Optimized Sensitivity in Copper(II) Ion Detection: Sustainable Fabrication of Fluorescence Red-Shifted Graphene Quantum Dots via Electron-Withdrawing Modulation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Optical Properties of GQDs
2.2. GQDs for Ion Detection
3. Experimental Section
3.1. Materials
3.2. Instrumentation and Characterizations
3.3. Synthesis of c-GQDs and y-GQDs
3.4. Metal Ion Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, B.; Huang, K.; Tang, B.; Lei, Z.; Wang, Z.; Guo, H.; Lian, C.; Liu, Z.; Wang, L. Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution. Nano-Micro Lett. 2023, 15, 217. [Google Scholar] [CrossRef]
- Yao, M.; Huang, J.; Deng, Z.; Jin, W.; Yuan, Y.; Nie, J.; Wang, H.; Du, F.; Zhang, Y. Transforming glucose into fluorescent graphene quantum dots via microwave radiation for sensitive detection of Al3+ ions based on aggregation-induced enhanced emission. Analyst 2020, 145, 6981–6986. [Google Scholar] [CrossRef]
- Xie, L.; Liang, C.; Wu, Y.; Wang, K.; Hou, W.; Guo, H.; Wang, Z.; Lam, Y.; Liu, Z.; Wang, L. Isomerization Engineering of Oxygen-Enriched Carbon Quantum Dots for Efficient Electrochemical Hydrogen Peroxide Production. Small 2024, 20, 2401253. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Tang, B.; Wang, Z.; An, G.; Zhang, M.; Wang, K.; Liu, W.; Guo, H.; Zhang, B.; Wang, L. Hydrophobic Carbon Quantum Dots with Lewis-Basic Nitrogen Sites for Electrocatalyst CO2 Reduction to CH4. Chem. Eng. J. 2024, 500, 157207. [Google Scholar] [CrossRef]
- Ni, Q.; Zhang, S.; Wang, K.; Guo, H.; Zhang, J.; Wu, M.; Wang, L. Carbon Quantum Dot-Mediated Binary Metal-Organic Framework Nanosheets for Efficient Oxygen Evolution at Ampere-Level Current Densities in Proton Exchange Membrane Electrolyzers. J. Mater. Chem. A 2024, 12, 31253–31261. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Wang, H.; Zhang, T.; Qi, H.; Wu, Z.; Ma, Y.; Huang, H.; Shao, M.; Liu, Y.; et al. Carbon-Dot-Based White-Light-Emitting Diodes with Adjustable Correlated Color Temperature Guided by Machine Learning. Angew. Chem. Int. Ed. 2021, 133, 12693–12698. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Hu, Y.; Zhou, C.; Lan, W.; Fu, H.; She, Y. Nanomaterials as optical sensors for application in rapid detection of food contaminants, quality and authenticity. Sens. Actuators B Chem. 2021, 329, 129135. [Google Scholar] [CrossRef]
- Sharma, N.; Akmal, M.; Yura, R.; Mousavi, S.; Kurniawan, D.; Nonoguchi, Y.; Chiang, W. Tuning Nanographene-Enhanced Raman Scattering for Rapid Label-Free Detection of Amino Acids. ACS Appl. Mater. Interfaces 2024, 16, 54377–54388. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, H.; Fu, S.; Wang, C.; Yao, X.; Dixon, A.G.; Campidelli, S.; Pavlica, E.; Bratina, G.; Zhao, S.; et al. Solution-Processed Graphene-Nanographene van der Waals Heterostructures for Photodetectors with Efficient and Ultralong Charge Separation. J. Am. Chem. Soc. 2021, 143, 17109–17116. [Google Scholar] [CrossRef]
- Chen, Z.; Narita, A.; Mullen, K. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices. Adv. Mater. 2020, 32, 2001893. [Google Scholar] [CrossRef]
- Ngeontae, W.; Chaiendoo, K.; Ngamdee, K.; Ruangchai, S.; Saiyasombat, C.; Busayaporn, W.; Ittisanronnachai, S.; Promarak, V. A highly selective fluorescent sensor for manganese(II) ion detection based on N,S-doped carbon dots triggered by manganese oxide. Dye. Pigment. 2022, 203, 110325. [Google Scholar] [CrossRef]
- Zhang, G.; Kang, C.; Chen, H.; Tian, W.; Liu, H. Curcumin derived functional carbon quantum dots for enhanced tumor theranostic. Chem. Eng. J. 2025, 508, 160594. [Google Scholar] [CrossRef]
