Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = copper chloro-complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4514 KB  
Article
An Ab Initio Study of Aqueous Copper(I) Speciation in the Presence of Chloride
by Daniel C. M. Whynot, Christopher R. Corbeil, Darren J. W. Mercer and Cory C. Pye
Molecules 2025, 30(15), 3147; https://doi.org/10.3390/molecules30153147 - 27 Jul 2025
Viewed by 2042
Abstract
The determination of multiple energy minima on complex potential energy surfaces is challenging. A systematic desymmetrization procedure was employed to find stationary points on the copper(I) + chloride + water potential energy surface using HF, MP2, and B3LYP methods in conjunction with the [...] Read more.
The determination of multiple energy minima on complex potential energy surfaces is challenging. A systematic desymmetrization procedure was employed to find stationary points on the copper(I) + chloride + water potential energy surface using HF, MP2, and B3LYP methods in conjunction with the 6-31G*, 6-31+G*, and 6-311+G* basis sets. Comparison with experimental results demonstrated that the speciation of copper(I) in the presence of chloride and water may be formulated as [CuCl(H2O)]0, [CuCl2], and [CuCl3]2−. Our results indicate that the combination of the MP2 method along with basis sets containing diffuse functions gives excellent agreement with experimental Cu-Cl distances and vibrational frequencies. Poorer results were obtained at the HF levels and/or using the 6-31G* basis set. Full article
(This article belongs to the Special Issue Influence of Solvent Molecules in Coordination Chemistry)
Show Figures

Figure 1

14 pages, 3679 KB  
Article
Synthesis and Characterization of Symmetrical N-Heterocyclic Carbene Copper(II) Complexes—An Investigation of the Influence of Pyridinyl Substituents
by Bhupendra Adhikari, Selvam Raju, Raymond Femi Awoyemi, Bruno Donnadieu, David O. Wipf, Sean L. Stokes and Joseph P. Emerson
Molecules 2024, 29(15), 3542; https://doi.org/10.3390/molecules29153542 - 27 Jul 2024
Cited by 3 | Viewed by 2453 | Correction
Abstract
Three new tridentate copper(II) N-heterocyclic carbene (NHC) complexes have been obtained and characterized with symmetrical C-4 substitutions on their pendent pyridine rings. Substitutions including methyl (Me), methoxy (OMe), and chloro (Cl) groups, which extend the library pincer Cu-NHC complexes under investigation, modify [...] Read more.
Three new tridentate copper(II) N-heterocyclic carbene (NHC) complexes have been obtained and characterized with symmetrical C-4 substitutions on their pendent pyridine rings. Substitutions including methyl (Me), methoxy (OMe), and chloro (Cl) groups, which extend the library pincer Cu-NHC complexes under investigation, modify the impact of pyridinyl basicity on NCN pincer complexes. Both ligand precursors and copper(II) complexes are characterized using a range of techniques, including nuclear magnetic resonance (NMR) spectroscopy for 1H, 13C, 31P, and 19F nuclei, electrospray ionization mass spectrometry (ESI-MS), X-ray crystallography, cyclic voltammetry, and UV-Vis spectroscopy. The pyridine substitutions lead to minimal changes to bond lengths and angles in the X-ray crystal structures of these related complexes; there is a pronounced impact on the electrochemical behavior of both the ligand precursors and copper complexes in the solution. The substitution in the pyridinyl units of these complexes show an impact on the catalytic reactivity of these complexes as applied to a model C–N bond-forming reaction (CEL cross-coupling) under well-established conditions; however, this observation does not correlate to the expected change in basicity in these ligands. Full article
(This article belongs to the Special Issue Exclusive Feature Papers on Molecular Structure)
Show Figures

