Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (663)

Search Parameters:
Keywords = copper futures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 703 KiB  
Review
Fungal Lytic Polysaccharide Monooxygenases (LPMOs): Functional Adaptation and Biotechnological Perspectives
by Alex Graça Contato and Carlos Adam Conte-Junior
Eng 2025, 6(8), 177; https://doi.org/10.3390/eng6080177 - 1 Aug 2025
Viewed by 266
Abstract
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation [...] Read more.
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation of molecular oxygen (O2) or hydrogen peroxide (H2O2). Their catalytic versatility is intricately modulated by structural features, including the histidine brace active site, surface-binding loops, and, in some cases, appended carbohydrate-binding modules (CBMs). The oxidation pattern, whether at the C1, C4, or both positions, is dictated by subtle variations in loop architecture, amino acid microenvironments, and substrate interactions. LPMOs are embedded in a highly synergistic fungal enzymatic system, working alongside cellulases, hemicellulases, lignin-modifying enzymes, and oxidoreductases to enable efficient lignocellulose decomposition. Industrial applications of fungal LPMOs are rapidly expanding, with key roles in second-generation biofuels, biorefineries, textile processing, food and feed industries, and the development of sustainable biomaterials. Recent advances in genome mining, protein engineering, and heterologous expression are accelerating the discovery of novel LPMOs with improved functionalities. Understanding the balance between O2- and H2O2-driven mechanisms remains critical for optimizing their catalytic efficiency while mitigating oxidative inactivation. As the demand for sustainable biotechnological solutions grows, this narrative review highlights how fungal LPMOs function as indispensable biocatalysts for the future of the Circular Bioeconomy and green industrial processes. Full article
Show Figures

Figure 1

23 pages, 12392 KiB  
Article
Identification, Characterization, Pathogenicity, and Fungicide Sensitivity of Postharvest Fungal Diseases in Culinary Melon from Northern Thailand
by Nakarin Suwannarach, Karnthida Wongsa, Chanokned Senwanna, Wipornpan Nuangmek and Jaturong Kumla
J. Fungi 2025, 11(7), 540; https://doi.org/10.3390/jof11070540 - 19 Jul 2025
Viewed by 556
Abstract
Culinary melon (Cucumis melo subsp. agrestis var. conomon) is widely cultivated throughout Thailand and represents an important agricultural crop. During 2023–2024, anthracnose, charcoal rot, and fruit rot caused by fungi were observed on postharvest culinary melon fruits in northern Thailand. This [...] Read more.
Culinary melon (Cucumis melo subsp. agrestis var. conomon) is widely cultivated throughout Thailand and represents an important agricultural crop. During 2023–2024, anthracnose, charcoal rot, and fruit rot caused by fungi were observed on postharvest culinary melon fruits in northern Thailand. This study aimed to isolate and identify fungal pathogens associated with these postharvest diseases in culinary melons, as well as to assess their pathogenicity. Eight fungal strains were isolated and identified through morphological characterization and multi-gene phylogenetic analysis. Colletotrichum chlorophyti and C. siamense were identified as the causal agents of anthracnose, Fusarium sulawesiense caused fruit rot, and Macrophomina phaseolina was responsible for charcoal rot. Pathogenicity tests were conducted, and the fungi were successfully re-isolated from the symptomatic lesions. Moreover, sensitivity tests for fungicides revealed that C. siamense was completely inhibited by copper oxychloride and copper hydroxide. Colletotrichum chlorophyti was inhibited by benalaxyl-M + mancozeb, copper hydroxide, and mancozeb. In the case of M. phaseolina, complete inhibition was observed with the use of benalaxyl-M + mancozeb, mancozeb, and propineb. Copper hydroxide successfully inhibited F. sulawesiense completely. To our knowledge, this study is the first to report C. siamense and C. chlorophyti as causes of anthracnose, F. sulawesiense as a cause of fruit rot, and M. phaseolina as a cause of charcoal rot in postharvest culinary melon fruits in Thailand. It also marks the first global report of C. siamense, M. phaseolina, and F. sulawesiense as causal agents of these respective diseases in culinary melon. Furthermore, the results of the fungicide sensitivity tests provide valuable information for developing effective management strategies to control these postharvest diseases in the future. Full article
Show Figures

