 1568 KiB  
Article
Analysis of the Microbiota of Milk from Holstein–Friesian Dairy Cows Fed a Microbial Supplement
by Bronwyn E. Campbell, Mohammad Mahmudul Hassan, Timothy Olchowy, Shahab Ranjbar, Martin Soust, Orlando Ramirez-Garzon, Rafat Al Jassim, Robert J. Moore and John I. Alawneh
Animals 2025, 15(14), 2124; https://doi.org/10.3390/ani15142124 - 18 Jul 2025
Viewed by 406
Abstract
Previous studies of direct-fed microbial (DFM) supplements showed variable effects on the microbiota and physiology of dairy cows. The main aims of this study were to investigate the milk microbiota of cows supplemented with a lactobacilli-based DFM compared to untreated cows; describe the [...] Read more.
Previous studies of direct-fed microbial (DFM) supplements showed variable effects on the microbiota and physiology of dairy cows. The main aims of this study were to investigate the milk microbiota of cows supplemented with a lactobacilli-based DFM compared to untreated cows; describe the changes; and quantify the association between the taxa and cow productivity. The study followed seventy-five Holstein–Friesian dairy cows supplemented with a DFM over 16 months compared to seventy-five non-supplemented cows. Twenty-five cows from each group were sampled for microbiota analysis. The top taxa significantly associated with the variables were as follows: Age (Mammaliicoccus_319276, Turicibacter), milk production (Turicibacter, Bifidobacterium_388775), DIM (Stenotrophomonas_A_615274, Pedobacter_887417), milk fat percentage (Pseudomonas_E_647464, Lactobacillus), calendar month (Jeotgalicoccus_A_310962, Planococcus), milk protein percentage (Tistrella, Pseudomonas_E_650325), experimental group (Enterococcus_B, Aeromonas), SCC (Paenochrobactrum, Pseudochrobactrum), and trimester of pregnancy (Dyadobacter_906144, VFJN01 (Acidimicrobiales)). These were identified using multivariable analysis. Twenty-six genera were associated with the differences between experimental groups, including Pseudomonas, Lactococcus and Staphylococcus. Microbial taxa that changed in relative abundance over time included Atopostipes, Brevibacterium and Succinivibrio. Many of these genera were also part of the core microbiota. Supplementation with the DFM significantly altered the milk microbiota composition in the dairy cows, highlighting the impact of long-term DFM supplementation on microbial communities. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

25 pages, 1611 KiB  
Review
Microbial Interactions in Food Fermentation: Interactions, Analysis Strategies, and Quality Enhancement
by Wenjing Liu, Yunxuan Tang, Jiayan Zhang, Juan Bai, Ying Zhu, Lin Zhu, Yansheng Zhao, Maria Daglia, Xiang Xiao and Yufeng He
Foods 2025, 14(14), 2515; https://doi.org/10.3390/foods14142515 - 17 Jul 2025
Viewed by 401
Abstract
Food fermentation is driven by microbial interactions. This article reviews the types of microbial interactions during food fermentation, the research strategies employed, and their impacts on the quality of fermented foods. Microbial interactions primarily include mutualism, commensalism, amensalism, and competition. Based on these [...] Read more.
Food fermentation is driven by microbial interactions. This article reviews the types of microbial interactions during food fermentation, the research strategies employed, and their impacts on the quality of fermented foods. Microbial interactions primarily include mutualism, commensalism, amensalism, and competition. Based on these interaction patterns, the safety, nutritional composition, and flavor quality of food can be effectively improved. Achieving precise control of fermented foods’ qualities via microbial interaction remains a critical challenge. Emerging technologies such as high-throughput sequencing, cell sorting, and metabolomics enable the systematic analysis of core microbial interaction mechanisms in complex systems. Using synthetic microbial communities and genome-scale metabolic network models, complicated microbial communities can be effectively simplified. In addition, regulatory targets of food quality can be precisely identified. These strategies lay a solid foundation for the precise improvement of fermented food quality and functionality. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