Graphical abstract

14 pages, 3491 KB  
Article
Interplay of Isomorphs and Polymorphs of Amidino-Copper(II) Complexes with Different Halides
by Zaina Yamba, Anna Peoble, Egor M. Novikov, Raúl Castañeda and Tatiana V. Timofeeva
Crystals 2024, 14(4), 319; https://doi.org/10.3390/cryst14040319 - 29 Mar 2024
Viewed by 1674
Abstract
To increase the number of potential materials for application as MRI contrast agents, several Cu(II) complexes were synthesized. Cu(II) complexes were chosen because they are less expensive in comparison with the presently used Gd(III), Mn(II) and other agents. Pyridine-2-carboximidamide (1), pyrimidine-2-carboximidamide [...] Read more.
To increase the number of potential materials for application as MRI contrast agents, several Cu(II) complexes were synthesized. Cu(II) complexes were chosen because they are less expensive in comparison with the presently used Gd(III), Mn(II) and other agents. Pyridine-2-carboximidamide (1), pyrimidine-2-carboximidamide (2) and pyrazole-2-carboximidamide (3) in the form of different salts along with CuCl2 and NaCl or CuBr2 and NaBr were used to obtain four Cu(II) complexes: dichloro-pyrimidine-2-carboximidamide copper(II) (4), dibromo-pyrimidine-2-carboximidamide copper(II) (5), dichloro-pirazole-2-carboximidamide copper(II) (6), and dibromo-pirazole-2-carboximidamide copper(II) (7). X-ray diffraction analysis revealed that molecular complexes 47 contain square planar coordinated Cu(II) atoms and their structures are very similar, as well as their packing in crystals, which allows us to consider them isomorphs. The same synthetic approach to complex preparation where NaCl or NaBr was not used brought us to the formation of dimeric complexes μ-chloro{chloro(pyridine-2-carboximidamide)copper(II)} (8) and μ-chloro{chloro(pyrimidine-2-carboximidamide)copper(II)} (9). In the dimeric complexes, two fragments which were the same as in monomeric complexes 47 are held together by bridging Cu-Cl bonds making the coordination of Cu equal to 5 (square pyramid). In dimeric complexes, axial Cu-Cl bonds are 2.7360 and 2.854 Å. These values are Cu-Cl bonds on the edge of existence according to statistical data from CSD. Synthesized complexes were characterized by IR spectroscopy, TGA, PXRD, EPR, and quantum chemical calculations. The higher thermal stability of monomer pyrimidine-based complexes with Cl and Br substituents makes them more prospective for further studies. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

20 pages, 6353 KB  
Article
Columnar Liquid Crystals of Copper(I) Complexes with Ionic Conductivity and Solid State Emission
by Viorel Cîrcu, Constantin P. Ganea, Mihail Secu, Doina Manaila-Maximean, George Cătălin Marinescu, Roua Gabriela Popescu and Iuliana Pasuk
Molecules 2023, 28(10), 4196; https://doi.org/10.3390/molecules28104196 - 19 May 2023
Cited by 13 | Viewed by 2928
Abstract
Two neutral copper(I) halide complexes ([Cu(BTU)2X], X = Cl, Br) were prepared by the reduction of the corresponding copper(II) halides (chloride or bromide) with a benzoylthiourea (BTU, N-(3,4-diheptyloxybenzoyl)-N′-(4-heptadecafluorooctylphenyl)thiourea) ligand in ethanol. The two copper(I) complexes show a very [...] Read more.
Two neutral copper(I) halide complexes ([Cu(BTU)2X], X = Cl, Br) were prepared by the reduction of the corresponding copper(II) halides (chloride or bromide) with a benzoylthiourea (BTU, N-(3,4-diheptyloxybenzoyl)-N′-(4-heptadecafluorooctylphenyl)thiourea) ligand in ethanol. The two copper(I) complexes show a very interesting combination of 2D supramolecular structures, liquid crystalline, emission, and 1D ionic conduction properties. Their chemical structure was ascribed based on ESI–MS, elemental analysis, IR, and NMR spectroscopies (1H and 13C), while the mesomorphic behavior was analyzed through a combination of differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and powder X-ray diffraction (XRD). These new copper(I) complexes have mesomorphic properties and exhibit a hexagonal columnar mesophase over a large temperature range, more than 100 K, as evidenced by DSC studies and POM observations. The thermogravimetric analysis (TG) indicated a very good thermal stability of these samples up to the isotropization temperatures and over the whole temperature range of the liquid crystalline phase existence. Both complexes displayed a solid-state emission with quantum yields up to 8% at ambient temperature. The electrical properties of the new metallomesogens were investigated by variable temperature dielectric spectroscopy over the entire temperature range of the liquid crystalline phase. It was found that the liquid crystal phases favoured anhydrous proton conduction provided by the hydrogen-bonding networks formed by the NH…X moieties (X = halide or oxygen) of the benzoylthiourea ligand in the copper(I) complexes. A proton conductivity of 2.97 × 10−7 S·cm−1 was achieved at 430 K for the chloro-complex and 1.37 × 10−6 S·cm−1 at 440K for the related bromo-complex. Full article
(This article belongs to the Special Issue Liquid Crystals II)
Show Figures

