Microbiota Anatomical Niche Partitioning of Simulium vanluni (Diptera: Simuliidae)
Abstract
1. Introduction
2. Methods
2.1. Sampling and Species Identification
2.2. Sample Preparation and DNA Extraction
2.3. 16S rRNA Amplification and Sequencing
2.4. Bioinformatics and Data Analysis
3. Results
3.1. 16S rRNA Gene Sequencing Results
3.2. Taxonomic Composition by Anatomical Regions
3.3. Alpha Diversity
3.4. Beta Diversity
3.5. Core and Unique Microbiome Across Different Body Parts
3.6. Differential Abundance Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Wiens, J.J. Estimating Global Biodiversity: The Role of Cryptic Insect Species. Syst. Biol. 2023, 72, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 2015, 60, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Andongma, A.A.; Wan, L.; Dong, X.P.; Akami, M.; He, J.; Clarke, A.R.; Niu, C.Y. The impact of nutritional quality and gut bacteria on the fitness of Bactrocera minax (Diptera: Tephritidae). R. Soc. Open Sci. 2018, 5, 180237. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Habineza, P.; Ji, T.; Hou, Y.; Shi, Z. Intestinal Microbiota Confer Protection by Priming the Immune System of Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front. Physiol. 2019, 10, 1303. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.H.; Roh, S.W.; Whon, T.W.; Jung, M.J.; Kim, M.S.; Park, D.S.; Yoon, C.; Nam, Y.D.; Kim, Y.J.; Choi, J.H.; et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 2014, 80, 5254–5264. [Google Scholar] [CrossRef] [PubMed]
- Engel, P.; Moran, N.A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Shan, H.W.; Chen, J.P.; Wu, W. Diversity and Dynamics of Bacterial Communities in the Digestive and Excretory Systems across the Life Cycle of Leafhopper, Recilia dorsalis. Insects 2023, 14, 545. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.Y.; Lv, Q.B.; Wang, C.R.; Ju, H.; Luo, C.F.; Liu, S.S.; Na, M.H.; Chang, Q.C.; Jiang, J.F. Microbiota profile in organs of the horseflies (Diptera: Tabanidae) in Northeastern China. Front. Microbiol. 2024, 15, 1467875. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.V.; Damiani, C.; Accoti, A.; Tallarita, M.; Nunzi, E.; Cappelli, A.; Bozic, J.; Catanzani, R.; Rossi, P.; Valzano, M.; et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing. BMC Microbiol. 2018, 18, 126. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, L.; Fan, X.; Yu, C.; Feng, L.; Yi, L. An insight into diversity and functionalities of gut microbiota in insects. Curr. Microbiol. 2020, 77, 1976–1986. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.K.; Xiao, H.; Yang, Z.B.; Yang, D.S.; Yang, Y.H. Shotgun metagenomics reveals the gut microbial diversity and functions in Vespa mandarinia (Hymenoptera: Vespidae) at multiple life stages. Front. Microbiol. 2024, 15, 1288051. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.; Carvalho, V.R.; Souza-Neto, J.A.; Alonso, D.P.; Ribolla, P.E.M.; Medeiros, J.F.; Araujo, M.D.S. Bacterial Microbiota from Lab-Reared and Field-Captured Anopheles darlingi Midgut and Salivary Gland. Microorganisms 2023, 11, 1145. [Google Scholar] [CrossRef] [PubMed]
- Kazimirova, M.; Stibraniova, I. Tick salivary compounds: Their role in modulation of host defences and pathogen transmission. Front. Cell Infect. Microbiol. 2013, 3, 43. [Google Scholar] [CrossRef] [PubMed]
- Pramual, P.; Thaijarern, J.; Tangkawanit, U.; Wongpakam, K. Molecular identification of blood meal sources in black flies (Diptera: Simuliidae) suspected as leucocytozoon vectors. Acta Trop. 2020, 205, 105383. [Google Scholar] [CrossRef] [PubMed]
- Adler, P.H. World Blackflies (Diptera: Simuliidae): A Comprehensive Revision of the Taxonomic and Geographical Inventory. 2025. Available online: https://biomia.sites.clemson.edu/pdfs/blackflyinventory.pdf (accessed on 15 April 2025).
