Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = coral-associated fungi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3787 KiB  
Article
Bacterial Diversity Associated with Millepora alcicornis, Phyllogorgia dilatata and Mussismilia harttii Collected from Two Distinct Corals Reefs on the Brazilian Coast
by Rosiane Andrade da Costa, Maria Wanna Figueiredo, Henrique Fragoso dos Santos, Otávio Henrique Bezerra Pinto, Cristine Chaves Barreto, Sérgio Amorim de Alencar and Simoni Campos Dias
J. Mar. Sci. Eng. 2025, 13(2), 358; https://doi.org/10.3390/jmse13020358 - 15 Feb 2025
Viewed by 648
Abstract
Corals can be considered holobiont organisms, since they have an important symbiotic relationship with microbial communities such as zooxanthellae, bacteria, Archaea, fungi and viruses. It is important to understand how those microbial communities influence the health of the corals and how environmental conditions [...] Read more.
Corals can be considered holobiont organisms, since they have an important symbiotic relationship with microbial communities such as zooxanthellae, bacteria, Archaea, fungi and viruses. It is important to understand how those microbial communities influence the health of the corals and how environmental conditions could affect them. The present study aimed to describe the bacterial communities associated with three Brazilian coral species, Millepora alcicornis, Mussismilia harttii and Phyllogorgia dilatata, by a culture-independent method, using 16S rRNA gene sequencing. The corals were collected from two distinct coral reefs: Recife de Fora, in Bahia (BA) and Búzios, in Rio de Janeiro (RJ). The phylum Proteobacteria showed the highest relative abundance in most corals and sites. The bacterial compositions of these three corals from the two sample sites were very distinct from each other, not presenting similarities in coral species or related to sampling site. In M. alcicornes/RJ, the most abundant class was Gammaproteobacteria, order Piscirickettsiales, while the same species collected in BA showed unassigned Gammaproteobacteria, and Vibrionaceae was the second most abundant family. M. harttii/BA presented the most distinct bacterial phylum composition with 16 phyla (26% Proteobacteria, 16% Chloroflexi, 12% Acidobacteriota). Full article
(This article belongs to the Special Issue Marine Biota Distribution and Biodiversity)
Show Figures

