Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = copper (II) ion detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 4489 KB  
Article
High-Resolution 1H NMR Investigation of the Speciation Status of Nickel(II) and Copper(II) Ions in a Cell Culture Medium: Relevance to Their Toxicological Actions
by Deepinder K. Kalra, Kayleigh Hunwin, Katie Hewitt, Olivia Steel and Martin Grootveld
Molecules 2026, 31(1), 85; https://doi.org/10.3390/molecules31010085 - 24 Dec 2025
Viewed by 384
Abstract
Copper and nickel ions play pivotal, albeit distinct, roles as essential trace elements in living systems, and primarily serve as co-factors for a range of enzymes. However, as with all trace metal ions, excessive concentrations can exert adverse toxicological properties. Interestingly, the incorporation [...] Read more.
Copper and nickel ions play pivotal, albeit distinct, roles as essential trace elements in living systems, and primarily serve as co-factors for a range of enzymes. However, as with all trace metal ions, excessive concentrations can exert adverse toxicological properties. Interestingly, the incorporation of these in cell culture media can establish novel chemical interactions, with their speciation status markedly influencing characteristics, including cell maturation, and cellular uptake mechanisms. Thus, the primary objective of this study was to investigate and determine the speciation status (i.e., complexation) of nickel(II) and copper(II) ions by biomolecules present in RPMI 1640 mammalian cell culture medium using virtually non-invasive high-resolution proton NMR analysis, an investigation of much relevance to now routine studies of their toxicological actions towards cultured cells. Samples of the above aqueous culture medium were 1H NMR-titrated with increasing added concentrations of 71–670 µmol/L Ni(II)(aq.), and 0.71–6.7, 7.1–67 and 71–670 µmol/L Cu(II)(aq.), in duplicate or triplicate. 1H NMR spectra were acquired on a JEOL ECZ-600 spectrometer at 298 K. Results demonstrated that addition of increasing concentrations of Ni(II) and Cu(II) ions to the culture medium led to the selective broadening of a series of biomolecule resonances, results demonstrating their complexation by these agents. The most important complexants for Ni(II) were histidine > glutamine > acetate ≈ methionine ≈ lysine ≈ threonine ≈ branched-chain amino acids (BCAAs) > asparagine ≈ aspartate > tyrosine ≈ tryptophan, whereas for Cu(II) they were found to be histidine > glutamine > phenylalanine ≈ tyrosine ≈ nearly all remaining aliphatic metabolites (particularly the wealth of amino acids detectable) > 4-hydroxyphenylacetate (trace culture medium contaminant), in these orders. However, Cu(II) had the ability to influence the linewidths of these signals at much lower added levels (≤7 µmol/L) than that of Ni(II), the broadening effects of the latter occurring at concentrations which were approximately 10-fold greater. Virtually all of these added metal ion-induced resonance modifications were, as expected, reversible on addition of equivalent or excess levels of the chelator EDTA. From this study, changes in the co-ordination sphere of metal ions in physiological environments can give rise to marked modifications in their physicochemical properties (e.g., redox potentials, electronic charges, the potential catalytic generation of reactive oxygen species (ROS), and cell membrane passages). Moreover, given that the above metabolites may also function as potent hydroxyl radical (OH) scavengers, these findings suggest that generation of this aggressively reactive oxidant directly from Cu(II) and Ni(II) ions in physiologically-relevant complexes may be scavenged in a ‘site-dependent’ manner. This study is of further relevance to trace metal ion research in general since it enhances our understanding of the nature of their interactions with culture medium biomolecules, and therefore provides valuable information regarding their overall chemical and biological activities, and toxicities. Full article
Show Figures