- Blacklock, D. The development of Onchocerca volvulus in Simulium damnosum. Ann. Trop. Med. Parasitol. 1926, 20, 1–48. [Google Scholar] [CrossRef]
- Shelley, A.J.; Coscaron, S. Simuliid blackflies (Diptera: Simuliidae) and ceratopogonid midges (Diptera: Ceratopogonidae) as vectors of Mansonella ozzardi (Nematoda: Onchocercidae) in northern Argentina. Mem. Inst. Oswaldo Cruz. 2001, 96, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Hendy, A.; Kruger, A.; Pfarr, K.; De Witte, J.; Kibweja, A.; Mwingira, U.; Dujardin, J.C.; Post, R.; Colebunders, R.; O’Neill, S.; et al. The blackfly vectors and transmission of Onchocerca volvulus in Mahenge, south eastern Tanzania. Acta Trop. 2018, 181, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.A.; Cromwell, E.A.; Hill, E.; Donkers, K.M.; Schipp, M.F.; Johnson, K.B.; Pigott, D.M.; LBD 2019 Neglected Tropical Diseases Collaborators; Hay, S.I. The prevalence of onchocerciasis in Africa and Yemen, 2000–2018: A geospatial analysis. BMC Med. 2022, 20, 293. [Google Scholar] [CrossRef] [PubMed]
- Botto, C.; Basanez, M.G.; Escalona, M.; Villamizar, N.J.; Noya-Alarcon, O.; Cortez, J.; Vivas-Martinez, S.; Coronel, P.; Frontado, H.; Flores, J.; et al. Evidence of suppression of onchocerciasis transmission in the Venezuelan Amazonian focus. Parasit. Vectors 2016, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Perez, M.A.; Fernandez-Santos, N.A.; Orozco-Algarra, M.E.; Rodriguez-Atanacio, J.A.; Dominguez-Vazquez, A.; Rodriguez-Morales, K.B.; Real-Najarro, O.; Prado-Velasco, F.G.; Cupp, E.W.; Richards, F.O., Jr.; et al. Elimination of Onchocerciasis from Mexico. PLoS. Negl. Trop. Dis. 2015, 9, e0003922. [Google Scholar] [CrossRef] [PubMed]
- Gebrezgabiher, G.; Mekonnen, Z.; Yewhalaw, D.; Hailu, A. Reaching the last mile: Main challenges relating to and recommendations to accelerate onchocerciasis elimination in Africa. Infect. Dis. Poverty 2019, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Adler, P.H.; Vogel, H.; Ping, L. Gender-specific bacterial composition of black flies (Diptera: Simuliidae). FEMS Microbiol. Ecol. 2012, 80, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Loong, S.K.; Ya’cob, Z.; Low, V.L.; Teoh, B.T.; Ahmad-Nasrah, S.N.; Yap, P.C.; Sofian-Azirun, M.; Takaoka, H.; AbuBakar, S.; et al. Culturable bacteria in adults of a Southeast Asian black fly, Simulium tani (Diptera:Simuliidae). Acta Trop. 2021, 219, 105923. [Google Scholar] [CrossRef] [PubMed]
- Efon Ekangouo, A.; Nana Djeunga, H.C.; Sempere, G.; Kamgno, J.; Njiokou, F.; Moundipa Fewou, P.; Geiger, A. Bacteriome Diversity of Blackflies’ Gut and Association with Onchocerca volvulus, the Causative Agent of Onchocerciasis in Mbam Valley (Center Region, Cameroon). Pathogens 2021, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- De Coninck, L.; Hadermann, A.; Ingletto, L.; Colebunders, R.; Gamnsi Njamnshi, K.; Njamnshi, A.K.; Mokili, J.L.; Siewe Fodjo, J.N.; Matthijnssens, J. Cameroonian blackflies (Diptera: Simuliidae) harbour a plethora of RNA viruses. Virus Evol. 2025, 11, veaf024. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, H.; Ya’cob, Z.; Sofian-Azirun, M. Classification, annotated list and keys for the black flies (Diptera: Simuliidae) of Peninsular Malaysia. Zootaxa 2018, 4498, 1–65. [Google Scholar] [CrossRef] [PubMed]