Figure 1

22 pages, 1748 KiB  
Article
Influence of Bacterial Fertilizers on the Structure of the Rhizospheric Fungal Community of Cereals South of Western Siberia
by Natalia Nikolaevna Shuliko, Olga Valentinovna Selitskaya, Elena Vasilyevna Tukmacheva, Alina Andreevna Kiselyova, Irina Anatolyevna Korchagina, Ekaterina Vladimirovna Kubasova and Artem Yuryevich Timokhin
Agronomy 2024, 14(9), 1989; https://doi.org/10.3390/agronomy14091989 - 2 Sep 2024
Viewed by 1275
Abstract
The general lack of knowledge on the conditions of Western Siberia (Omsk region) and the taxonomic diversity of zonal soils determines the relevance of these studies. The research was carried out in order to study the effect of complex biologics on the taxonomic [...] Read more.
The general lack of knowledge on the conditions of Western Siberia (Omsk region) and the taxonomic diversity of zonal soils determines the relevance of these studies. The research was carried out in order to study the effect of complex biologics on the taxonomic diversity of the fungal component of the microbiome of the rhizosphere of cereals and the phytosanitary condition of crops in the southern forest-steppe (meadow-chernozem soil) and subtaiga (gray forest soil) zones of the Omsk Irtysh region (Western Siberia). This work was carried out in 2022–2023, using laboratory studies in combination with field experiments and metagenomic and statistical analyses. The objects of research were varieties of cereals and grain forage crops of Omsk selection: soil microorganisms. The scheme of the experiment involved the study of the following options: varieties of cereals (factor A): spring soft wheat—Omsk 42, Omsk 44, Tarskaya 12; durum wheat—Omsk coral; barley—Omsk 101; oats—Siberian hercules; bacterial preparation for seed inoculation (factor B) without the drug—Mizorin and Flavobacterin. The sampling of the plant rhizosphere for metagenomic analysis was carried out during the earing phase (July). For the first time, the taxonomic composition of the fungal community was determined based on the analysis of amplicon libraries of fragments of ribosomal operons of ITS2 fungi during colonization of crop roots by nitrogen-fixing bacteria in various soil and climatic zones of the Omsk region. The fungal component of the microbiome was analyzed in two zones of the Omsk region (southern forest-steppe and subtaiga). The five dominant phyla of soil fungi were located in the following decreasing series: Ascomycota (about 70%) > Mortierellomycota (about 7%) > Basidiomycota (about 5%) > Mucoromycota (3%) > Chytridiomycota (1%). The five main genera of fungi inhabiting the rhizosphere of cereals are located in a decreasing row: Giberella (6.9%) > Mortierella (6.6%) > Chaetomium (4.8%) > Cladosporium (3.8%) > Rhizopus (3.3%). The predominantly positive effect of biologics of associative nitrogen fixation on the fungal community of the soil (rhizosphere) of experimental sites located in different soil and climatic zones has been established. During seed bacterization, the growth of saprotrophic fungal genera was noted in relation to the control variants Pseudogymnoascus, Chloridium, Clonostachys, Trihoderma, etc., and the fungicidal properties of bacterial strains introduced into the soil were actively manifested relative to phytopathogenic fungi of the genera Alternaria, Blumeria, Fusarium, etc. According to the results of determining the number of infectious structures of Rhizoctonia solani, it was found that the population of the soil with viable cells of this pathogen was 1–3 pcs/g (below the threshold of harmfulness, PV 20 pcs/g of soil), which indicates a favorable phytosanitary situation with respect to the pathogen. The fungicidal effect of the applied bacterial fertilizers on Rhizoctonia solani could not be detected. The number of Bipolaris sorokiniana varied depending on the drug used. In the conditions of the southern forest-steppe zone of the Omsk region (meadow-chernozem soil), the greatest fungicidal effect was noted in Flavobacterin application variants on wheat of the Omsk 42 variety, durum wheat of the Omsk coral variety, and barley; the decrease in conidia relative to the control was 73, 35, and 29%, respectively. In the subtaiga zone of the Omsk Irtysh region (gray forest soil), as in the southern forest-steppe zone, pre-sowing bacterization of seeds with Flavobacterin led to a decrease in Bipolaris sorokiniana in the rhizosphere of wheat of the Omsk 42 variety by 18%, and oats by 27%, to control. The use of the drug Mizorin in some variants of the experiment led to an insignificant decrease in the harmful fungus or had no effect at all. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 5427 KiB  
Article
Biodiversity, Distribution and Functional Differences of Fungi in Four Species of Corals from the South China Sea, Elucidated by High-Throughput Sequencing Technology
by Wenyu Dong, Jiatao Chen, Xinyu Liao, Xinye Chen, Liyu Huang, Jiayu Huang, Riming Huang, Saiyi Zhong and Xiaoyong Zhang
J. Fungi 2024, 10(7), 452; https://doi.org/10.3390/jof10070452 - 27 Jun 2024
Cited by 2 | Viewed by 1790
Abstract
Recent studies have predominantly spotlighted bacterial diversity within coral microbiomes, leaving coral-associated fungi in the shadows of scientific inquiry. This study endeavors to fill this knowledge gap by delving into the biodiversity, distribution and functional differences of fungi associated with soft corals Cladiella [...] Read more.
Recent studies have predominantly spotlighted bacterial diversity within coral microbiomes, leaving coral-associated fungi in the shadows of scientific inquiry. This study endeavors to fill this knowledge gap by delving into the biodiversity, distribution and functional differences of fungi associated with soft corals Cladiella krempfi and Sarcophyton tortuosum, gorgonian coral Dichotella gemmacea and stony coral Favia speciosa from the South China Sea. Leveraging high-throughput sequencing of fungal internal transcribed spacer-1 (ITS1) region of the rRNA gene, a total of 431 fungal amplicon sequence variants (ASVs) were identified in this study, which indicated that a large number of fungal communities were harbored in the South China Sea corals. Noteworthy among our findings is that 10 fungal genera are reported for the first time in corals, with Candolleomyces, Exophiala, Fomitopsis, Inaequalispora, Kneiffiella, Paraphaeosphaeria, and Yamadazyma belonging to the Ascomycota, and Cystobasidium, Psathyrella, and Solicoccozyma to the Basidiomycota. Moreover, significant differences (p < 0.05) of fungal communities were observed among the various coral species. In particular, the gorgonian coral D. gemmacea emerged as a veritable haven for fungal diversity, boasting 307 unique ASVs. Contrastingly, soft corals S. tortuosum and C. krempfi exhibited modest fungal diversity, with 36 and 21 unique ASVs, respectively, while the stony coral F. speciosa hosted a comparatively sparse fungal community, with merely 10 unique ASVs in total. These findings not only provide basic data on fungal diversity and function in the South China Sea corals, but also underscore the imperative of nuanced conservation and management strategies for coral reef ecosystems worldwide. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