Figure 1

19 pages, 3540 KB  
Article
Synthesis, Structural Characterization and Biological Activity Evaluation of Novel Cu(II) Complexes with 3-(trifluoromethyl)phenylthiourea Derivatives
by Aleksandra Drzewiecka-Antonik, Marta Struga, Agnieszka Głogowska, Ewa Augustynowicz-Kopec, Katarzyna Dobrzyńska, Alicja Chrzanowska, Anna Wolska, Paweł Rejmak, Marcin T. Klepka, Małgorzata Wrzosek and Anna Bielenica
Int. J. Mol. Sci. 2022, 23(24), 15694; https://doi.org/10.3390/ijms232415694 - 10 Dec 2022
Cited by 4 | Viewed by 3159
Abstract
Copper complexes with 1,3-disubstituted thiourea derivatives, all containing 3-(trifluoromethyl)phenyl tail and 1-alkyl/halogen-phenyl substituent, were synthesized. The experimental spectroscopic studies and theoretical calculation revealed that two ligands coordinate to Cu(II) in a bidentate fashion via thiocarbonyl S and deprotonated N atoms of thiourea moiety. [...] Read more.
Copper complexes with 1,3-disubstituted thiourea derivatives, all containing 3-(trifluoromethyl)phenyl tail and 1-alkyl/halogen-phenyl substituent, were synthesized. The experimental spectroscopic studies and theoretical calculation revealed that two ligands coordinate to Cu(II) in a bidentate fashion via thiocarbonyl S and deprotonated N atoms of thiourea moiety. Such monomers are characteristic of alkylphenylthiourea complexes, whereas the formation of a sandwich-type dimer is observed for halogeno derivatives. For the first time, the structural identifications of CuN2S2-based complexes using experimental and theoretical X-ray absorption near edge structure are demonstrated. The dimeric halogeno derivatives showed higher antimicrobial activity in comparison with alkylphenylthiourea complexes. The Cu(II) complex of 1-(4-chloro-3-nitrophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea was active against 19 strains of methicillin-resistant Staphylococci (MIC = 2 µg/mL). This derivative acted as a dual inhibitor of DNA gyrase and topoisomerase IV isolated from Staphylococcus aureus. Additionally, complexes of halogenphenylthiourea strongly inhibited the growth of mycobacteria isolated from tuberculosis patients, even fourfold stronger than the reference isoniazid. The complexes exerted weak to moderate antitumor activity (towards SW480, SW620, and PC3) being non-toxic towards normal HaCaT cells. Full article
(This article belongs to the Special Issue New Antibacterial Agents 2.0)
Show Figures

Figure 1

17 pages, 2202 KB  
Article
Low-Dimensional Compounds Containing Bioactive Ligands. Part XIX: Crystal Structures and Biological Properties of Copper Complexes with Halogen and Nitro Derivatives of 8-Hydroxyquinoline
by Martina Kepeňová, Martin Kello, Romana Smolková, Michal Goga, Richard Frenák, Ľudmila Tkáčiková, Miroslava Litecká, Jan Šubrt and Ivan Potočňák
Inorganics 2022, 10(12), 223; https://doi.org/10.3390/inorganics10120223 - 25 Nov 2022
Cited by 4 | Viewed by 2564
Abstract
Six new copper(II) complexes were prepared: [Cu(ClBrQ)2] (1a, 1b), [Cu(ClBrQ)2]·1/2 diox (2) (diox = 1,4-dioxane), [Cu(BrQ)2] (3), [Cu(dNQ)2] (4), [Cu(dNQ)2(DMF)2] (5 [...] Read more.
Six new copper(II) complexes were prepared: [Cu(ClBrQ)2] (1a, 1b), [Cu(ClBrQ)2]·1/2 diox (2) (diox = 1,4-dioxane), [Cu(BrQ)2] (3), [Cu(dNQ)2] (4), [Cu(dNQ)2(DMF)2] (5) and [Cu(ClNQ)2] (6), where HClBrQ is 5-chloro-7-bromo-8-hydroxyquinoline, HBrQ is 7-bromo-8-hydroxyquinoline, HClNQ is 5-chloro-7-nitro-8-hydroxyquinoline and HdNQ is 5,7-dinitro-8-hydroxyquinoline. Prepared compounds were characterised by infrared spectroscopy, elemental analysis and by X-ray structural analysis. Structural analysis revealed that all complexes are molecular. Square planar coordination of copper atoms in [Cu(XQ)2] (XQ = ClBrQ (1a, 1b), BrQ (3) and ClNQ (6)) and tetragonal bipyramidal coordination in [Cu(dNQ)2(DMF)2] (5) complexes were observed. In these four complexes, bidentate chelate coordination of XQ ligands via oxygen and nitrogen atoms was found. Hydrogen bonds stabilizing the structure were observed in [Cu(dNQ)2(DMF)2] (5) and [Cu(ClNQ)2] (6), no other nonbonding interactions were noticed in all five structures. The stability of the complexes in DMSO and DMSO/water was evaluated by UV-Vis spectroscopy. Cytotoxic activity of the complexes and ligands was tested against MCF-7, MDA-MB-231, HCT116, CaCo2, HeLa, A549 and Jurkat cancer cell lines. The selectivity of the complexes was verified on a noncancerous Cos-7 cell line. Antiproliferative activity of the prepared complexes was very low in comparison with cisplatin, except complex 3; however, its activity was not selective and was similar to the activity of its ligand HBrQ. Antibacterial potential was observed only with ligand HClNQ. Radical scavenging experiments revealed relatively high antioxidant activity of complex 3 against ABTS radical. Full article
(This article belongs to the Special Issue Recent Progress in Coordination Chemistry)
Show Figures