- Qin, X.; Zhan, Z.; Zhang, R.; Chu, K.; Whitworth, Z.; Ding, Z. Nitrogen- and sulfur-doped graphene quantum dots for chemiluminescence. Nanoscale 2023, 15, 3864. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Tian, C.; Cao, W.; Zhang, M.; Zhang, T.; Tang, J.; Zhang, F.; Chen, G.; Tang, J. Controllable functionalization of amino-functionalized graphene quantum dots as fluorescent probe for detection of Cu (II) ions detection. Mater. Lett. 2024, 364, 136393. [Google Scholar] [CrossRef]
- Llaver, M.; Barrionuevo, S.D.; Troiani, H.; Wuilloud, R.G.; Ibañez, F.J. Highly selective and sensitive fluorescent determination of Fe3+ within alcoholic beverages with 1,5-diphenylcarbazone-functionalized graphene quantum dots. Talanta Open. 2023, 7, 100202. [Google Scholar] [CrossRef]
- Chen, L.; Yang, S.; Li, Y.; Liu, Z.; Wang, H.; Zhang, Y.; Qi, K.; Wang, G.; He, P.; Ding, G. Precursor Symmetry Triggered Modulation of Fluorescence Quantum Yield in Graphene Quantum Dots. Adv. Funct. Mater. 2024, 34, 2401246. [Google Scholar] [CrossRef]
- Kurniawan, D.; Weng, R.-J.; Chen, Y.-Y.; Rahardja, M.R.; Nanaricka, Z.C.; Chiang, W.-H. Recent advances in the graphene quantum dot-based biological and environmental sensors. Sens. Actuators B 2022, 4, 100130. [Google Scholar] [CrossRef]
- Wen, J.; Li, N.; Li, D.; Zhang, M.; Lin, Y.; Liu, Z.; Lin, X.; Shui, L. Cesium-Doped Graphene Quantum Dots as Ratiometric Fluorescence Sensors for Blood Glucose Detection. ACS Appl. Nano Mater. 2021, 4, 8437–8446. [Google Scholar] [CrossRef]
- Thangadurai, T.D.; Manjubaashini, N.; Nataraj, D.; Gomes, V.; Lee, Y.I. A review on graphene quantum dots, an emerging luminescent carbon nanolights: Healthcare and Environmental applications. Mater. Sci. Eng. B 2022, 278, 115633. [Google Scholar] [CrossRef]
- Huynh, T.V.; Anh, N.T.N.; Darmanto, W.; Doong, R.A. Erbium-doped graphene quantum dots with up- and down-conversion luminescence for effective detection of ferric ions in water and human serum. Sens. Actuators B Chem. 2021, 328, 129056. [Google Scholar] [CrossRef]
- Zhou, S.; Fu, Y.; Liu, N.; Ma, C.; Tian, Y.; Xu, H. Synthesis of graphene quantum dots inside a nanoreactor for fluorescence detection of dopamine. Fullerenes. Full-Nanotub. Carbon Nanostructures 2024, 32, 764. [Google Scholar] [CrossRef]
- Darvishi, E.; Shekarbeygi, Z.; Yousefinezhad, S.; Izadi, Z.; Saboury, A.A.; Derakhshankhah, H.; Varnamkhasti, B.S. Green syn thesis of nanocarbon dots using hydrothermal carbonization of lysine amino acid and its application in detection of duloxetine. J. Iran. Chem. Soc. 2021, 18, 2863–2872. [Google Scholar] [CrossRef]
- Polosan, S.; Ciobotaru, C.C.; Ciobotaru, I.C. Charge Transfer from Alq3-5Cl to Graphene Oxide in Donor–Acceptor Heterostructures. J. Electron. Mater. 2019, 48, 7184–7191. [Google Scholar] [CrossRef]
- Li, Z.; Lin, L.; Shen, J.; Li, C. Kostya Ken Ostrikov. Microflow Synthesis of Fluorescent Carbon Dots for Selective Co2+ Detection. Ind. Eng. Chem. Res. 2024, 63, 44204429. [Google Scholar] [CrossRef]
- Wongrat, E.; Nuengnit, T.; Panyathip, R.; Chanlek, N.; Hongsith, N.; Choopun, S. Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs). Sens. Actuators B 2021, 326, 128983. [Google Scholar] [CrossRef]
- Ahmad, I.; Muhmood, T.; Rehman, A.; Zahid, M.; Abohashrh, M.; Nishat, S.; Raharjo, Y.; Zhou, Z.; Yang, X. Zeolite imidazole framework entrapped quantum dots (QDs@ ZIF-8): Encapsulation, properties, and applications. J. Taiwan. Inst. Chem. Eng. 2023, 149, 104993. [Google Scholar] [CrossRef]