13 pages, 2211 KiB  
Article
Anti-Inflammatory Ergosteroid Derivatives from the Coral-Associated Fungi Penicillium oxalicum HL-44
by Cheng Pang, Yu-Hong Chen, Hui-Hui Bian, Jie-Ping Zhang, Li Su, Hua Han and Wen Zhang
Molecules 2023, 28(23), 7784; https://doi.org/10.3390/molecules28237784 - 26 Nov 2023
Cited by 3 | Viewed by 1862
Abstract
To obtain the optimal fermentation condition for more abundant secondary metabolites, Potato Dextrose Agar (PDA) medium was chosen for the scale-up fermentation of the fungus Penicillium oxalicum HL-44 associated with the soft coral Sinularia gaweli. The EtOAc extract of the fungi HL-44 [...] Read more.
To obtain the optimal fermentation condition for more abundant secondary metabolites, Potato Dextrose Agar (PDA) medium was chosen for the scale-up fermentation of the fungus Penicillium oxalicum HL-44 associated with the soft coral Sinularia gaweli. The EtOAc extract of the fungi HL-44 was subjected to repeated column chromatography (CC) on silica gel and Sephadex LH-20 and semipreparative RP-HPLC to afford a new ergostane-type sterol ester (1) together with fifteen derivatives (216). Their structures were determined with spectroscopic analyses and comparisons with reported data. The anti-inflammatory activity of the tested isolates was assessed by evaluating the expression of pro-inflammatory factors Tnfα and Ifnb1 in Raw264.7 cells stimulated with LPS or DMXAA. Compounds 2, 9, and 14 exhibited significant inhibition of Ifnb1 expression, while compounds 2, 4, and 5 showed strong inhibition of Tnfα expression in LPS-stimulated cells. In DMXAA-stimulated cells, compounds 1, 5, and 7 effectively suppressed Ifnb1 expression, whereas compounds 7, 8, and 11 demonstrated the most potent inhibition of Tnfα expression. These findings suggest that the tested compounds may exert their anti-inflammatory effects by modulating the cGAS-STING pathway. This study provides valuable insight into the chemical diversity of ergosteroid derivatives and their potential as anti-inflammatory agents. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