22 pages, 2239 KiB  
Article
Relationship Between Aquatic Fungal Diversity in Surface Water and Environmental Factors in Yunnan Dashanbao Black-Necked Crane National Nature Reserve, China
by Kaize Shen, Yufeng Tang, Jiaoxu Shi, Zhongxiang Hu, Meng He, Jinzhen Li, Yuanjian Wang, Mingcui Shao and Honggao Liu
J. Fungi 2025, 11(7), 526; https://doi.org/10.3390/jof11070526 - 16 Jul 2025
Viewed by 367
Abstract
Aquatic fungi serve as core ecological engines in freshwater ecosystems, driving organic matter decomposition and energy flow to sustain environmental balance. Wetlands, with their distinct hydrological dynamics and nutrient-rich matrices, serve as critical habitats for these microorganisms. As an internationally designated Ramsar Site, [...] Read more.
Aquatic fungi serve as core ecological engines in freshwater ecosystems, driving organic matter decomposition and energy flow to sustain environmental balance. Wetlands, with their distinct hydrological dynamics and nutrient-rich matrices, serve as critical habitats for these microorganisms. As an internationally designated Ramsar Site, Yunnan Dashanbao Black-Necked Crane National Nature Reserve in China not only sustains endangered black-necked cranes but also harbors a cryptic reservoir of aquatic fungi within its peat marshes and alpine lakes. This study employed high-throughput sequencing to characterize fungal diversity and community structure across 12 understudied wetland sites in the reserve, while analyzing key environmental parameters (dissolved oxygen, pH, total nitrogen, and total phosphorus). A total of 5829 fungal operational taxonomic units (OTUs) spanning 649 genera and 15 phyla were identified, with Tausonia (4.17%) and Cladosporium (1.89%) as dominant genera. Environmental correlations revealed 19 genera significantly linked to abiotic factors. FUNGuild functional profiling highlighted saprotrophs (organic decomposers) and pathogens as predominant trophic guilds. Saprotrophs exhibited strong associations with pH, total nitrogen, and phosphorus, whereas pathogens correlated primarily with pH. These findings unveil the hidden diversity and ecological roles of aquatic fungi in alpine wetlands, emphasizing their sensitivity to environmental gradients. By establishing baseline data on fungal community dynamics, this work advances the understanding of wetland microbial ecology and informs conservation strategies for Ramsar sites. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

13 pages, 13698 KiB  
Article
Gut Microbiota Diversity in 16 Stingless Bee Species (Hymenoptera: Apidae: Meliponini)
by María de Lourdes Ramírez-Ahuja, Kenzy I. Peña-Carrillo, Mayra A. Gómez-Govea, Mariana Lizbeth Jiménez-Martínez, Gerardo de Jesús Trujillo-Rodríguez, Marisol Espinoza-Ruiz, Antonio Guzmán Velasco, Adriana E. Flores, José Ignacio González-Rojas, Diana Reséndez-Pérez and Iram Pablo Rodríguez-Sánchez
Microorganisms 2025, 13(7), 1645; https://doi.org/10.3390/microorganisms13071645 - 11 Jul 2025
Viewed by 353
Abstract
Bacterial symbionts play an important role in insect survival by contributing to key metabolic and defensive functions. While stingless bees are known to harbor diverse microbial communities, their core bacterial symbionts remain poorly characterized. In this study, we analyzed the gut microbiota of [...] Read more.
Bacterial symbionts play an important role in insect survival by contributing to key metabolic and defensive functions. While stingless bees are known to harbor diverse microbial communities, their core bacterial symbionts remain poorly characterized. In this study, we analyzed the gut microbiota of sixteen stingless bee species collected from different regions of Mexico using 16S rRNA gene sequencing on the Illumina® MiSeq™ platform. Our results revealed that Proteobacteria, Firmicutes, and Actinobacteria are the most abundant bacterial phyla across species. Among the dominant genera, lactic acid bacteria, such as Lactobacillus spp., Bifidobacterium, and Fructobacillus spp., were the most prevalent. These bacteria are responsible for developing biochemical functions in metabolic processes like lactic fermentation and the biotransformation of complex organic compounds into molecules that are more easily assimilated by bees. This study offers a novel perspective on the diversity and predicted composition of gut microbiota in Mexican stingless bees. By highlighting differences in microbial communities among species with different feeding habits, our results emphasize the importance of preserving microbial biodiversity in these pollinators. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