Figure 1

29 pages, 1812 KiB  
Review
A Review on the Design Strategies of Copper-Based Catalysts for Enhanced Activity and Stability in Methanol Reforming to Hydrogen
by Shuang Pang, Xueying Dou, Wei Zhao, Suli Bai, Bo Wan, Tiaoxia Wang and Jing-He Yang
Nanomaterials 2025, 15(14), 1118; https://doi.org/10.3390/nano15141118 - 18 Jul 2025
Viewed by 417
Abstract
Methanol Steam Reforming (MSR) is one of the most promising technologies in the hydrogen economy, and copper-based catalysts have become the core materials in this field due to their high activity and low cost. In this paper, we systematically review the design strategies [...] Read more.
Methanol Steam Reforming (MSR) is one of the most promising technologies in the hydrogen economy, and copper-based catalysts have become the core materials in this field due to their high activity and low cost. In this paper, we systematically review the design strategies of copper-based catalysts in MSR reactions in recent years, including structure control, component optimization, support effect, and surface modification. We focus on the mechanisms of active site exposure, improvement of anti-sintering ability, and the enhancement of anti-carbon deposition performance. Finally, we summarize the challenges of current research and propose the future development direction. This review aims to provide a reference for subsequent related research through the experience of this paper. Full article
(This article belongs to the Special Issue Structural Regulation and Performance Assessment of Nanocatalysts)
Show Figures

Figure 1

18 pages, 24780 KiB  
Article
Performance of Polystyrene-Impregnated and CCA-Preserved Tropical Woods Against Subterranean Termites in PNG Field and Treatment-Induced Color Change
by Yusuf Sudo Hadi, Cossey Yosi, Paul Marai, Mahdi Mubarok, Imam Busyra Abdillah, Rohmah Pari, Gustan Pari, Abdus Syukur, Lukmanul Hakim Zaini, Dede Hermawan and Jingjing Liao
Polymers 2025, 17(14), 1945; https://doi.org/10.3390/polym17141945 - 16 Jul 2025
Viewed by 288
Abstract
Logs supplied in Papua New Guinea and Indonesia are predominantly sourced from fast-growing tree species of plantation forests. The timber primarily consists of sapwood, which is highly susceptible to biodeterioration. At a training center, CCA (chromated copper arsenate) is still used for wood [...] Read more.
Logs supplied in Papua New Guinea and Indonesia are predominantly sourced from fast-growing tree species of plantation forests. The timber primarily consists of sapwood, which is highly susceptible to biodeterioration. At a training center, CCA (chromated copper arsenate) is still used for wood preservation, while in the wood industry, ACQ (alkaline copper quaternary) is commonly applied to enhance the service life of timber. In the future, polystyrene impregnation or other non-biocidal treatments could potentially serve this purpose. This study aimed to determine the discoloration and resistance of polystyrene-impregnated and CCA-preserved woods. Wood samples, Anisoptera thurifera and Octomeles sumatrana from Papua New Guinea, and Anthocephalus cadamba and Falcataria moluccana from Indonesia, were used. The wood samples were treated with polystyrene impregnation, CCA preservation, or left untreated, then exposed at the PNG Forest Research Institute site for four months. After treatment, the color change in polystyrene-impregnated wood was minor, whereas CCA-preserved wood exhibited a noticeably different color compared to untreated wood. The average polymer loading for polystyrene-impregnated wood reached 147%, while the average CCA retention was 8.4 kg/m3. Densities of untreated-, polystyrene-, and CCA-wood were 0.42, 0.64, and 0.45 g/cm3, respectively, and moisture contents were 15.8%, 9.4%, and 13.4%, respectively. CCA preservation proved highly effective in preventing termite attacks; however, CCA is hazardous to living organisms, including humans. Polystyrene impregnation also significantly improved wood resistance to subterranean termites, as indicated by lower weight loss and a higher protection level compared to untreated wood. Additionally, polystyrene treatment is nonhazardous and safe for living organisms, making it a promising option for enhancing wood resistance to termite attacks in the future as an alternative to the biocides currently in use. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 6391 KiB  
Article
Assessing Antibacterial Properties of Copper Oxide Nanomaterials on Gut-Relevant Bacteria In Vitro: A Multifaceted Approach
by Tia A. Wardlaw, Abdulkader Masri, David M. Brown and Helinor J. Johnston
Nanomaterials 2025, 15(14), 1103; https://doi.org/10.3390/nano15141103 - 16 Jul 2025
Viewed by 416
Abstract
Due to the growth in the application of antibacterial nanomaterials (NMs), there is an increased potential for ingestion by humans. Evidence shows that NMs can induce dysbiosis in the gut microbiota in vivo. However, in vitro investigation of the antibacterial activity of NMs [...] Read more.
Due to the growth in the application of antibacterial nanomaterials (NMs), there is an increased potential for ingestion by humans. Evidence shows that NMs can induce dysbiosis in the gut microbiota in vivo. However, in vitro investigation of the antibacterial activity of NMs on gut-relevant, commensal bacteria has been neglected, with studies predominantly assessing NM toxicity against pathogenic bacteria. The current study investigates the antibacterial activity of copper oxide (CuO) NMs to Escherichia coli K12, Enterococcus faecalis, and Lactobacillus casei using a combination of approaches and evaluates the importance of reactive oxygen species (ROS) production as a mechanism of toxicity. The impact of CuO NMs (100, 200, and 300 μg/mL) on the growth and viability of bacterial strains was assessed via plate counts, optical density (OD) measurements, well and disc diffusion assays, and live/dead fluorescent imaging. CuO NMs reduced the viability of all bacteria in a concentration-dependent manner in all assays except the diffusion assays. The most sensitive methods were OD measurements and plate counts. The sensitivity of bacterial strains varied depending on the method, but overall, the results suggest that E. coli K12 is the most sensitive to CuO NM toxicity. The production of ROS by all bacterial strains was observed via DCFH-DA fluorescent imaging following exposure to CuO NMs (300 μg/mL). Overall, the data suggests that CuO NMs have antibacterial activity against gut-relevant bacteria, with evidence that NM-mediated ROS production may contribute to reductions in bacterial viability. Our findings suggest that the use of a combination of assays provides a robust assessment of the antibacterial properties of ingested NMs, and in particular, it is recommended that plate counts and OD measurements be prioritised in the future when screening the antibacterial properties of NMs. Full article
Show Figures