Figure 1

22 pages, 55171 KB  
Article
A Novel Family of Cage-like (CuLi, CuNa, CuK)-phenylsilsesquioxane Complexes with 8-Hydroxyquinoline Ligands: Synthesis, Structure, and Catalytic Activity
by Alexey N. Bilyachenko, Victor N. Khrustalev, Anna Y. Zueva, Ekaterina M. Titova, Grigorii S. Astakhov, Yan V. Zubavichus, Pavel V. Dorovatovskii, Alexander A. Korlyukov, Lidia S. Shul’pina, Elena S. Shubina, Yuriy N. Kozlov, Nikolay S. Ikonnikov, Dmitri Gelman and Georgiy B. Shul’pin
Molecules 2022, 27(19), 6205; https://doi.org/10.3390/molecules27196205 - 21 Sep 2022
Cited by 16 | Viewed by 3299
Abstract
The first examples of metallasilsesquioxane complexes, including ligands of the 8-hydroxyquinoline family 19, were synthesized, and their structures were established by single crystal X-ray diffraction using synchrotron radiation. Compounds 19 tend to form a type of sandwich-like cage [...] Read more.
The first examples of metallasilsesquioxane complexes, including ligands of the 8-hydroxyquinoline family 19, were synthesized, and their structures were established by single crystal X-ray diffraction using synchrotron radiation. Compounds 19 tend to form a type of sandwich-like cage of Cu4M2 nuclearity (M = Li, Na, K). Each complex includes two cisoid pentameric silsesquioxane ligands and two 8-hydroxyquinoline ligands. The latter coordinates the copper ions and corresponding alkaline metal ions (via the deprotonated oxygen site). A characteristic (size) of the alkaline metal ion and a variation of characteristics of nitrogen ligands (8-hydroxyquinoline vs. 5-chloro-8-hydroxyquinoline vs. 5,7-dibromo-8-hydroxyquinoline vs. 5,7-diiodo-8-hydroxyquinoline) are highly influential for the formation of the supramolecular structure of the complexes 3a, 5, and 79. The Cu6Na2-based compound 2 exhibits high catalytic activity towards the oxidation of (i) hydrocarbons by H2O2 activated with HNO3, and (ii) alcohols by tert-butyl hydroperoxide. Studies of kinetics and their selectivity has led us to conclude that it is the hydroxyl radicals that play a crucial role in this process. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Figure 1