16 pages, 3148 KiB  
Review
Coral Lipidome: Molecular Species of Phospholipids, Glycolipids, Betaine Lipids, and Sphingophosphonolipids
by Tatyana V. Sikorskaya
Mar. Drugs 2023, 21(6), 335; https://doi.org/10.3390/md21060335 - 30 May 2023
Cited by 14 | Viewed by 3646
Abstract
Coral reefs are the most biodiversity-rich ecosystems in the world’s oceans. Coral establishes complex interactions with various microorganisms that constitute an important part of the coral holobiont. The best-known coral endosymbionts are Symbiodiniaceae dinoflagellates. Each member of the coral microbiome contributes to its [...] Read more.
Coral reefs are the most biodiversity-rich ecosystems in the world’s oceans. Coral establishes complex interactions with various microorganisms that constitute an important part of the coral holobiont. The best-known coral endosymbionts are Symbiodiniaceae dinoflagellates. Each member of the coral microbiome contributes to its total lipidome, which integrates many molecular species. The present study summarizes available information on the molecular species of the plasma membrane lipids of the coral host and its dinoflagellates (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), ceramideaminoethylphosphonate, and diacylglyceryl-3-O-carboxyhydroxymethylcholine), and the thylakoid membrane lipids of dinoflagellates (phosphatidylglycerol (PG) and glycolipids). Alkyl chains of PC and PE molecular species differ between tropical and cold-water coral species, and features of their acyl chains depend on the coral’s taxonomic position. PS and PI structural features are associated with the presence of an exoskeleton in the corals. The dinoflagellate thermosensitivity affects the profiles of PG and glycolipid molecular species, which can be modified by the coral host. Coral microbiome members, such as bacteria and fungi, can also be the source of the alkyl and acyl chains of coral membrane lipids. The lipidomics approach, providing broader and more detailed information about coral lipid composition, opens up new opportunities in the study of biochemistry and ecology of corals. Full article
(This article belongs to the Special Issue Marine Drugs Research in Russia)
Show Figures

Figure 1

11 pages, 1934 KiB  
Article
New Marine Fungal Deoxy-14,15-Dehydroisoaustamide Resensitizes Prostate Cancer Cells to Enzalutamide
by Sergey A. Dyshlovoy, Olesya I. Zhuravleva, Jessica Hauschild, Tobias Busenbender, Dmitry N. Pelageev, Anton N. Yurchenko, Yuliya V. Khudyakova, Alexandr S. Antonov, Markus Graefen, Carsten Bokemeyer and Gunhild von Amsberg
Mar. Drugs 2023, 21(1), 54; https://doi.org/10.3390/md21010054 - 14 Jan 2023
Cited by 10 | Viewed by 4143
Abstract
Marine fungi serve as a valuable source for new bioactive molecules bearing various biological activities. In this study, we report on the isolation of a new indole diketopiperazine alkaloid deoxy-14,15-dehydroisoaustamide (1) from the marine-derived fungus Penicillium dimorphosporum KMM 4689 associated with [...] Read more.
Marine fungi serve as a valuable source for new bioactive molecules bearing various biological activities. In this study, we report on the isolation of a new indole diketopiperazine alkaloid deoxy-14,15-dehydroisoaustamide (1) from the marine-derived fungus Penicillium dimorphosporum KMM 4689 associated with a soft coral. The structure of this metabolite, including its absolute configuration, was determined by HR-MS, 1D and 2D NMR as well as CD data. Compound 1 is a very first deoxyisoaustamide alkaloid possessing two double bonds in the proline ring. The isolated compound was noncytotoxic to a panel of human normal and cancer cell lines up to 100 µM. At the same time, compound 1 resensitized prostate cancer 22Rv1 cells to androgen receptor (AR) blocker enzalutamide. The mechanism of this phenomenon was identified as specific drug-induced degradation of androgen receptor transcription variant V7 (AR-V7), which also resulted in general suppression of AR signaling. Our data suggest that the isolated alkaloid is a promising candidate for combinational therapy of castration resistant prostate cancer, including drug-resistant subtypes. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Figure 1