- Izwan-Anas, N.; Ya’cob, Z.; Low, V.L.; Lourdes, E.Y.; Teoh, B.T.; Mansor, M.S.; Ramli, R.; Pramual, P.; Adler, P.H.; Takaoka, H.; et al. First blood-meal record of Simulium asakoae (Diptera: Simuliidae) in Malaysia, with notes on its distribution in Asia and status as a potential vector. Trop. Biomed. 2024, 41, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Ya’cob, Z.; Takaoka, H.; Low, V.L.; Sofian-Azirun, M. First description of a new cryptic species, Simulium vanluni from Peninsular Malaysia: An integrated morpho-taxonomical and genetic approach for naming cryptic species in the family Simuliidae. Acta Trop. 2017, 167, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Izwan-Anas, N.; Halim, M.R.A.; Low, V.L.; Adler, P.H.; Ya’cob, Z. Wild-caught adult black flies (Diptera: Simuliidae) from various ecological landscapes in Malaysia. Acta Trop. 2024, 259, 107374. [Google Scholar] [CrossRef] [PubMed]
- Pavitra, S.P.; Ya’cob, Z.; Tan, T.K.; Lim, Y.A.L.; Low, V.L. Genetic diversity and differentiation in the blackflies Simulium cheongi, Simulium jeffreyi and Simulium vanluni (Diptera: Simuliidae) in Peninsular Malaysia. Acta Trop. 2020, 205, 105415. [Google Scholar] [CrossRef] [PubMed]
- Ya’cob, Z.; Takaoka, H.; Pramual, P.; Low, V.L.; Sofian-Azirun, M. Breeding habitat preference of preimaginal black flies (Diptera: Simuliidae) in Peninsular Malaysia. Acta Trop. 2016, 153, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ya’cob, Z.; Takaoka, H.; Pramual, P.; Low, V.L.; Sofian-Azirun, M. Distribution pattern of black fly (Diptera: Simuliidae) assemblages along an altitudinal gradient in Peninsular Malaysia. Parasit. Vectors 2016, 9, 219. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, H.; Davies, D.M. The Black Flies (Diptera: Simuliidae) of West Malaysia; Kyushu University Press: Fukuoka, Japan, 1995. [Google Scholar]
- Izwan-Anas, N.; Low, V.L.; Ya’cob, Z.; Lourdes, E.Y.; Halim, M.R.A.; Sofian-Azirun, M.; Takaoka, H.; Adler, P.H. DNA barcodes and species boundaries of black flies (Diptera: Simuliidae) in Malaysia. Arthropod. Syst. Phylogeny 2023, 81, 931–943. [Google Scholar] [CrossRef]
- Low, V.L.; Takaoka, H.; Adler, P.H.; Ya’cob, Z.; Norma-Rashid, Y.; Chen, C.D.; Sofian-Azirun, M. A multi-locus approach resolves the phylogenetic relationships of the Simulium asakoae and Simulium ceylonicum species groups in Malaysia: Evidence for distinct evolutionary lineages. Med. Vet. Entomol. 2015, 29, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Binetruy, F.; Dupraz, M.; Buysse, M.; Duron, O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasit. Vectors 2019, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Liu, P.; Zhou, G.; Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020, 15, 799–821. [Google Scholar] [CrossRef] [PubMed]
- Dhariwal, A.; Chong, J.; Habib, S.; King, I.L.; Agellon, L.B.; Xia, J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017, 45, W180–W188. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhou, G.; Ewald, J.; Pang, Z.; Shiri, T.; Xia, J. MicrobiomeAnalyst 2.0: Comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res. 2023, 51, W310–W318. [Google Scholar] [CrossRef] [PubMed]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Efon-Ekangouo, A.; Nana-Djeunga, H.C.; Nwane, P.B.; Nzune-Toche, N.; Sondi-Dissake, J.C.; Sempere, G.; Domche, A.; Njiokou, F.; Kamgno, J.; Moundipa-Fewou, P.; et al. Spatial and temporal diversity of Simulium damnosum s.l. gut microbiota and association with Onchocerca volvulus infection in Cameroon. Infect. Genet. Evol. 2024, 125, 105683. [Google Scholar] [CrossRef] [PubMed]