14 pages, 1669 KB  
Article
Chemical Dissolution of Chalcopyrite Concentrate in Choline Chloride Ethylene Glycol Deep Eutectic Solvent
by Carlos Carlesi, Robert C. Harris, Andrew P. Abbott and Gawen R. T. Jenkin
Minerals 2022, 12(1), 65; https://doi.org/10.3390/min12010065 - 5 Jan 2022
Cited by 36 | Viewed by 5344
Abstract
Currently, the high demand for copper is in direct contrast with the decrease in the mineral grade and, more significantly, the concerns regarding the environmental impact that arise as a result of processing such low-grade materials. Consequently, new mineral processing concepts are needed. [...] Read more.
Currently, the high demand for copper is in direct contrast with the decrease in the mineral grade and, more significantly, the concerns regarding the environmental impact that arise as a result of processing such low-grade materials. Consequently, new mineral processing concepts are needed. This work explores the chemical dissolution of chalcopyrite concentrate at ambient pressure and moderate temperatures in a deep eutectic solvent. Copper and iron are dissolved without changing their oxidation state, without solvent pH change, and stabilized as a chloride complex with no evidence of passivation. Chemical equilibria of the metallic chloride complexes limit the dissolution, and the step that is rate-controlling of the kinetics is the interdiffusion of species in the solvent. The chemical mechanism may involve initial chloride adsorption at positive sites of the solid surface, pointing out the importance of surfaces states on chalcopyrite particles. A model based on a shrinking particle coupled with pseudo-second-order increase in the liquid concentration of copper describes the dissolution kinetics and demonstrates the importance of the liquid to solid ratio. Iron and copper can be recovered separately from the solvent, which highlights that this concept is an interesting alternative to both redox-hydrometallurgy and pyrometallurgy to obtain copper by the processing of chalcopyrite concentrate. Full article
(This article belongs to the Special Issue Application of Ionic Liquids in Hydrometallurgy)
Show Figures

Figure 1

16 pages, 2182 KB  
Article
Synthesis and Characterization of Novel Copper(II)-Sunitinib Complex: Molecular Docking, DFT Studies, Hirshfeld Analysis and Cytotoxicity Studies
by Facundo Tarasi, Priscila Ailín Lanza, Valeria Ferretti, Gustavo Alberto Echeverría, Oscar Enrique Piro, Maximiliano Cacicedo, Stephan Gehring, Ignacio Esteban León and María Soledad Islas
Inorganics 2022, 10(1), 3; https://doi.org/10.3390/inorganics10010003 - 22 Dec 2021
Cited by 4 | Viewed by 4198
Abstract
The main goal of this work was to report the synthesis, characterization, and cytotoxicity study of a novel copper(II)-sunitinib complex, CuSun. It has been synthesized and characterized in solid state and in solution by different methods (such as DFT, FTIR, Raman, UV-vis, EPR, [...] Read more.
The main goal of this work was to report the synthesis, characterization, and cytotoxicity study of a novel copper(II)-sunitinib complex, CuSun. It has been synthesized and characterized in solid state and in solution by different methods (such as DFT, FTIR, Raman, UV-vis, EPR, NMR, etc.). The solid-state molecular structure of trichlorosunitinibcopper(II), where sunitinib: N-[2-(diethylamino)ethyl]-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide, for short Cu(Sun)Cl3, was determined by X-ray diffraction. It crystallizes in the triclinic space group P-1 with a = 7.9061(5) Å, b = 12.412(1) Å, c = 13.7005(8) Å, α = 105.021(6)°, β = 106.744(5)°, γ = 91.749(5)°, and Z = 2 molecules per unit cell. Also, we have found π-π interactions and classic and non-classic H-bonds in the crystal structure by using Hirshfeld surface analysis. In the speciation studies, the complex has dissociated in protonated sunitinib and chlorocomplex of copper(II), according to 1HNMR, EPR, UV-vis and conductimetric analysis. Molecular docking of the complex in both, ATP binding site and allosteric site of VEGFR2 have shown no improvement in comparison to the free ligand. Besides, cytotoxicity assay on HepG2 cell line shows similar activity for complex and ligand in the range between 1–25 μM supporting the data obtained from studies in solution. Full article
(This article belongs to the Special Issue Metal-Based Anticancer Drugs)
Show Figures