44 pages, 12371 KiB  
Review
Secondary Metabolites from Coral-Associated Fungi: Source, Chemistry and Bioactivities
by Ying Chen, Xiaoyan Pang, Yanchun He, Xiuping Lin, Xuefeng Zhou, Yonghong Liu and Bin Yang
J. Fungi 2022, 8(10), 1043; https://doi.org/10.3390/jof8101043 - 3 Oct 2022
Cited by 18 | Viewed by 4207
Abstract
Our study of the secondary metabolites of coral-associated fungi produced a valuable and extra-large chemical database. Many of them exhibit strong biological activity and can be used for promising drug lead compounds. Serving as an epitome of the most promising compounds, which take [...] Read more.
Our study of the secondary metabolites of coral-associated fungi produced a valuable and extra-large chemical database. Many of them exhibit strong biological activity and can be used for promising drug lead compounds. Serving as an epitome of the most promising compounds, which take the ultra-new skeletons and/or remarkable bioactivities, this review presents an overview of new compounds and bioactive compounds isolated from coral-associated fungi, covering the literature from 2010 to 2021. Its scope included 423 metabolites, focusing on the bioactivity and structure diversity of these compounds. According to structure, these compounds can be roughly classified as terpenes, alkaloids, peptides, aromatics, lactones, steroids, and other compounds. Some of them described in this review possess a wide range of bioactivities, such as anticancer, antimicrobial, antifouling, and other activities. This review aims to provide some significant chemical and/or biological enlightenment for the study of marine natural products and marine drug development in the future. Full article
Show Figures

Figure 1

52 pages, 17327 KiB  
Review
In Silico Prediction of Steroids and Triterpenoids as Potential Regulators of Lipid Metabolism
by Valery M. Dembitsky
Mar. Drugs 2021, 19(11), 650; https://doi.org/10.3390/md19110650 - 22 Nov 2021
Cited by 24 | Viewed by 8713
Abstract
This review focuses on a rare group of steroids and triterpenoids that share common properties as regulators of lipid metabolism. This group of compounds is divided by the type of chemical structure, and they represent: aromatic steroids, steroid phosphate esters, highly oxygenated steroids [...] Read more.
This review focuses on a rare group of steroids and triterpenoids that share common properties as regulators of lipid metabolism. This group of compounds is divided by the type of chemical structure, and they represent: aromatic steroids, steroid phosphate esters, highly oxygenated steroids such as steroid endoperoxides and hydroperoxides, α,β-epoxy steroids, and secosteroids. In addition, subgroups of carbon-bridged steroids, neo steroids, miscellaneous steroids, as well as synthetic steroids containing heteroatoms S (epithio steroids), Se (selena steroids), Te (tellura steroids), and At (astatosteroids) were presented. Natural steroids and triterpenoids have been found and identified from various sources such as marine sponges, soft corals, starfish, and other marine invertebrates. In addition, this group of rare lipids is found in fungi, fungal endophytes, and plants. The pharmacological profile of the presented steroids and triterpenoids was determined using the well-known computer program PASS, which is currently available online for all interested scientists and pharmacologists and is currently used by research teams from more than 130 countries of the world. Our attention has been focused on the biological activities of steroids and triterpenoids associated with the regulation of cholesterol metabolism and related processes such as anti-hyperlipoproteinemic activity, as well as the treatment of atherosclerosis, lipoprotein disorders, or inhibitors of cholesterol synthesis. In addition, individual steroids and triterpenoids were identified that demonstrated rare or unique biological activities such as treating neurodegenerative diseases, Alzheimer’s, and Parkinson’s diseases with a high degree of certainty over 95 percent. For individual steroids or triterpenoids or a group of compounds, 3D drawings of their predicted biological activities are presented. Full article
Show Figures