Figure 1

17 pages, 2371 KB  
Article
Colorimetric and SERS-Based Multimode Detection Platform for Cu(II) Ions Using Peptide–Gold Nanoparticles
by Panangattukara Prabhakaran Praveen Kumar
Colorants 2025, 4(4), 29; https://doi.org/10.3390/colorants4040029 - 24 Sep 2025
Viewed by 1077
Abstract
Excessive copper ions in the human body can cause a variety of diseases, such as gastrointestinal disorders, cirrhosis, and Alzheimer’s disease. Techniques like Inductively Coupled Plasma–Mass Spectroscopy and Atomic Absorption Spectroscopy are available for copper detection, but the associated cost issues for sample [...] Read more.
Excessive copper ions in the human body can cause a variety of diseases, such as gastrointestinal disorders, cirrhosis, and Alzheimer’s disease. Techniques like Inductively Coupled Plasma–Mass Spectroscopy and Atomic Absorption Spectroscopy are available for copper detection, but the associated cost issues for sample preparation and labor limit their application for on-site detection. Herein, we are reporting a versatile method for detecting copper ions using a peptide-functionalized gold nanoparticle sensor in combination with various optical spectroscopic techniques. The peptide (CW) exhibited selective sensing ability for Cu(II) with visual colorimetric and optical spectroscopic changes compared to other metal ions tested. CW showed a visual colorimetric response from colorless to light brown color after interaction with Cu(II). Converting CW to a gold nanoparticle appended (CW-AuNPs) nanoplatform enabled a multimodal detection platform for Cu (II), which utilizes colorimetric and optical spectrum changes and surface-enhanced Raman spectroscopy (SERS) to enable highly sensitive sensing of Cu(II), even at extremely low concentrations (76 nms.). CW-AuNPs exhibit a controlled aggregation property in the presence of Cu(II), resulting in the creation of hot spots for SERS-based detection. Moreover, the peptide unit attached to the gold nanoparticles serves both as a binding motif for Cu(II) and as a Raman reporter for Cu(II) sensing. Our comprehensive analysis, including solution-state and dry-mapping Raman spectroscopic studies, demonstrates remarkable picomolar sensitivity of the peptide–gold nanoparticle system for Cu(II) detection. Moreover, we prepared a paper test strip from CW-AuNPs and used it as a visual colorimetric platform for sensitive detection of copper ions. Full article
Show Figures

Figure 1

12 pages, 2021 KB  
Article
Dual-Mode Optical Detection of Sulfide Ions Using Copper-Anchored Nitrogen-Doped Graphene Quantum Dot Nanozymes
by Van Anh Ngoc Nguyen, Trung Hieu Vu, Phuong Thy Nguyen and Moon Il Kim
Biosensors 2025, 15(8), 528; https://doi.org/10.3390/bios15080528 - 13 Aug 2025
Cited by 2 | Viewed by 1019
Abstract
We present a dual-mode optical sensing strategy for selective and sensitive detection of sulfide ions (S2−), employing copper-anchored nitrogen-doped graphene quantum dots (Cu@N-GQDs) as bifunctional nanozymes. The Cu@N-GQDs were synthesized via citric acid pyrolysis in the presence of ammonium hydroxide (serving [...] Read more.
We present a dual-mode optical sensing strategy for selective and sensitive detection of sulfide ions (S2−), employing copper-anchored nitrogen-doped graphene quantum dots (Cu@N-GQDs) as bifunctional nanozymes. The Cu@N-GQDs were synthesized via citric acid pyrolysis in the presence of ammonium hydroxide (serving as both nitrogen source and reductant) and copper chloride, leading to uniform incorporation of copper oxide species onto the N-GQD surface. The resulting nanohybrids exhibit two synergistic functionalities: intrinsic fluorescence comparable to pristine N-GQDs, and significantly enhanced peroxidase-like catalytic activity attributed to the anchored copper species. Upon interaction with sulfide ions, the system undergoes a dual-optical response: (i) fluorescence quenching via Cu-S complexation, and (ii) inhibition of peroxidase-like activity due to the deactivation of Cu catalytic centers via the interaction with S2−. This dual-signal strategy enables sensitive quantification of S2−, achieving detection limits of 0.5 µM (fluorescence) and 3.5 µM (colorimetry). The sensor demonstrates excellent selectivity over competing substances and high reliability and precision in real tap water samples. These findings highlight the potential of Cu@N-GQDs as robust, bifunctional, and field-deployable nanozyme probes for environmental and biomedical sulfide ion monitoring. Full article
(This article belongs to the Special Issue Advanced Optics and Photonics in Biosensing Applications)
Show Figures