16 pages, 1041 KiB  
Article
Isolation and Characterization of Cultivable Microbes from the Gut of Zophobas atratus (Coleoptera: Tenebrionidae) Larvae Reared on Two Types of Artificial Diets
by Vladislava Baklanova, Alexander Kuprin, Ivan Baklanov and Vadim Kumeiko
Biology 2025, 14(7), 824; https://doi.org/10.3390/biology14070824 - 7 Jul 2025
Viewed by 398
Abstract
Gut microbes are important for saproxylophagous insects, but little is known about the specific types of microbes that we can grow in the lab and how their diet affects them. We characterized aerobic culturable microbes from the superworm Zophobas atratus larvae reared on [...] Read more.
Gut microbes are important for saproxylophagous insects, but little is known about the specific types of microbes that we can grow in the lab and how their diet affects them. We characterized aerobic culturable microbes from the superworm Zophobas atratus larvae reared on a standard diet (SD) and a fungal-based diet (FD) using the selective plating and 16S rRNA sequencing of isolates. Five functional groups were cultured: amino acid autotrophs, enterobacteria, yeasts, cellulolytic bacteria, and molds. A quantitative assessment revealed distinct diet-dependent patterns: SD-fed larvae showed the dominance of enterobacteria and amino acid autotrophs, while FD-fed larvae exhibited a higher abundance of enterobacteria and yeasts. Mold populations remained minimal under both diets. A phylogenetic analysis of bacterial isolates showed four core bacterial phyla (Pseudomonadota, Actinobacteria, Bacillota, and Bacteroidota) with diet-sensitive genus-level variations. Pseudomonadota dominated both diets, but certain genera were associated with different diets: Micrococcus and Brucella in the SD versus Citrobacter and Pseudomonas in the FD. Shared genera (Klebsiella, Enterobacter, and Bacillus) may represent a core culturable community. These findings demonstrate the influence of diet on culturable gut microbes while highlighting the need for complementary molecular approaches to study unculturable taxa. The isolated strains provide resources for investigating microbial functions in insect nutrition. Full article
(This article belongs to the Special Issue Feeding Biology and Nutrition in Insects)
Show Figures