Graphical abstract

13 pages, 1555 KiB  
Article
Accumulation of Mixed Heavy Metals in Maternal Hair and Risk of Pre-Eclampsia: A Prospective Nested Case–Control Study
by Thi Ha Luu, Gege Ma, Ming Jin, Xiaojing Liu, Mengyuan Ren, Suhong Gao, Jiamei Wang, Rongwei Ye, Xiaohong Liu and Nan Li
Toxics 2025, 13(7), 575; https://doi.org/10.3390/toxics13070575 - 8 Jul 2025
Viewed by 728
Abstract
Heavy metals (lead [Pb], cadmium [Cd], arsenic [As], mercury [Hg], manganese [Mn], copper [Cu], zinc [Zn], and iron [Fe]) might be risk factors for pre-eclampsia (PE), whereas their joint effect remains unclear. To address this issue, we conducted a nested case–control study consisting [...] Read more.
Heavy metals (lead [Pb], cadmium [Cd], arsenic [As], mercury [Hg], manganese [Mn], copper [Cu], zinc [Zn], and iron [Fe]) might be risk factors for pre-eclampsia (PE), whereas their joint effect remains unclear. To address this issue, we conducted a nested case–control study consisting of 49 PE cases and 329 controls from a Chinese prospective birth cohort and divided the participants into low/high and quartile groups based on hair metal concentrations. We used logistic regression models and a weighted quantile sum (WQS) model to investigate the independent and mixed associations between these eight heavy metals in maternal hair and the risk of PE. After multivariable adjustment, high hair Pb was associated with a 2.53-fold increased risk of PE, and significantly higher risks of PE were also observed in quartiles 2 to 4 of Pb and quartiles 3 to 4 of Fe. The WQS model revealed a statistically significant association between maternal co-exposure to all eight heavy metals and the risk of PE, with Pb, As, and Fe presenting the biggest risk. Therefore, high maternal exposure to heavy metals may increase the risk of PE. It is crucial to consider co-exposure to multiple heavy metals throughout pregnancy in future research endeavors. Full article
Show Figures