- Weiss, B.; Aksoy, S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011, 27, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Sonenshine, D.E.; Stewart, P.E. Microbiomes of blood-feeding arthropods: Genes coding for essential nutrients and relation to vector fitness and pathogenic infections. A review. Microorganisms 2021, 9, 2433. [Google Scholar] [CrossRef] [PubMed]
- Dillon, R.J.; Dillon, V.M. The gut bacteria of insects: NonpathogeniciInteractions. Annu. Rev. Entomol. 2004, 49, 71–92. [Google Scholar] [CrossRef] [PubMed]
- Shade, A.; Peter, H.; Allison, S.D.; Baho, D.L.; Berga, M.; Burgmann, H.; Huber, D.H.; Langenheder, S.; Lennon, J.T.; Martiny, J.B.; et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 2012, 3, 417. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Kulkarni, N.; Lei, H.H.; Lai, K.; Nematova, O.; Wei, K.; Lei, H. Experimental and theoretical probe on mechano- and chemosensory integration in the insect antennal lobe. Front. Physiol. 2022, 13, 1004124. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Srisuka, W.; Aupalee, K.; Yasanga, T.; Phuackchantuck, R.; Pitasawat, B.; Junkum, A.; Limsopatham, K.; Sanit, S.; Saingamsook, J.; et al. Ultrastructure of sensilla on the antennae and maxillary palpi of the human-biting black flies, Simulium nigrogilvum and Simulium umphangense, (Diptera: Simuliidae) in Thailand. Acta Trop. 2022, 232, 106494. [Google Scholar] [CrossRef] [PubMed]
- Shipp, J.; Grace, B.; Janzen, H. Influence of temperature and water vapour pressure on the flight activity of Simulium arcticum Malloch (Diptera: Simuliidae). Int. J. Biometeorol. 1988, 32, 242–246. [Google Scholar] [CrossRef]
- Vosshall, L.B.; Wong, A.M.; Axel, R. An olfactory sensory map in the fly brain. Cell 2000, 102, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sharma, S.; Maurya, R.K.; Das De, T.; Thomas, T.; Lata, S.; Singh, N.; Pandey, K.C.; Valecha, N.; Dixit, R. Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies. Parasit. Vectors 2014, 7, 235. [Google Scholar] [CrossRef] [PubMed]
- Agany, D.D.M.; Potts, R.; Hernandez, J.L.G.; Gnimpieba, E.Z.; Pietri, J.E. Microbiome Differences Between Human Head and Body Lice Ecotypes Revealed by 16S RRNA Gene Amplicon Sequencing. J. Parasitol. 2020, 106, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhao, M.; Zhang, Z.; Hu, X.; Xu, Y.; Wei, C.; He, H. Lactic Acid Bacteria Are Prevalent in the Infrabuccal Pockets and Crops of Ants That Prefer Aphid Honeydew. Front. Microbiol. 2021, 12, 785016. [Google Scholar] [CrossRef] [PubMed]
- Lachat, J.; Lextrait, G.; Jouan, R.; Boukherissa, A.; Yokota, A.; Jang, S.; Ishigami, K.; Futahashi, R.; Cossard, R.; Naquin, D.; et al. Hundreds of antimicrobial peptides create a selective barrier for insect gut symbionts. Proc. Natl. Acad. Sci. USA 2024, 121, e2401802121. [Google Scholar] [CrossRef] [PubMed]
- Ghoul, M.; Mitri, S. The Ecology and Evolution of Microbial Competition. Trends Microbiol. 2016, 24, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Jang, S.; Takeshita, K.; Ohbayashi, T.; Ohnishi, N.; Meng, X.Y.; Mitani, Y.; Kikuchi, Y. Host-symbiont specificity determined by microbe-microbe competition in an insect gut. Proc. Natl. Acad. Sci. USA 2019, 116, 22673–22682. [Google Scholar] [CrossRef] [PubMed]