Figure 1

16 pages, 2496 KB  
Article
Silicon Nanowires Sensor Modified with Cu (II) Phthalocyanine Derivative for Phosphate Monitoring
by Milaine Jebali, Zina Fredj, Sameh Daboussi, Mounir Ben Ali and Mohamed Hassen
Chemosensors 2025, 13(8), 297; https://doi.org/10.3390/chemosensors13080297 - 9 Aug 2025
Viewed by 1139
Abstract
This study reports the development of a highly sensitive electrochemical sensor for phosphate ion detection, utilizing silicon nanowires (SiNWs) as the transducing elements and a novel copper (II) phthalocyanine-acrylate polymer adduct (Cu (II) Pc-PAA) as the functional sensing layer. Silicon nanowires were fabricated [...] Read more.
This study reports the development of a highly sensitive electrochemical sensor for phosphate ion detection, utilizing silicon nanowires (SiNWs) as the transducing elements and a novel copper (II) phthalocyanine-acrylate polymer adduct (Cu (II) Pc-PAA) as the functional sensing layer. Silicon nanowires were fabricated via metal-assisted chemical etching (MACE) with etching durations of 15, 25, 35, 45, and 60 min. The SiNWs etched for 15 min exhibited the highest sensitivity, showing superior electrochemical performance. Functionalized SiNWs were systematically evaluated for phosphate ion (HPO42−) detection over a wide concentration range (10−10 to 10−6 M) using Mott–Schottky measurements. The surface morphology of the SiNWs was thoroughly characterized before and after Cu (II) Pc-PAA layer functionalization. The sensing material was analyzed using contact angle goniometry and scanning electron microscopy (SEM), confirming both its uniform distribution and effective immobilization. The sensor displayed a Nernstian behavior with a sensitivity of 28.25 mV/Decade and an exceptionally low limit of detection (LOD) of 1.5 nM. Furthermore, the capacitive sensor exhibited remarkable selectivity toward phosphate ions, even in the presence of potentially interfering anions such as Cl, NO3, SO42− and ClO4. These results confirm the sensor’s high sensitivity, selectivity, and fast response, underscoring its suitability for environmental phosphate ion monitoring. Full article
Show Figures

Figure 1

16 pages, 4006 KB  
Article
Ionic Liquid-Based Centrifuge-Less Cloud Point Extraction of a Copper(II)–4-Nitrocatechol Complex and Its Analytical Application
by Denitsa Kiradzhiyska, Nikolina Milcheva, Miglena Ruzmanova, Fatma Genç, Petya Racheva and Kiril Gavazov
Molecules 2025, 30(15), 3287; https://doi.org/10.3390/molecules30153287 - 6 Aug 2025
Viewed by 731
Abstract
A novel centrifuge-less cloud point extraction (CL-CPE) method was developed for the spectrophotometric determination of copper(II) using 4-nitrocatechol (4NC) as the chelating agent. The extraction system utilizes a mixed micellar phase composed of the nonionic surfactant Triton X-114 and the ionic liquid (IL) [...] Read more.
A novel centrifuge-less cloud point extraction (CL-CPE) method was developed for the spectrophotometric determination of copper(II) using 4-nitrocatechol (4NC) as the chelating agent. The extraction system utilizes a mixed micellar phase composed of the nonionic surfactant Triton X-114 and the ionic liquid (IL) Aliquat® 336 (A336). The extracted ternary ion-association complex, identified as (A336+)2[Cu(4NC)2], exhibits a maximum absorbance at 451 nm, with a molar absorption coefficient of 8.9 × 104 M−1 cm−1 and a Sandell’s sensitivity of 0.71 ng cm−2. The method demonstrates a linear response in the copper(II) concentration range of 32–763 ng mL−1 and a limit of detection of 9.7 ng mL−1. The logarithmic extraction constant (log Kex) was determined to be 7.9, indicating efficient extraction. Method performance, evaluated by the Blue Applicability Grade Index (BAGI) and the Click Analytical Chemistry Index (CACI), confirmed its feasibility, practicality, simplicity, convenience, cost-effectiveness, environmental friendliness, and analytical competitiveness. The proposed IL-CL-CPE method was successfully applied to the analysis of a dietary supplement, a solution for infusion, and synthetic mixtures simulating various copper alloys. Full article
(This article belongs to the Special Issue Recent Advances in Extraction Techniques for Elemental Analysis)
Show Figures