Graphical abstract

25 pages, 3005 KiB  
Review
Non-Ferrous Metal Smelting Slags for Thermal Energy Storage: A Mini Review
by Meichao Yin, Yaxuan Xiong, Aitonglu Zhang, Xiang Li, Yuting Wu, Cancan Zhang, Yanqi Zhao and Yulong Ding
Buildings 2025, 15(13), 2376; https://doi.org/10.3390/buildings15132376 - 7 Jul 2025
Viewed by 447
Abstract
The metallurgical industry is integral to industrial development. As technology advances and industrial demand grows, the annual output of metallurgical waste slag continues to rise. Combined with the substantial historical stockpile, this has made the utilization of metallurgical slag a new research focus. [...] Read more.
The metallurgical industry is integral to industrial development. As technology advances and industrial demand grows, the annual output of metallurgical waste slag continues to rise. Combined with the substantial historical stockpile, this has made the utilization of metallurgical slag a new research focus. This study comprehensively sums up the composition and fundamental characteristics of metallurgical waste slag. It delves into the application potential of non-ferrous metal smelting waste slag, such as copper slag, nickel slag, and lead slag, in both sensible and latent heat storage. In sensible heat storage, copper slag, with its low cost and high thermal stability, is suitable as a storage material. After appropriate treatment, it can be combined with other materials to produce composite phase change energy storage materials, thus expanding its role into latent heat storage. Nickel slag, currently mainly used in infrastructure materials, still needs in-depth research to confirm its suitability for sensible heat storage. Nevertheless, in latent heat storage, it has been utilized in making the support framework of composite phase change materials. While there are no current examples of lead slag being used in sensible heat storage, the low leaching concentration of lead and zinc in lead slag concrete under alkaline conditions offers new utilization ideas. Given the strong nucleation effect of iron and impurities in lead slag, it is expected to be used in the skeleton preparation of composite phase change materials. Besides the aforementioned waste slags, other industrial waste slags also show potential as sensible heat storage materials. This paper aims to evaluate the feasibility of non-ferrous metal waste slag as energy storage materials. It analyses the pros and cons of their practical applications, elaborates on relevant research progress, technical hurdles, and future directions, all with the goal of enhancing their effective use in heat storage. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies for Low-Carbon Buildings)
Show Figures

Figure 1

8 pages, 1653 KiB  
Proceeding Paper
The Mechanical Properties of Brass Alloys: A Review
by S. Jasper, R. Subash, K. Muthuneelakandan, D. Vijayakumar and S. Jhansi Ida
Eng. Proc. 2025, 93(1), 11; https://doi.org/10.3390/engproc2025093011 - 1 Jul 2025
Viewed by 524
Abstract
Brass is a proportionate copper and zinc alloy that may be mixed to achieve a variety of mechanical, electrical, and chemical characteristics. Compared to bronze, it is more pliable. Brass has a comparatively low melting point (900–940 °C; 1650–1720 °F), depending on its [...] Read more.
Brass is a proportionate copper and zinc alloy that may be mixed to achieve a variety of mechanical, electrical, and chemical characteristics. Compared to bronze, it is more pliable. Brass has a comparatively low melting point (900–940 °C; 1650–1720 °F), depending on its composition. This review explores the most recent advancements in brass alloy technology, including the addition of silicon, tin, and aluminium to improve its strength, machinability, and resistance to corrosion. Furthermore, the development of lead-free, recyclable, and low-carbon brass alloys has been fuelled by the growing demand for environmentally friendly materials. With a renewed emphasis on antibacterial qualities and wear-resistant formulations, brass alloys are also seeing increasing use in sectors like electronics, architecture, and healthcare. Additionally, new opportunities for producing custom-designed brass components have been made possible by the development of additive manufacturing. This paper provides an overview of the current and future potential of brass alloys, highlighting their originality in addressing the changing demands of modern industry and technology. Full article
Show Figures