Graphical abstract

20 pages, 1932 KiB  
Review
Intracellular Bacterial Symbionts in Corals: Challenges and Future Directions
by Justin Maire, Linda L. Blackall and Madeleine J. H. van Oppen
Microorganisms 2021, 9(11), 2209; https://doi.org/10.3390/microorganisms9112209 - 23 Oct 2021
Cited by 19 | Viewed by 7393
Abstract
Corals are the main primary producers of coral reefs and build the three-dimensional reef structure that provides habitat to more than 25% of all marine eukaryotes. They harbor a complex consortium of microorganisms, including bacteria, archaea, fungi, viruses, and protists, which they rely [...] Read more.
Corals are the main primary producers of coral reefs and build the three-dimensional reef structure that provides habitat to more than 25% of all marine eukaryotes. They harbor a complex consortium of microorganisms, including bacteria, archaea, fungi, viruses, and protists, which they rely on for their survival. The symbiosis between corals and bacteria is poorly studied, and their symbiotic relationships with intracellular bacteria are only just beginning to be acknowledged. In this review, we emphasize the importance of characterizing intracellular bacteria associated with corals and explore how successful approaches used to study such microorganisms in other systems could be adapted for research on corals. We propose a framework for the description, identification, and functional characterization of coral-associated intracellular bacterial symbionts. Finally, we highlight the possible value of intracellular bacteria in microbiome manipulation and mitigating coral bleaching. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 2591 KiB  
Article
Deep-Sea Coral Garden Invertebrates and Their Associated Fungi Are Genetic Resources for Chronic Disease Drug Discovery
by Pietro Marchese, Ryan Young, Enda O’Connell, Sam Afoullouss, Bill J. Baker, A. Louise Allcock, Frank Barry and J. Mary Murphy
Mar. Drugs 2021, 19(7), 390; https://doi.org/10.3390/md19070390 - 13 Jul 2021
Cited by 14 | Viewed by 5435
Abstract
Chronic diseases characterized by bone and cartilage loss are associated with a reduced ability of progenitor cells to regenerate new tissues in an inflammatory environment. A promising strategy to treat such diseases is based on tissue repair mediated by human mesenchymal stem cells [...] Read more.
Chronic diseases characterized by bone and cartilage loss are associated with a reduced ability of progenitor cells to regenerate new tissues in an inflammatory environment. A promising strategy to treat such diseases is based on tissue repair mediated by human mesenchymal stem cells (hMSCs), but therapeutic outcomes are hindered by the absence of small molecules to efficiently modulate cell behaviour. Here, we applied a high-throughput drug screening technology to bioprospect a large library of extracts from Irish deep-sea organisms to induce hMSC differentiation toward musculoskeletal lineages and reduce inflammation of activated macrophages. The library included extracts from deep-sea corals, sponges and filamentous fungi representing a novel source of compounds for the targeted bioactivity. A validated hit rate of 3.4% was recorded from the invertebrate library, with cold water sea pens (octocoral order Pennatulacea), such as Kophobelemnon sp. and Anthoptilum sp., showing the most promising results in influencing stem cell differentiation toward osteogenic and chondrogenic lineages. Extracts obtained from deep-sea fungi showed no effects on stem cell differentiation, but a 6.8% hit rate in reducing the inflammation of activated macrophages. Our results demonstrate the potential of deep-sea organisms to synthetize pro-differentiation and immunomodulatory compounds that may represent potential drug development candidates to treat chronic musculoskeletal diseases. Full article
Show Figures

Figure 1

27 pages, 1691 KiB  
Review
Species Diversity and Secondary Metabolites of Sarcophyton-Associated Marine Fungi
by Yuanwei Liu, Kishneth Palaniveloo, Siti Aisyah Alias and Jaya Seelan Sathiya Seelan
Molecules 2021, 26(11), 3227; https://doi.org/10.3390/molecules26113227 - 27 May 2021
Cited by 12 | Viewed by 5052
Abstract
Soft corals are widely distributed across the globe, especially in the Indo-Pacific region, with Sarcophyton being one of the most abundant genera. To date, there have been 50 species of identified Sarcophyton. These soft corals host a diverse range of marine fungi, [...] Read more.
Soft corals are widely distributed across the globe, especially in the Indo-Pacific region, with Sarcophyton being one of the most abundant genera. To date, there have been 50 species of identified Sarcophyton. These soft corals host a diverse range of marine fungi, which produce chemically diverse, bioactive secondary metabolites as part of their symbiotic nature with the soft coral hosts. The most prolific groups of compounds are terpenoids and indole alkaloids. Annually, there are more bio-active compounds being isolated and characterised. Thus, the importance of the metabolite compilation is very much important for future reference. This paper compiles the diversity of Sarcophyton species and metabolites produced by their associated marine fungi, as well as the bioactivity of these identified compounds. A total of 88 metabolites of structural diversity are highlighted, indicating the huge potential these symbiotic relationships hold for future research. Full article
(This article belongs to the Special Issue Bioactive Natural Products from Microorganisms)
Show Figures