Figure 1

13 pages, 3972 KB  
Article
Optimized Sensitivity in Copper(II) Ion Detection: Sustainable Fabrication of Fluorescence Red-Shifted Graphene Quantum Dots via Electron-Withdrawing Modulation
by Weitao Li, Qian Niu, Xinglong Pang, Shang Li, Yang Liu, Boyu Li, Shuangyan Li, Lei Wang, Huazhang Guo and Liang Wang
Molecules 2025, 30(6), 1244; https://doi.org/10.3390/molecules30061244 - 10 Mar 2025
Cited by 4 | Viewed by 1289
Abstract
Graphene quantum dots (GQDs) represent a class of promising nanomaterials characterized by adjustable optical properties, making them well suited for applications in biosensing and chemical detection. However, challenges persist in achieving scalable, cost-effective synthesis and enhancing detection sensitivity. In this study, we have [...] Read more.
Graphene quantum dots (GQDs) represent a class of promising nanomaterials characterized by adjustable optical properties, making them well suited for applications in biosensing and chemical detection. However, challenges persist in achieving scalable, cost-effective synthesis and enhancing detection sensitivity. In this study, we have developed a simple and environmentally friendly method to prepare blue graphene quantum dots, c-GQDs, using nitronaphthalene as a precursor, and yellow graphene quantum dots, y-GQDs, using nitronaphthalene doped acid. The quantum yield is 29.75%, and the average thickness is 2.08 nm and 3.95 nm, respectively. The synthesized c-GQDs exhibit a prominent cyan fluorescence at a wavelength of 490 nm under excitation at 380 nm, while the y-GQDs show a distinct yellow fluorescence at a wavelength of 540 nm under excitation at 494 nm. The introduction of p-aminobenzoic acid (PABA) introduced a marked red shift in fluorescence, attributed to the electron-withdrawing effect of the carboxyl groups on PABA. This key finding significantly enhanced the sensitivity of GQDs for detecting trace copper(II) ions (Cu2+), a heavy metal contaminant posing serious environmental risks. The fluorescence of the GQDs was selectively quenched in the presence of Cu2+, facilitating accurate and sensitive detection even in complex ion matrices. Mechanistic studies revealed that the quenching effect is driven by strong static quenching interactions, which inhibit non-radiative transitions. This work not only introduces a scalable method for producing high-performance GQDs but also highlights their potential as effective fluorescent probes for environmental monitoring and heavy metal ion detection. Full article
Show Figures

Figure 1

26 pages, 2696 KB  
Article
The Distribution of Dissolved Copper and Natural Organic Ligands in Tropical Coastal Waters Under Seasonal Variation
by Li Qing Ng, Khairul Nizam Mohamed, Abd Muhaimin Amiruddin, Ferdaus Mohamat Yusuff and Nur Ili Hamizah Mustaffa
J. Mar. Sci. Eng. 2025, 13(3), 446; https://doi.org/10.3390/jmse13030446 - 26 Feb 2025
Cited by 1 | Viewed by 1057
Abstract
The bioavailability of dissolved copper (Cu) in seawater is influenced by the presence of natural organic matter. Changes in physicochemical conditions, such as pH, temperature, and salinity, can significantly affect the solubility and speciation of copper, thereby impacting the complexation of Cu(II)-binding organic [...] Read more.
The bioavailability of dissolved copper (Cu) in seawater is influenced by the presence of natural organic matter. Changes in physicochemical conditions, such as pH, temperature, and salinity, can significantly affect the solubility and speciation of copper, thereby impacting the complexation of Cu(II)-binding organic ligands. The concentration of dissolved Cu in the coastal water of Mersing, Malaysia, was detected by anodic stripping voltammetry (ASV). The natural organic copper(II)-binding ligands (CuL) and their conditional stability constants (log K′) were determined by using the competitive ligand exchange–adsorptive cathodic stripping voltammetry method (CLE–AdCSV) in our samples. The in situ parameters, such as pH, temperature, salinity, and dissolved oxygen (DO), were found to be significantly different between sampling periods and indicated the different physical chemical conditions between the sampling periods. However, we found a consistent concentration of dissolved Cu throughout the water column between sampling periods. This suggests that the presence of a strong class of natural organic ligands (L1) in Mersing’s coastal water maintains the dissolved Cu(II) ions in the water column and prevents the scavenging and precipitation processes under the seasonal variations. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