Figure 1

27 pages, 3832 KiB  
Article
Regulation of the Microbiome in Soil Contaminated with Diesel Oil and Gasoline
by Agata Borowik, Jadwiga Wyszkowska, Magdalena Zaborowska and Jan Kucharski
Int. J. Mol. Sci. 2025, 26(13), 6491; https://doi.org/10.3390/ijms26136491 - 5 Jul 2025
Viewed by 296
Abstract
Petroleum-derived contaminants pose a significant threat to the soil microbiome. Therefore, it is essential to explore materials and techniques that can restore homeostasis in disturbed environments. The aim of the study was to assess the response of the soil microbiome to contamination with [...] Read more.
Petroleum-derived contaminants pose a significant threat to the soil microbiome. Therefore, it is essential to explore materials and techniques that can restore homeostasis in disturbed environments. The aim of the study was to assess the response of the soil microbiome to contamination with diesel oil (DO) and gasoline (G) and to determine the capacity of sorbents, vermiculite (V), dolomite (D), perlite (P) and agrobasalt (A), to enhance the activity of microorganisms under Zea mays cultivation conditions in pot experiments. The restoration and activity of the soil microbiome were evaluated based on the abundance and diversity of bacteria and fungi, using both classical microbiological methods and Next Generation Sequencing (NGS). Bioinformatic tools were employed to calculate the physicochemical properties of proteins. DO increased the abundance of cultured microorganisms, whereas G significantly reduced it. Both DO and G increased the number of ASVs of Proteobacteria and decreased the relative abundance of Gemmatimonadetes, Chloroflexi, Acidobacteria, Verrucomicrobia, Planctomycetes, and fungal OTUs. These contaminants stimulated the growth of bacteria from the genera Rhodanobacter, Sphingomonas, Burkholderia, Sphingobium, and Mycobacterium, as well as fungi belonging to the Penicillium genus. Conversely, they had a negative effect on Kaistobacter, Rhodoplanes, and Ralstonia, as well as the fungi Chaetomium, Pseudaleuria, and Mortierella. DO caused greater changes in microbial alpha diversity than G. The stability of microbial proteins was higher at 17 °C than at −1 °C. The most stable proteins were found in bacteria and fungi identified within the core soil microbiome. These organisms exhibited greater diversity and more compact RNA secondary structures. The application of sorbents to contaminated soil altered the composition of bacterial and fungal communities. All sorbents enhanced the growth of organotrophic bacteria (Org) and fungi (Fun) in DO-contaminated soils, and actinobacteria (Act) and fungi in G-contaminated soils. V and A had the most beneficial effects on cultured microorganisms. In DO-contaminated soils, all sorbents inhibited the growth of Rhodanobacter, Parvibaculum, Sphingomonas, and Burkholderia, while stimulating Salinibacterium and Penicillium. In G-contaminated but otherwise unamended soils, all sorbents negatively affected the growth of Burkholderia, Sphingomonas, Kaistobacter, Rhodoplanes, Pseudonocardia, and Ralstonia and increased the abundance of Gymnostellatospora. The results of this study provide a valuable foundation for developing effective strategies to remediate soils contaminated with petroleum-derived compounds. Full article
Show Figures

Figure 1

19 pages, 35006 KiB  
Article
The Comprehensive Root Metabolite–Rhizomicrobiota Response Patterns of Rhododendron delavayi (R. delavayi) to Waterlogging Stress and Post–Waterlogging Recovery
by Jing Tang, Qingqing Huang, Qian Wang, Fei Shan, Shaolong Wu, Ximin Zhang, Ming Tang and Yin Yi
Horticulturae 2025, 11(7), 770; https://doi.org/10.3390/horticulturae11070770 - 2 Jul 2025
Viewed by 311
Abstract
Waterlogging is a critical abiotic stressor that significantly impacts plant growth. Plants under waterlogging stress release metabolic signals that recruit rhizosphere microorganisms and enhance stress resistance. However, the mechanisms through which the non-adaptive species R. delavayi responds to waterlogging stress via the synergistic [...] Read more.
Waterlogging is a critical abiotic stressor that significantly impacts plant growth. Plants under waterlogging stress release metabolic signals that recruit rhizosphere microorganisms and enhance stress resistance. However, the mechanisms through which the non-adaptive species R. delavayi responds to waterlogging stress via the synergistic interaction between root metabolites and rhizosphere microbiota remain poorly elucidated. Here, we employed pot experiments to characterize the responses of the root metabolite–microbiota complex in R. delavayi during waterlogging stress and subsequent recovery. Our results revealed that waterlogging altered the root morphology, the root metabolite profile, rhizosphere microbial diversity and network complexity, and these effects persisted during recovery. A significant correlation between root metabolites and the rhizosphere microbial community structure during waterlogging stress and recovery. Importantly, some differentially accumulated metabolites had significant effects on the assembly of rhizosphere microbes. Most of the core microbes in the rhizosphere microbial community under waterlogging and post–waterlogging recovery treatment were likely beneficial bacteria. Based on these findings, we propose a model for how root metabolites and rhizosphere microbes interact to help R. delavayi cope with waterlogging and recover. Based on these findings, we propose a possible response pattern of root metabolites and rhizosphere microbiota complex in R. delavayi under waterlogging stress and recovery. This work provides new insights into the synergistic mechanisms enhancing plant waterlogging tolerance and highlights the potential of harnessing rhizosphere microbiota to improve resilience in rhododendrons. Full article
Show Figures

Figure 1

Back to TopTop