Figure 1

14 pages, 3218 KiB  
Article
Neuronal Modulators from the Coral-Associated Fungi Aspergillus candidus
by Gao-Yang Peng, Tibor Kurtán, Attila Mándi, Jing He, Zheng-Yu Cao, Hua Tang, Shui-Chun Mao and Wen Zhang
Mar. Drugs 2021, 19(5), 281; https://doi.org/10.3390/md19050281 - 19 May 2021
Cited by 11 | Viewed by 3513
Abstract
Three new p-terphenyl derivatives, named 4″-O-methyl-prenylterphenyllin B (1) and phenylcandilide A and B (17 and 18), and three new indole-diterpene alkaloids, asperindoles E–G (22-24), were isolated together with eighteen known analogues from [...] Read more.
Three new p-terphenyl derivatives, named 4″-O-methyl-prenylterphenyllin B (1) and phenylcandilide A and B (17 and 18), and three new indole-diterpene alkaloids, asperindoles E–G (22-24), were isolated together with eighteen known analogues from the fungi Aspergillus candidus associated with the South China Sea gorgonian Junceela fragillis. The structures and absolute configurations of the new compounds were elucidated on the basis of spectroscopic analysis, and DFT/NMR and TDDFT/ECD calculations. In a primary cultured cortical neuronal network, the compounds 6, 9, 14, 17, 18 and 24 modulated spontaneous Ca2+ oscillations and 4-aminopyridine hyperexcited neuronal activity. A preliminary structure–activity relationship was discussed. Full article
(This article belongs to the Special Issue Application of Spectroscopic Techniques in Marine Natural Products)
Show Figures

Graphical abstract

9 pages, 1268 KiB  
Communication
Cytotoxic Polyketide Metabolites from a Marine Mesophotic Zone Chalinidae Sponge-Associated Fungus Pleosporales sp. NBUF144
by Jing Zhou, Hairong Zhang, Jing Ye, Xingxin Wu, Weiyi Wang, Houwen Lin, Xiaojun Yan, J. Enrico H. Lazaro, Tingting Wang, C. Benjamin Naman and Shan He
Mar. Drugs 2021, 19(4), 186; https://doi.org/10.3390/md19040186 - 26 Mar 2021
Cited by 14 | Viewed by 3578
Abstract
Two new polyketide natural products, globosuxanthone F (1), and 2′-hydroxy bisdechlorogeodin (2), were isolated from the fungus Pleosporales sp. NBUF144, which was derived from a 62 m deep Chalinidae family sponge together with four known metabolites, 3,4-dihydroglobosuxanthone A ( [...] Read more.
Two new polyketide natural products, globosuxanthone F (1), and 2′-hydroxy bisdechlorogeodin (2), were isolated from the fungus Pleosporales sp. NBUF144, which was derived from a 62 m deep Chalinidae family sponge together with four known metabolites, 3,4-dihydroglobosuxanthone A (3), 8-hydroxy-3-methylxanthone-1-carboxylate (4), crosphaeropsone C (5), and 4-megastigmen-3,9-dione (6). The structures of these compounds were elucidated on the basis of extensive spectroscopic analysis, including 1D and 2D NMR and high-resolution electrospray ionization mass spectra (HRESIMS) data. The absolute configuration of 1 was further established by single-crystal X-ray diffraction studies. Compounds 1-5 were evaluated for cytotoxicity towards CCRF-CEM human acute lymphatic leukemia cells, and it was found that 1 had an IC50 value of 0.46 µM. Full article
(This article belongs to the Special Issue Marine Fungal Metabolites: Structures, Activities and Biosynthesis)
Show Figures