13 pages, 3324 KB  
Article
Comparative Study of Potassium Ion-Selective Electrodes with Solid Contact: Impact of Intermediate Layer Material on Temperature Resistance
by Klaudia Morawska, Szymon Malinowski, Magdalena Wardak and Cecylia Wardak
Molecules 2024, 29(23), 5803; https://doi.org/10.3390/molecules29235803 - 9 Dec 2024
Cited by 2 | Viewed by 3235
Abstract
This paper presents a comparative study on the temperature resistance of solid-contact ion-selective electrodes, depending on the type of solid-contact material. Five types of potassium electrodes, with a valinomycin-based model membrane, were developed using different types of mediation layers, namely a conductive polymer [...] Read more.
This paper presents a comparative study on the temperature resistance of solid-contact ion-selective electrodes, depending on the type of solid-contact material. Five types of potassium electrodes, with a valinomycin-based model membrane, were developed using different types of mediation layers, namely a conductive polymer (poly(3-octylthiophene-2,5-diyl) and a perinone polymer), multi-walled carbon nanotubes, copper(II) oxide nanoparticles, and a nanocomposite consisting of multi-walled carbon nanotubes and copper(II) oxide. We examined how the measurement temperature (10 °C, 23 °C, and 36 °C) affects the sensitivity, measurement range, detection limit, selectivity, as well as the stability and reversibility of the electrode potential. Electrodes modified with a nanocomposite (GCE/NC/ISM) and a perinone polymer (GCE/PPer/ISM) showed the best resistance to temperature changes. An almost Nernst response and a stable measurement range and the lowest detection limit values for each temperature were obtained for them. The introduction of mediation layers significantly improved the stability and potential reversibility of all the modified electrodes relative to the unmodified electrode (GCE/ISM). Still, it was the GCE/PPer/ISM and GCE/NC/ISM that stood out from the others, with stability of 0.11 and 0.12 µV/s for 10 °C, 0.05 and 0.08 µV/s for 23 °C, and 0.06 and 0.09 µV/s for 36 °C, respectively. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Electrochemistry)
Show Figures

Graphical abstract

21 pages, 4174 KB  
Article
Mandarin Peels-Derived Carbon Dots: A Multifaceted Fluorescent Probe for Cu(II) Detection in Tap and Drinking Water Samples
by Marwa El-Azazy, Alaa AlReyashi, Khalid Al-Saad, Nessreen Al-Hashimi, Mohammad A. Al-Ghouti, Mohamed F. Shibl, Abdulrahman Alahzm and Ahmed S. El-Shafie
Nanomaterials 2024, 14(20), 1666; https://doi.org/10.3390/nano14201666 - 17 Oct 2024
Cited by 10 | Viewed by 2506
Abstract
Carbon dots (CDs) derived from mandarin peel biochar (MBC) at different pyrolysis temperatures (200, 400, 600, and 800 °C) have been synthesized and characterized. This high-value transformation of waste materials into fluorescent nanoprobes for environmental monitoring represents a step forward towards a circular [...] Read more.
Carbon dots (CDs) derived from mandarin peel biochar (MBC) at different pyrolysis temperatures (200, 400, 600, and 800 °C) have been synthesized and characterized. This high-value transformation of waste materials into fluorescent nanoprobes for environmental monitoring represents a step forward towards a circular economy. In this itinerary, CDs produced via one-pot hydrothermal synthesis were utilized for the detection of copper (II) ions. The study looked at the spectroscopic features of biochar-derived CDs. The selectivity of CDs obtained from biochar following carbonization at 400 °C (MBC400-CDs towards various heavy metal ions resulted in considerable fluorescence quenching with copper (II) ions, showcasing their potential as selective detectors. Transmission electron microscopic (TEM) analysis validated the MBC-CDs’ consistent spherical shape, with a particle size of <3 nm. The Plackett–Burman Design (PBD) was used to study three elements that influence the F0/F ratio, with the best ratio obtained with a pH of 10, for 10 min, and an aqueous reaction medium. Cu (II) was detected over a dynamic range of 4.9–197.5 μM and limit of detection (LOD) of 0.01 μM. Validation testing proved the accuracy and precision for evaluating tap and mountain waters with great selectivity and no interference from coexisting metal ions. Full article
(This article belongs to the Special Issue Carbon Nanostructures as Promising Future Materials: 2nd Edition)
Show Figures