Figure 1

17 pages, 732 KiB  
Review
A Review of Carbon Pricing Mechanisms and Risk Management for Raw Materials in Low-Carbon Energy Systems
by Hongbo Sun, Xinting Zhang and Cuicui Luo
Energies 2025, 18(13), 3401; https://doi.org/10.3390/en18133401 - 27 Jun 2025
Viewed by 485
Abstract
The global shift to low-carbon energy systems has significantly increased demand for critical raw materials like lithium, cobalt, nickel, rare earth elements, and copper. These materials are essential for renewable technologies and energy storage. However, their extraction and processing produce significant carbon emissions [...] Read more.
The global shift to low-carbon energy systems has significantly increased demand for critical raw materials like lithium, cobalt, nickel, rare earth elements, and copper. These materials are essential for renewable technologies and energy storage. However, their extraction and processing produce significant carbon emissions and face challenges from supply chain vulnerabilities and price volatility. This review examines the complex relationship between carbon pricing mechanisms—such as carbon markets and taxes—and raw material markets. It explores the strategic importance of these materials, recent policy developments, and the transmission of carbon pricing impacts through supply chains. The review also analyzes the systemic risks created by carbon pricing, including regulatory uncertainty, market volatility, and geopolitical tensions. We then discuss financial tools and corporate strategies for managing these risks, such as carbon-linked derivatives and supply chain diversification. Finally, this review identifies key challenges and suggests future research to improve the resilience and sustainability of raw material supply chains. Here, resilience is defined as the capacity to adapt to carbon pricing volatility, geopolitical disruptions, and regulatory shocks, while maintaining operations. The paper concludes that coordinated policies and flexible risk management are urgently needed to support a reliable and sustainable energy transition. Full article
(This article belongs to the Collection Energy Transition Towards Carbon Neutrality)
Show Figures

Figure 1

17 pages, 2087 KiB  
Article
Intertemporal Allocation of Recycling for Long-Lived Materials from Energy Infrastructure
by Mario Schmidt and Pia Heidak
Energies 2025, 18(13), 3393; https://doi.org/10.3390/en18133393 - 27 Jun 2025
Viewed by 334
Abstract
Energy conversion and infrastructure facilities consist of large amounts of metal and have lifetimes of several decades. When recycling metals, the methods of allocation play a decisive role in evaluating how primary and secondary materials, as well as the products that are produced [...] Read more.
Energy conversion and infrastructure facilities consist of large amounts of metal and have lifetimes of several decades. When recycling metals, the methods of allocation play a decisive role in evaluating how primary and secondary materials, as well as the products that are produced with them, are to be evaluated ecologically. So-called credits for recycling are the subject of a particularly controversial discussion. This article shows that the current practice of giving credits for long-lasting products leads to a significant distortion of the actual emissions. Using the examples of steel, aluminum, and copper, prospective LCA data is used to show how the carbon footprint actually behaves. When credits are applied, the time dependency of emissions must be taken into account; otherwise, burden shifting into the future occurs, which can hardly be considered sustainable. The increase compared to the conventional time-independent practice lies, depending on the metal, at 70 to 300%. It is recommended that the cutoff approach be used conservatively when allocating recycling cascades in order to optimize environmental impact and avoid greenwashing. Full article
Show Figures

Figure 1

20 pages, 5044 KiB  
Review
Cocktail of Catalysts: A Dynamic Advance in Modern Catalysis
by Mikhail P. Egorov, Vladimir Ya. Lee and Igor V. Alabugin
Chemistry 2025, 7(4), 109; https://doi.org/10.3390/chemistry7040109 - 26 Jun 2025
Viewed by 823
Abstract
Cocktail-type catalysis represents a significant shift in the understanding of catalytic processes, recognizing that multiple interconverting species—such as metal complexes, clusters, and nanoparticles—can coexist and cooperate within a single reaction environment. Originating from mechanistic studies on palladium-catalyzed systems, this concept challenges the classical [...] Read more.
Cocktail-type catalysis represents a significant shift in the understanding of catalytic processes, recognizing that multiple interconverting species—such as metal complexes, clusters, and nanoparticles—can coexist and cooperate within a single reaction environment. Originating from mechanistic studies on palladium-catalyzed systems, this concept challenges the classical division between homogeneous and heterogeneous catalysis. Instead, it introduces a dynamic framework where catalysts adapt and evolve under reaction conditions, often enhancing efficiency, selectivity, and durability. Using advanced spectroscopic, microscopic, and computational techniques, researchers have visualized the formation and transformation of catalytic species in real time. The cocktail-type approach has since been extended to platinum, nickel, copper, and other transition metals, revealing a general principle in catalysis. This approach not only resolves long-standing mechanistic inconsistencies, but also opens new directions for catalyst design, green chemistry, and sustainable industrial applications. Embracing the complexity of catalytic systems may redefine future strategies in both fundamental research and applied catalysis. Full article
(This article belongs to the Special Issue Celebrating the 50th Anniversary of Professor Valentine Ananikov)
Show Figures