Graphical abstract

16 pages, 4568 KB  
Article
Copper Chloro-Complexes Concentrated Solutions: An Electrochemical Study
by Giampaolo Lacarbonara, Luigi Faggiano, Stefania Porcu, Pier Carlo Ricci, Stefania Rapino, Declan P. Casey, James F. Rohan and Catia Arbizzani
Batteries 2021, 7(4), 83; https://doi.org/10.3390/batteries7040083 - 3 Dec 2021
Cited by 8 | Viewed by 6046
Abstract
Basic studies on concentrated solutions are becoming more and more important due to the practical industrial and geological applications. The use in redox flow batteries is one of the most important applications of these solutions. Specifically, in this paper we investigated high-concentrated copper [...] Read more.
Basic studies on concentrated solutions are becoming more and more important due to the practical industrial and geological applications. The use in redox flow batteries is one of the most important applications of these solutions. Specifically, in this paper we investigated high-concentrated copper chloro-complexes solutions with different additives. The concentration of ligands and additives affects the physicochemical and electrochemical properties of 2 M solutions of Cu(I) and Cu(II). Solutions with calcium chloride and HCl as Cl source were investigated with Cu:Cl ratios of 1:5 and 1:7, the 1:5 Cu:Cl ratio being the best performing. The substitution of calcium chloride with ammonium chloride increased the conductivity. However, while the effect on the positive electrode process was not very evident, the reversibility of the copper deposition–stripping process was greatly improved. Orthophosphoric acid could be a viable additive to decrease the complexation of calcium with chloride anions and to improve the stability of Cu(II) chloro-complexes. Absorption spectroscopy demonstrated that phosphate ions do not coordinate copper(II) but lead to a shift in the distribution of copper chloro-complexes toward more coordinated species. Electrochemically, the increased availability of chloride anions in solution stabilized the Cu(II)-rich solution and led to increased reversibility of the Cu(II)/Cu(I) redox process. Full article
Show Figures

Figure 1

25 pages, 7317 KB  
Article
The Cytotoxic Effect of Copper (II) Complexes with Halogenated 1,3-Disubstituted Arylthioureas on Cancer and Bacterial Cells
by Alicja Chrzanowska, Aleksandra Drzewiecka-Antonik, Katarzyna Dobrzyńska, Joanna Stefańska, Piotr Pietrzyk, Marta Struga and Anna Bielenica
Int. J. Mol. Sci. 2021, 22(21), 11415; https://doi.org/10.3390/ijms222111415 - 22 Oct 2021
Cited by 12 | Viewed by 3692
Abstract
A series of eight copper (II) complexes with 3-(4-chloro-3-nitrophenyl)thiourea were designed and synthesized. The cytotoxic activity of all compounds was assessed in three human cancer cell lines (SW480, SW620, PC3) and human normal keratinocytes (HaCaT). The complexes 1, 3, 5, [...] Read more.
A series of eight copper (II) complexes with 3-(4-chloro-3-nitrophenyl)thiourea were designed and synthesized. The cytotoxic activity of all compounds was assessed in three human cancer cell lines (SW480, SW620, PC3) and human normal keratinocytes (HaCaT). The complexes 1, 3, 5, 7 and 8 were cytotoxic to the studied tumor cells in the low micromolar range, without affecting the normal cells. The complexes 1, 3, 7 and 8 induced lactate dehydrogenase (LDH) release in all cancer cell lines, but not in the HaCaT cells. They provoked early apoptosis in pathological cells, especially in SW480 and PC3 cells. The ability of compounds 1, 3, 7 and 8 to diminish interleukin-6 (IL-6) concentration in a cell was established. For the first time, the influence of the most promising Cu (II) complexes on intensities of detoxifying and reactive oxygen species (ROS) scavenging the enzymes of tumor cells was studied. The cytotoxic effect of all copper (II) conjugates against standard and hospital bacterial strains was also proved. Full article
Show Figures

Figure 1

18 pages, 8587 KB  
Article
Synthesis, Characterization, DNA/HSA Interactions, and Anticancer Activity of Two Novel Copper(II) Complexes with 4-Chloro-3-Nitrobenzoic Acid Ligand
by Zhen-Fang Zeng, Qiu-Ping Huang, Jie-Hui Cai, Guang-Jin Zheng, Qiu-Chan Huang, Zi-Lu Liu, Zi-Lu Chen and You-Huan Wei
Molecules 2021, 26(13), 4028; https://doi.org/10.3390/molecules26134028 - 1 Jul 2021
Cited by 23 | Viewed by 4459
Abstract
The purpose of this study was to identify new metal-based anticancer drugs; to this end, we synthesized two new copper(II) complexes, namely [Cu(ncba)4(phen)] (1) and [Cu(ncba)4(bpy)] (2), comprised 4-chloro-3-nitrobenzoic acid as the main ligand. The [...] Read more.
The purpose of this study was to identify new metal-based anticancer drugs; to this end, we synthesized two new copper(II) complexes, namely [Cu(ncba)4(phen)] (1) and [Cu(ncba)4(bpy)] (2), comprised 4-chloro-3-nitrobenzoic acid as the main ligand. The single-crystal XRD approach was employed to determine the copper(II) complex structures. Binding between these complexes and calf thymus DNA (CT-DNA) and human serum albumin (HSA) was explored by electronic absorption, fluorescence spectroscopy, and viscometry. Both complexes intercalatively bound CT-DNA and statically and spontaneously quenched DNA/HSA fluorescence. A CCK-8 assay revealed that complex 1 and complex 2 had substantial antiproliferative influences against human cancer cell lines. Moreover, complex 1 had greater antitumor efficacy than the positive control cisplatin. Flow cytometry assessment of the cell cycle demonstrated that these complexes arrested the HepG2 cell cycle and caused the accumulation of G0/G1-phase cells. The mechanism of cell death was elucidated by flow cytometry-based apoptosis assays. Western blotting revealed that both copper(II) complexes induced apoptosis by regulating the expression of the Bcl-2(Bcl-2, B cell lymphoma 2) protein family. Full article
(This article belongs to the Special Issue Anticancer Drug Discovery and Development)
Show Figures