Figure 1

24 pages, 6571 KB  
Article
Deciphering the Impact of Nucleosides and Nucleotides on Copper Ion and Dopamine Coordination Dynamics
by Patrycja Sadowska, Wojciech Jankowski, Romualda Bregier-Jarzębowska, Piotr Pietrzyk and Renata Jastrząb
Int. J. Mol. Sci. 2024, 25(17), 9137; https://doi.org/10.3390/ijms25179137 - 23 Aug 2024
Cited by 4 | Viewed by 1525
Abstract
The mode of coordination of copper(II) ions with dopamine (DA, L) in the binary, as well as ternary systems with Ado, AMP, ADP, and ATP (L′) as second ligands, was studied with the use of experimental—potentiometric and spectroscopic (VIS, EPR, NMR, IR)—methods and [...] Read more.
The mode of coordination of copper(II) ions with dopamine (DA, L) in the binary, as well as ternary systems with Ado, AMP, ADP, and ATP (L′) as second ligands, was studied with the use of experimental—potentiometric and spectroscopic (VIS, EPR, NMR, IR)—methods and computational—molecular modeling and DFT—studies. In the Cu(II)/DA system, depending on the pH value, the active centers of the ligand involved in the coordination with copper(II) ions changed from nitrogen and oxygen atoms (CuH(DA)3+, Cu(DA)2+), via nitrogen atoms (CuH2(DA)24+), to oxygen atoms at strongly alkaline pH (Cu(DA)22+). The introduction of L′ into this system changed the mode of interaction of dopamine from oxygen atoms to the nitrogen atom in the hydroxocomplexes formed at high pH values. In the ternary systems, the ML′-L (non-covalent interaction) and ML′HxL, ML′L, and ML′L(OH)x species were found. In the Cu(II)/DA/AMP or ATP systems, mixed forms were formed up to a pH of around 9.0; above this pH, only Cu(II)/DA complexes occurred. In contrast to systems with AMP and ATP, ternary species with Ado and ADP occurred in the whole pH range at a high concentration, and moreover, binary complexes of Cu(II) ions with dopamine did not form in the detectable concentration. Full article
Show Figures

Figure 1

12 pages, 3548 KB  
Article
Co-Deposition of Bimetallic Au-Pt with L-Cysteine on Electrodes and Removal of Copper by Iron Powder for Trace Aqueous Arsenic Detection
by Wei-Zhi Zhang, Kan Wang, Ning Bao and Shou-Nian Ding
J. Compos. Sci. 2024, 8(8), 327; https://doi.org/10.3390/jcs8080327 - 18 Aug 2024
Viewed by 2059
Abstract
Much progress has been made in the determination of As (III), while numerous electrochemical sensors based on metal nanomaterials with significant sensitivity and precision have been developed. However, further research is still required to achieve rapid detection and avoid interference from other metal [...] Read more.
Much progress has been made in the determination of As (III), while numerous electrochemical sensors based on metal nanomaterials with significant sensitivity and precision have been developed. However, further research is still required to achieve rapid detection and avoid interference from other metal ions (especially copper ions). In this study, bimetallic AuPt nanoparticles are electrochemically modified with screen printing electrodes. What’s more, L-cysteine also self-assembles with AuNPs through Au-S bond to enhance the electrochemical performance. To overcome the interference of Cu (II) in the sensing process, the reduced iron powder was chosen to remove Cu (II) and other oxidizing organics in aqueous solutions. The lowest detectable amount is 0.139 ppb, a linear range of 1~50 ppb with superlative stability by differential pulse anodic stripping voltammetry. Fortunately, the reduced iron powder could eliminate the Cu (II) with no effect on the As (III) signal. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