Figure 1

17 pages, 956 KiB  
Review
Exploring the Neural Correlates of Metal Exposure in Motor Areas
by Daniele Corbo, Roberto Gasparotti and Stefano Renzetti
Brain Sci. 2025, 15(7), 679; https://doi.org/10.3390/brainsci15070679 - 25 Jun 2025
Viewed by 343
Abstract
Background and objective: Environmental and occupational exposure to toxic metals poses a significant risk to neurological health, particularly affecting motor-related brain structures. Essential metals like manganese, copper, and iron become neurotoxic when homeostasis is disrupted, while non-essential metals such as lead, mercury, and [...] Read more.
Background and objective: Environmental and occupational exposure to toxic metals poses a significant risk to neurological health, particularly affecting motor-related brain structures. Essential metals like manganese, copper, and iron become neurotoxic when homeostasis is disrupted, while non-essential metals such as lead, mercury, and cadmium are inherently toxic, even at low exposure levels. We aimed to investigate the state of the art on neuroimaging evidence of the effects of exposure to toxic metals on motor related brain structures and functions. Methods: PRISMA guidelines were followed. We included studies that reported neuroimaging studies exploring the link between metal exposure and neural changes in motor areas. Results: We identified 518 papers, but only 20 articles were included. Our findings indicate that manganese is the most extensively studied metal in relation to the motor system using neuroimaging, but studies have also investigated the effects of other metals, including lead, mercury, and copper. Across these studies, the brain regions most consistently affected by metal exposure include the globus pallidus, caudate nucleus, frontal cortex, and cerebellum. Some studies exhibit structural or functional reductions in these areas that correlate with increased levels of metal exposure, suggesting a dose-dependent neurotoxic effect. Conclusions: This review synthesizes current neuroimaging evidence on metal-induced neurotoxicity, emphasizing its impact on motor function and highlighting critical gaps to guide future research and public health strategies. Full article
Show Figures