Graphical abstract

11 pages, 1693 KiB  
Article
Seasonal Variations in the Culturable Mycobiome of Acropora loripes along a Depth Gradient
by Nofar Lifshitz, Lena Hazanov, Maoz Fine and Oded Yarden
Microorganisms 2020, 8(8), 1139; https://doi.org/10.3390/microorganisms8081139 - 28 Jul 2020
Cited by 6 | Viewed by 3290
Abstract
Coral associated fungi are widespread, highly diverse and are part and parcel of the coral holobiont. To study how environmental conditions prevailing near the coral-host may affect fungal diversity, the culturable (isolated on potato dextrose agar) mycobiome associated with Acropora loripes colonies was [...] Read more.
Coral associated fungi are widespread, highly diverse and are part and parcel of the coral holobiont. To study how environmental conditions prevailing near the coral-host may affect fungal diversity, the culturable (isolated on potato dextrose agar) mycobiome associated with Acropora loripes colonies was seasonally sampled along a depth gradient in the Gulf of Aqaba. Fragments were sampled from both apparently healthy coral colonies as well as those exhibiting observable lesions. Based on phylogenetic analysis of 197 fungal sequences, Ascomycota were the most prevalent (91.9%). The abundance of fungi increased with increasing water depth, where corals sampled at 25 m yielded up to 70% more fungal colony forming units (CFUs) than those isolated at 6 m. Fungal diversity at 25 m was also markedly higher, with over 2-fold more fungal families represented. Diversity was also higher in lesioned coral samples, when compared to apparently healthy colonies. In winter, concurrent with water column mixing and increased levels of available nutrients, at the shallow depths, Saccharomytacea and Sporidiobolacea were more prevalent, while in spring and fall Trichocomacea (overall, the most prevalent family isolated throughout this study) were the most abundant taxa isolated at these depths as well as at deeper sampling sites. Our results highlight the dynamic nature of the culturable coral mycobiome and its sensitivity to environmental conditions and coral health. Full article
Show Figures

Figure 1

37 pages, 11579 KiB  
Review
A Systematic Review of Recently Reported Marine Derived Natural Product Kinase Inhibitors
by Te Li, Ning Wang, Ting Zhang, Bin Zhang, Thavarool P. Sajeevan, Valsamma Joseph, Lorene Armstrong, Shan He, Xiaojun Yan and C. Benjamin Naman
Mar. Drugs 2019, 17(9), 493; https://doi.org/10.3390/md17090493 - 23 Aug 2019
Cited by 38 | Viewed by 7734
Abstract
Protein kinases are validated drug targets for a number of therapeutic areas, as kinase deregulation is known to play an essential role in many disease states. Many investigated protein kinase inhibitors are natural product small molecules or their derivatives. Many marine-derived natural products [...] Read more.
Protein kinases are validated drug targets for a number of therapeutic areas, as kinase deregulation is known to play an essential role in many disease states. Many investigated protein kinase inhibitors are natural product small molecules or their derivatives. Many marine-derived natural products from various marine sources, such as bacteria and cyanobacteria, fungi, animals, algae, soft corals, sponges, etc. have been found to have potent kinase inhibitory activity, or desirable pharmacophores for further development. This review covers the new compounds reported from the beginning of 2014 through the middle of 2019 as having been isolated from marine organisms and having potential therapeutic applications due to kinase inhibitory and associated bioactivities. Moreover, some existing clinical drugs based on marine-derived natural product scaffolds are also discussed. Full article
(This article belongs to the Special Issue Enzyme Inhibitor from Marine Organisms)
Show Figures

Graphical abstract

Back to TopTop