- Dittmer, J.; Bouchon, D. Feminizing Wolbachia influence microbiota composition in the terrestrial isopod Armadillidium vulgare. Sci. Rep. 2018, 8, 6998. [Google Scholar] [CrossRef] [PubMed]
- Hilgenboecker, K.; Hammerstein, P.; Schlattmann, P.; Telschow, A.; Werren, J.H. How many species are infected with Wolbachia?–a statistical analysis of current data. FEMS Microbiol. Lett. 2008, 281, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.; Giordano, R.; Fialho, R.F. Male-killing, nematode infections, bacteriophage infection, and virulence of cytoplasmic bacteria in the genus Wolbachia. Annu. Rev. Ecol. Syst. 2001, 32, 519–545. [Google Scholar] [CrossRef]
- Giorgini, M.; Bernardo, U.; Monti, M.M.; Nappo, A.G.; Gebiola, M. Rickettsia Symbionts Cause Parthenogenetic Reproduction in the Parasitoid Wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl. Environ. Microbiol. 2010, 76, 2589–2599. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, T.; Koga, R.; Kikuchi, Y.; Meng, X.-Y.; Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. USA 2010, 107, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.S.; Perlman, S.J.; Kelly, S.E. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 2185–2190. [Google Scholar] [CrossRef] [PubMed]
- Werren, J.H.; Hurst, G.D.; Zhang, W.; Breeuwer, J.A.; Stouthamer, R.; Majerus, M.E. Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J. Bacteriol. 1994, 176, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Nikoh, N.; Hosokawa, T.; Moriyama, M.; Oshima, K.; Hattori, M.; Fukatsu, T. Evolutionary origin of insect—Wolbachia nutritional mutualism. Proc. Natl. Acad. Sci. USA 2014, 111, 10257–10262. [Google Scholar] [CrossRef] [PubMed]
- Berticat, C.; Rousset, F.; Raymond, M.; Berthomieu, A.; Weill, M. High Wolbachia density in insecticide-resistant mosquitoes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2002, 269, 1413–1416. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.M.; Brownlie, J.C.; O’Neill, S.L.; Johnson, K.N. Wolbachia and virus protection in insects. Science 2008, 322, 702. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.J. Bugs in transition: The dynamic world of Wolbachia in insects. PLoS Genet. 2013, 9, e1004069. [Google Scholar] [CrossRef] [PubMed]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarczyk, A.; Kucharczyk, H.; Kucharczyk, M.; Kapusta, P.; Sell, J.; Zielinska, S. First insight into microbiome profile of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) at different developmental stages: Molecular evidence of Wolbachia endosymbiosis. Sci. Rep. 2018, 8, 14376. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, M.O.; Vieira, A.S.; Pereira, M.C.; Moreau, C.S.; Bueno, O.C. Transovarian Transmission of Blochmannia and Wolbachia Endosymbionts in the Neotropical Weaver Ant Camponotus textor (Hymenoptera, Formicidae). Curr. Microbiol. 2018, 75, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Heath, B.D.; Butcher, R.D.; Whitfield, W.G.; Hubbard, S.F. Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr. Biol. 1999, 9, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.Z.; Li, S.J.; Xue, X.; Yin, X.J.; Ren, S.X.; Jiggins, F.M.; Greeff, J.M.; Qiu, B.L. The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog. 2015, 10, e1004672. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Park, W. Acinetobacter species as model microorganisms in environmental microbiology: Current state and perspectives. Appl. Microbiol. Biotechnol. 2015, 99, 2533–2548. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.L.; Gaff, H.D.; Sonenshine, D.E.; Hynes, W.L. Experimental vertical transmission of Rickettsia parkeri in the Gulf Coast tick, Amblyomma maculatum. Ticks Tick Borne Dis. 2015, 6, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Pernas, P.; Arias-Cordero, E.; Novoselov, A.; Ebert, C.; Rybak, J.; Kaltenpoth, M.; Westermann, M.; Neugebauer, U.; Boland, W. Bacterial Community and PHB-Accumulating Bacteria Associated with the Wall and Specialized Niches of the Hindgut of the Forest Cockchafer (Melolontha hippocastani). Front. Microbiol. 2017, 8, 291. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, A.; Meng, X.Y.; Kamagata, Y.; Tsuchida, T. Subcellular Niche Segregation of Co-Obligate Symbionts in Whiteflies. Microbiol. Spectr. 2023, 11, e0468422. [Google Scholar] [CrossRef] [PubMed]
- Litchman, E.; Edwards, K.F.; Klausmeier, C.A. Microbial resource utilization traits and trade-offs: Implications for community structure, functioning, and biogeochemical impacts at present and in the future. Front. Microbiol. 2015, 6, 254. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Manfredini, F.; Dimopoulos, G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS. Pathog. 2009, 5, e1000423. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Hayatsu, M.; Hosokawa, T.; Nagayama, A.; Tago, K.; Fukatsu, T. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 8618–8622. [Google Scholar] [CrossRef] [PubMed]
Samples | Body Parts | Total Number of Reads | Number of Clean Reads |
---|---|---|---|
P1H1 | Head | 369,191 | 276,441 |
P1T1 | Thorax | 418,936 | 308,485 |
P1A1 | Abdomen | 435,034 | 317,751 |
P2T2 | Thorax | 382,248 | 271,357 |
P2A2 | Abdomen | 343,296 | 245,202 |
P3H3 | Head | 365,979 | 268,458 |
P3T3 | Thorax | 412,073 | 289,589 |
P3A3 | Abdomen | 443,328 | 303,872 |
P4H4 | Head | 408,299 | 295,727 |
P4T4 | Thorax | 398,968 | 279,199 |
P4A4 | Abdomen | 394,098 | 283,428 |
P5H5 | Head | 383,360 | 280,551 |
P5T5 | Thorax | 363,642 | 252,563 |
P5A5 | Abdomen | 372,017 | 264,475 |
P6H6 | Head | 367,587 | 263,108 |
P6T6 | Thorax | 398,850 | 266,679 |
P6A6 | Abdomen | 399,922 | 287,136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izwan-Anas, N.; Low, V.L.; Ya’cob, Z.; AbuBakar, S.; Tan, K.-K. Microbiota Anatomical Niche Partitioning of Simulium vanluni (Diptera: Simuliidae). Diversity 2025, 17, 504. https://doi.org/10.3390/d17080504
Izwan-Anas N, Low VL, Ya’cob Z, AbuBakar S, Tan K-K. Microbiota Anatomical Niche Partitioning of Simulium vanluni (Diptera: Simuliidae). Diversity. 2025; 17(8):504. https://doi.org/10.3390/d17080504
Chicago/Turabian StyleIzwan-Anas, Noor, Van Lun Low, Zubaidah Ya’cob, Sazaly AbuBakar, and Kim-Kee Tan. 2025. "Microbiota Anatomical Niche Partitioning of Simulium vanluni (Diptera: Simuliidae)" Diversity 17, no. 8: 504. https://doi.org/10.3390/d17080504
APA StyleIzwan-Anas, N., Low, V. L., Ya’cob, Z., AbuBakar, S., & Tan, K.-K. (2025). Microbiota Anatomical Niche Partitioning of Simulium vanluni (Diptera: Simuliidae). Diversity, 17(8), 504. https://doi.org/10.3390/d17080504