Figure 1

22 pages, 389 KiB  
Review
Copper Nanoparticles in Aquatic Environment: Release Routes and Oxidative Stress-Mediated Mechanisms of Toxicity to Fish in Various Life Stages and Future Risks
by Anna Sielska and Lidia Skuza
Curr. Issues Mol. Biol. 2025, 47(6), 472; https://doi.org/10.3390/cimb47060472 - 19 Jun 2025
Viewed by 498
Abstract
The final recipient of nanoparticles, including various types of copper-based nanoparticles (Cu-based NPs), is the aquatic environment. Their increased production, especially as a component of antimicrobial agents, raises concerns about uncontrolled environmental release and subsequent ecological risks. The high reactivity of Cu-based NPs [...] Read more.
The final recipient of nanoparticles, including various types of copper-based nanoparticles (Cu-based NPs), is the aquatic environment. Their increased production, especially as a component of antimicrobial agents, raises concerns about uncontrolled environmental release and subsequent ecological risks. The high reactivity of Cu-based NPs enables interactions with biotic and abiotic environmental components, leading to bioaccumulation and disorders in living organisms, such as fish in various life stages, especially in embryos or hatchlings. Increasing concentration of Cu-based NPs causes various toxic effects, mainly through the induction of oxidative stress. These effects include impairment of antioxidant mechanisms, as well as damage to genetic material, cells and tissues, growth retardation, metabolic disorders, increased mortality, or hatching inhibition. The aim of this review is to describe the release routes of Cu-based NPs and their adverse effects on fish, while emphasizing the need for further research on their toxicity and measures to control their release to the environment. Given the limited data on the toxicity of Cu-based NPs, especially concerning sensitive fish developmental stages, further studies are required. Full article
(This article belongs to the Special Issue Innovations in Marine Biotechnology and Molecular Biology)
39 pages, 5008 KiB  
Article
Evaluating the Uncertainty and Predictive Performance of Probabilistic Models Devised for Grade Estimation in a Porphyry Copper Deposit
by Raymond Leung, Alexander Lowe and Arman Melkumyan
Modelling 2025, 6(2), 50; https://doi.org/10.3390/modelling6020050 - 17 Jun 2025
Viewed by 451
Abstract
Probabilistic models are used to describe random processes and quantify prediction uncertainties in a principled way. Examples include geotechnical and geological investigations that seek to model subsurface hydrostratigraphic properties or mineral deposits. In mining geology, model validation efforts have generally lagged behind the [...] Read more.
Probabilistic models are used to describe random processes and quantify prediction uncertainties in a principled way. Examples include geotechnical and geological investigations that seek to model subsurface hydrostratigraphic properties or mineral deposits. In mining geology, model validation efforts have generally lagged behind the development and deployment of computational models. One problem is the lack of industry guidelines for evaluating the uncertainty and predictive performance of probabilistic ore grade models. This paper aims to bridge this gap by developing a holistic approach that is autonomous, scalable and transferable across domains. The proposed model assessment targets three objectives. First, we aim to ensure that the predictions are reasonably calibrated with probabilities. Second, statistics are viewed as images to help facilitate large-scale simultaneous comparisons for multiple models across space and time, spanning multiple regions and inference periods. Third, variogram ratios are used to objectively measure the spatial fidelity of models. In this study, we examine models created by ordinary kriging and the Gaussian process in conjunction with sequential or random field simulations. The assessments are underpinned by statistics that evaluate the model’s predictive distributions relative to the ground truth. These statistics are standardised, interpretable and amenable to significance testing. The proposed methods are demonstrated using extensive data from a real copper mine in a grade estimation task and are accompanied by an open-source implementation. The experiments are designed to emphasise data diversity and convey insights, such as the increased difficulty of future-bench prediction (extrapolation) relative to in situ regression (interpolation). This work enables competing models to be evaluated consistently and the robustness and validity of probabilistic predictions to be tested, and it makes cross-study comparison possible irrespective of site conditions. Full article
Show Figures

Graphical abstract

10 pages, 2064 KiB  
Communication
Photocurrent, Photodegradation, and Proton Conductivity of the Stable Dipyridyl and Thiophene-Functionalized CuII2 Supramolecular Compound
by Jin-He Wang, Guang-Min Liang, Jiu-Yu Ji, Xiao-Jie Gong, Liang-Liang Huang, Li-Ping Zhao, Wen-Xuan Xie and Kun Zhou
Inorganics 2025, 13(6), 195; https://doi.org/10.3390/inorganics13060195 - 12 Jun 2025
Viewed by 457
Abstract
Due to its excellent visible light absorption characteristics, the photocurrent, photodegradation, and proton conductivity of the stable dipyridyl and thiophene-functionalized supramolecular compound [Cu2(TAA)4(4,4′-bpy)]n (CuII2 for short, HTAA = 2-thiopheneacetic acid, 4,4′-bpy = 4,4′-bipyridine) have been [...] Read more.
Due to its excellent visible light absorption characteristics, the photocurrent, photodegradation, and proton conductivity of the stable dipyridyl and thiophene-functionalized supramolecular compound [Cu2(TAA)4(4,4′-bpy)]n (CuII2 for short, HTAA = 2-thiopheneacetic acid, 4,4′-bpy = 4,4′-bipyridine) have been studied in detail. The current density of photocurrent of CuII2 is 1.87 μA·cm−2, and CuII2 degrades methylene blue (MB) with a degradation efficiency of 68.0% under xenon lamp. In addition, CuII2 shows remarkable proton conductivity of 1.79 × 10−3 S·cm−1 (at 75 °C and 98% relative humidity), superior to most copper(II)-based coordination polymers (CPs), and is expected to become a potential proton conductor in the future. Full article
(This article belongs to the Special Issue Supramolecular Chemistry: Prediction, Synthesis and Catalysis)
Show Figures

Figure 1

Back to TopTop