14 pages, 13365 KB  
Article
Detection of Copper Ions in Seawater Using a Graphitised Multi-Walled Carbon Nanotubes-Copper Ion Carrier Modified Electrode
by Chao Zhang, Wei Tao, Chengjun Qiu, Wei Qu, Yuan Zhuang, Yang Gu, Huili Hao and Zizi Zhao
Water 2024, 16(15), 2128; https://doi.org/10.3390/w16152128 - 27 Jul 2024
Cited by 6 | Viewed by 2654
Abstract
Copper is an essential element in living organisms and is crucial in marine ecosystems. However, excessive concentrations can lead to seawater pollution and pose a risk of toxicity to marine organisms, as it is a heavy metal. In addition, it can enter the [...] Read more.
Copper is an essential element in living organisms and is crucial in marine ecosystems. However, excessive concentrations can lead to seawater pollution and pose a risk of toxicity to marine organisms, as it is a heavy metal. In addition, it can enter the human body through the food chain, potentially endangering human health. Consequently, there is increasing focus on the rapid and highly sensitive detection of copper ions (Cu2+). We prepared a graphite carbon electrode modified with graphitised multi-walled carbon nanotubes/copper(II) ion carrier IV (GMWCNT/copper(II) ion carrier IV/glassy carbon electrode (GCE)) using a drop-coating method. Scanning electron microscopy (SEM) analysis revealed that the composite material film possessed a large surface area. Incorporating this composite material significantly enhanced the adsorption capacity for ions on the electrode surface and greatly improved conductivity. Differential pulse anodic stripping voltammetry (DPASV) was employed to quantify copper levels in seawater. Under optimal experimental conditions, a strong linear relationship was observed between the Cu2+ response peak current and its concentration within a range of 50–500 µg L−1, with a correlation coefficient of 0.996. The GMWCNT/copper(II) ion carrier IV/GCE exhibited excellent stability and reproducibility, achieving a low detection limit for Cu2+ at 0.74 µg L−1 when applied to copper detection in seawater. Furthermore, spiked recovery rates ranging from 98.6% to 102.8% demonstrated the method’s high sensitivity, convenient operation, and practical value for real-world applications in detecting Cu2+ levels in seawater. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

18 pages, 3933 KB  
Article
Copper(II), Nickel(II) and Zinc(II) Complexes of Peptide Fragments of Tau Protein
by Zsuzsa Kastal, Adrienn Balabán, Szilvia Vida, Csilla Kállay, Lajos Nagy, Katalin Várnagy and Imre Sóvágó
Molecules 2024, 29(10), 2171; https://doi.org/10.3390/molecules29102171 - 7 May 2024
Cited by 8 | Viewed by 2000
Abstract
Copper(II), nickel(II) and zinc(II) complexes of various peptide fragments of tau protein were studied by potentiometric and spectroscopic techniques. All peptides contained one histidyl residue and represented the sequences of tau(91–97) (Ac-AQPHTEI-NH2), tau(385–390) (Ac-KTDHGA-NH2) and tau(404–409) (Ac-SPRHLS-NH2). [...] Read more.
Copper(II), nickel(II) and zinc(II) complexes of various peptide fragments of tau protein were studied by potentiometric and spectroscopic techniques. All peptides contained one histidyl residue and represented the sequences of tau(91–97) (Ac-AQPHTEI-NH2), tau(385–390) (Ac-KTDHGA-NH2) and tau(404–409) (Ac-SPRHLS-NH2). Imidazole-N donors of histidine were the primary metal binding sites for all peptides and all metal ions, but in the case of copper(II) and nickel(II), the deprotonated amide groups were also involved in metal binding by increasing pH. The most stable complexes were formed with copper(II) ions, but the presence of prolyl residues resulted in significant changes in the thermodynamic stability and speciation of the systems. It was also demonstrated that nickel(II) and especially zinc(II) complexes have relatively low thermodynamic stability with these peptides. The copper(II)-catalyzed oxidation of the peptides was also studied. In the presence of H2O2, the fragmentation of peptides was detected in all cases. In the simultaneous presence of H2O2 and ascorbic acid, the fragmentation of the peptide is less preferred, and the formation of 2-oxo-histidine also occurs. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