Figure 1

17 pages, 7118 KB  
Article
New Heteroleptic 3D Metal Complexes: Synthesis, Antimicrobial and Solubilization Parameters
by Muhammad Babar Taj, Muneera D. F. Alkahtani, Uzma Ali, Ahmad Raheel, Walla Alelwani, Afnan M. Alnajeebi, Nouf Abubakr Babteen, Sadia Noor and Heba Alshater
Molecules 2020, 25(18), 4252; https://doi.org/10.3390/molecules25184252 - 16 Sep 2020
Cited by 16 | Viewed by 4438
Abstract
The microbial resistance to current antibiotics is increasing day by day, which in turn accelerating the development of new effective drugs. Several studies have proved the high antimicrobial potential of the interaction of several organic ligands with a variety of metal ions. In [...] Read more.
The microbial resistance to current antibiotics is increasing day by day, which in turn accelerating the development of new effective drugs. Several studies have proved the high antimicrobial potential of the interaction of several organic ligands with a variety of metal ions. In the present study, a conventional method has been adopted in the synthesis of twelve new heteroleptic complexes of cobalt (II), nickel (II), copper (II) and zinc (II) using three aldimines, namely, (HL1 ((E)-2-((4-chloro-2-hydroxybenzylidene)amino)-3,4-dimethyl-5-phenylcyclopent-2-en-1-one), HL2 ((Z)-3-((4-chlorobenzylidene)amino)-4-hydroxy-5-nitrobenzenesulfonic acid) HL3 (2,2′-((1,2-phenylenebis(azaneylylidene))bis(methaneylylidene))diphenol)) as primary ligands, while phenyl glycine was the secondary ligand. The synthesized compounds were characterized by UV-vis, IR and multinuclear (1H and 13C) NMR spectroscopy, elemental analysis, and electrical conductance. The IR study revealed the coordination of the aldimine derivatives with the -OH and N atom of imine moiety. In contrary to this, the phenyl glycine coordinated to the metal ions via oxygen of carboxylate and nitrogen of the amino group. The spectroscopic analysis unveiled the tetrahedral geometry of the synthesized metal (II) complexes, except for ligand HL3 which exhibited octahedral geometry. The synthesized compounds generally showed antibacterial activity for all microbes, except Ni (II) complexes lacking sensitivity. Furthermore, to access the bioavailability, the synthesized complexes were screened for their solubilization in the micellar media of sodium lauryl sulphate. The metal complex–surfactant interaction was revealed by UV-vis spectroscopy and electrical conductivity measurements. Full article
Show Figures