14 pages, 5459 KB  
Communication
Improved Microelectrode Array Electrode Design for Heavy Metal Detection
by Jian Zhang, Shijun Wu, Feng Zhang, Bo Jin and Canjun Yang
Chemosensors 2024, 12(4), 51; https://doi.org/10.3390/chemosensors12040051 - 28 Mar 2024
Cited by 3 | Viewed by 2644
Abstract
Traditional working electrodes are not sufficient to realize the low detection limit and wide detection range necessary for the detection of heavy metals. In this study, a microelectrode array electrode was proposed using a design scheme based on microelectromechanical systems that was optimized [...] Read more.
Traditional working electrodes are not sufficient to realize the low detection limit and wide detection range necessary for the detection of heavy metals. In this study, a microelectrode array electrode was proposed using a design scheme based on microelectromechanical systems that was optimized with finite element software. The working electrode adopted an innovative composite structure to realize the integrated design of the working and counter electrodes, which improved the system integration. Performance tests showed that the electrode realized the quantitative analysis of Cd(II), Pb(II), and Cu(II) with a low detection limit (0.1 μg/L) and a wide detection range (0.1–3000 μg/L). The electrode successfully measured the lead and copper ion concentrations in the Sanya River, including both seawater and freshwater environments. The experimental results demonstrate that the electrode exhibits excellent adaptability to environmental conditions and can be potentially applied for technical support in environmental monitoring and sewage treatment. Full article
(This article belongs to the Special Issue Advances in Electrochemical Sensing and Analysis)
Show Figures

Figure 1

17 pages, 4319 KB  
Article
Thiazolidine-Based Fluorescent Chiral Ionic Liquids for Trace Copper(II) Ion Sensing
by Cassiana H. Griebeler, Mariana F. Bach, Henrique C. Silva, Fabiano S. Rodembusch, Felipe L. Coelho and Paulo H. Schneider
Compounds 2023, 3(3), 430-446; https://doi.org/10.3390/compounds3030032 - 11 Aug 2023
Cited by 2 | Viewed by 2459
Abstract
This study presents a comprehensive analysis of the synthesis and photophysical properties of thiazolidine-functionalized chiral ionic liquids (CILs) derived from L-cysteine. The synthesis involves a four-step route, encompassing N-protection, coupling reactions with bromoalcohols, and ionic liquid formation. The optical properties of the [...] Read more.
This study presents a comprehensive analysis of the synthesis and photophysical properties of thiazolidine-functionalized chiral ionic liquids (CILs) derived from L-cysteine. The synthesis involves a four-step route, encompassing N-protection, coupling reactions with bromoalcohols, and ionic liquid formation. The optical properties of the compounds were evaluated using UV–Vis absorption and fluorescence emission spectroscopies, revealing distinct behavior for different heterocycles and counter-ions. Notably, the investigation reveals that thiazolidine-based CILs exhibit unconventional intrinsic luminescence characteristics. Building upon these photophysical properties, an interaction study was conducted between copper (II) and the CILs. The findings exhibit a robust linear relationship between the optical response and the concentration of the metal ion. Through the calculation of the Stern–Volmer quenching constant, it was determined that the 1:1 binding model is applicable. This research underscores the potential of UV–Vis absorption spectroscopy as a highly sensitive method for detecting metal ions. By elucidating the synthesis, photophysical behavior, and metal ion interaction of thiazolidine-based CILs, this study contributes valuable insights into the field of functionalized ionic liquids and their potential applications in various areas. Full article
Show Figures

Graphical abstract

Back to TopTop