Graphical abstract

14 pages, 2447 KB  
Article
Hydrogen and Halogen Bond Mediated Coordination Polymers of Chloro-Substituted Pyrazin-2-Amine Copper(I) Bromide Complexes
by Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn and Kari Rissanen
Chemistry 2020, 2(3), 700-713; https://doi.org/10.3390/chemistry2030045 - 5 Aug 2020
Cited by 2 | Viewed by 5969
Abstract
A new class of six mono- (1; 3-Cl-, 2; 5-Cl-, 3; 6-Cl-) and di-(4; 3,6-Cl, 5; 5,6-Cl-, 6; 3,5-Cl-) chloro-substituted pyrazin-2-amine ligands (16) form complexes with copper (I) bromide, to give [...] Read more.
A new class of six mono- (1; 3-Cl-, 2; 5-Cl-, 3; 6-Cl-) and di-(4; 3,6-Cl, 5; 5,6-Cl-, 6; 3,5-Cl-) chloro-substituted pyrazin-2-amine ligands (16) form complexes with copper (I) bromide, to give 1D and 2D coordination polymers through a combination of halogen and hydrogen bonding that were characterized by X-ray diffraction analysis. These Cu(I) complexes were prepared indirectly from the ligands and CuBr2 via an in situ redox process in moderate to high yields. Four of the pyrazine ligands, 1, 46 were found to favor a monodentate mode of coordination to one CuI ion. The absence of a C6-chloro substituent in ligands 1, 2 and 6 supported N1–Cu coordination over the alternative N4–Cu coordination mode evidenced for ligands 4 and 5. These monodentate systems afforded predominantly hydrogen bond (HB) networks containing a catenated (μ3-bromo)-CuI ‘staircase’ motif, with a network of ‘cooperative’ halogen bonds (XB), leading to infinite polymeric structures. Alternatively, ligands 2 and 3 preferred a μ2-N,N’ bridging mode leading to three different polymeric structures. These adopt the (μ3-bromo)-CuI ‘staircase’ motif observed in the monodentate ligands, a unique single (μ2-bromo)-CuI chain, or a discrete Cu2Br2 rhomboid (μ2-bromo)-CuI dimer. Two main HB patterns afforded by self-complimentary dimerization of the amino pyrazines described by the graph set notation R22(8) and non-cyclic intermolecular N–H∙∙∙N’ or N–H∙∙∙Br–Cu leading to infinite polymeric structures are discussed. The cooperative halogen bonding between C–Cl∙∙∙Cl–C and the C–Cl∙∙∙Br–Cu XB contacts are less than the sum of the van der Waals radii of participating atoms, with the latter ranging from 3.4178(14) to 3.582(15) Å. In all cases, the mode of coordination and pyrazine ring substituents affect the pattern of HBs and XBs in these supramolecular structures. Full article
(This article belongs to the Special Issue Supramolecular Chemistry in the 3rd Millennium)
Show Figures

Figure 1

13 pages, 2631 KB  
Article
Chimera Diimine Ligands in Emissive [Cu(P^P)(N^N)][PF6] Complexes
by Marco Meyer, Fabian Brunner, Alessandro Prescimone, Edwin C. Constable and Catherine E. Housecroft
Inorganics 2020, 8(5), 33; https://doi.org/10.3390/inorganics8050033 - 12 May 2020
Cited by 6 | Viewed by 3957
Abstract
The syntheses and characterizations of the chelating ligand 6-chloro-6′-methyl-2,2′-bipyridine (6-Cl-6′-Mebpy) and of the copper(I) compounds [Cu(POP)(6-Cl-6′-Mebpy)][PF6] and [Cu(xantphos)(6-Cl-6′-Mebpy)][PF6] (POP = bis(2-(diphenylphosphanyl)phenyl)ether and xantphos = 4,5-bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene) are described. The single crystal structures of both complexes were determined; the [...] Read more.
The syntheses and characterizations of the chelating ligand 6-chloro-6′-methyl-2,2′-bipyridine (6-Cl-6′-Mebpy) and of the copper(I) compounds [Cu(POP)(6-Cl-6′-Mebpy)][PF6] and [Cu(xantphos)(6-Cl-6′-Mebpy)][PF6] (POP = bis(2-(diphenylphosphanyl)phenyl)ether and xantphos = 4,5-bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene) are described. The single crystal structures of both complexes were determined; the copper(I) ion is in a distorted tetrahedral environment and in [Cu(xantphos)(6-Cl-6′-Mebpy)][PF6], the disorder of the 6-Cl-6′-Mebpy ligand indicates there is no preference of the ‘bowl’-like cavity of the xanthene unit to host either the methyl or chloro-substituent, consistent with comparable steric effects of the two groups. The electrochemical and photophysical properties of [Cu(POP)(6-Cl-6′-Mebpy)][PF6] and [Cu(xantphos)(6-Cl-6′-Mebpy)][PF6] were investigated and are compared with those of the related compounds containing 6,6′-dichloro-2,2′-bipyridine or 6,6′-dimethyl-2,2′-bipyridine ligands. Trends in properties of the [Cu(P^P)(N^N)]+ complexes were consistent with 6-Cl-6′-Mebpy behaving as a combination of the two parent ligands. Full article
Show Figures

Graphical abstract

Back to TopTop