- Cai, J.; Han, G.; Ren, J.; Liu, C.; Wang, J.; Wang, X. Single-layered graphene quantum dots with self-passivated layer from xylan for visual detection of trace chromium(Vl). Chem. Eng. J 2022, 435, 131833. [Google Scholar] [CrossRef]
- Algharib, S.A.; Dawood, A.; Zhou, K.; Chen, D.; Li, C.; Meng, K.; Zhang, A.; Luo, W.; Ahmed, S.; Huang, L.; et al. Preparation of chitosan nanoparticles by ionotropic gelation technique: Effects of formulation parameters and in vitro characterization. J Mol. Struct. 2022, 1252, 132129. [Google Scholar] [CrossRef]
- Liu, C.; Mei, Y.; Lei, Q.; Ma, X.; Nan, X.; Zhu, Y.; Liao, J.; Xu, Y.; Luo, Y.; Zhang, H.; et al. Fluorescent carbon dots based on food wastes: Applications in food safety detection. Chem. Eng. J. 2024, 499, 156434. [Google Scholar] [CrossRef]
- Wu, Y.; Zuo, C.; Mou, Y.; Wang, H.; Hou, Y.; Su, X.; Jia, Z.; Qiu, H. One step synthesis of highly photoluminescent red light-emitting carbon dots from O-phenylenediamine and 2, 4-diaminophenol as fluorescent probes for the detection of pH and Cr (vi). Anal. Methods 2023, 15, 5607–5619. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, S.; Zhang, S.; Chen, Y. Purification of nitrogen-doped graphene quantum dots via the liquid–liquid extraction system of tetrahydrofuran–(NH4)2SO4–water and its application to sensitive iron (iii) ions determination. Anal. Methods 2017, 9, 5691–5696. [Google Scholar] [CrossRef]
- Bai, C.; Yang, D.; Liu, C.; Zhu, F.; Tu, C.; Li, G.; Luo, Y. In situ synthesis NiO@ TiO2/MXene as a promoter for ammonium perchlorate based solid propellants. Appl. Surf. Sci. 2024, 652, 159228. [Google Scholar] [CrossRef]
- Lian, G.; Hu, K.; Wang, Y.; Shao, T.; Qi, X.; Zhou, M.; Liu, Y.; Jin, G. Base on spectroscopic properties response fluorescence probe for rapid, sensitive and selective detection of aluminum ions in wastewater. Inorg. Chem. Commun. 2022, 137, 109171. [Google Scholar] [CrossRef]
- Lei, Q.; Liu, C.; Nan, X.; Zhu, Y.; Fu, L.; Lin, X.; Zhang, H.; Yang, M.; Fang, X.; Luo, Y.; et al. Carbon dots-based electrochemical and fluorescent biosensors for the detection of foodborne pathogens: Current advance and challenge. Coordin. Chem. Rev. 2025, 529, 216457. [Google Scholar] [CrossRef]
- Kim, D.J.; Yoo, J.M.; Suh, Y.; Kim, D.; Kang, I.; Moon, J.; Park, M.; Kim, J.; Kang, K.S.; Hong, B.H. Graphene quantum dots from carbonized coffee bean wastes for biomedical applications. Nanomaterials 2021, 11, 1423. [Google Scholar] [CrossRef]
- Li, Y.; Javed, R.; Li, R.; Zhang, Y.; Lang, Z.; Zhao, H.; Liu, X.; Cao, H.; Ye, D. A colorimetric smartphone-based sensor for on-site AA detection in tropical fruits using Fe-P/NC single-atom nanoenzyme. Food Chem. 2023, 406, 135017. [Google Scholar] [CrossRef]
- Patel, M.R.; Park, T.J.; Kailasa, S.K. Eu3+ ion-doped strontium vanadate perovskite quantum dots-based novel fluorescent nanosensor for selective detection of creatinine in biological samples. J. Photochem. Photobiol. A Chem. 2024, 449, 115376. [Google Scholar] [CrossRef]
- Alizadeh Sani, M.; Jahed-Khaniki, G.; Ehsani, A.; Shariatifar, N.; Dehghani, M.H.; Hashemi, M.; Hosseini, H.; Abdollahi, M.; Hassani, S.; Bayrami, Z.; et al. Metal-Organic Framework Fluorescence Sensors for Rapid and Accurate Detection of Melamine in Milk Powder. Biosensors 2023, 13, 94. [Google Scholar] [CrossRef]
- Wang, M.; Nian, L.; Cheng, Y.; Yuan, B.; Cheng, S.; Cao, C. Encapsulation of colloidal semiconductor quantum dots into metal-organic frameworks for enhanced antibacterial activity through interfacial electron transfer. Chem. Eng. J. 2021, 426, 130832. [Google Scholar] [CrossRef]
- Jyotsna, S.; Sadhu, S.; Sharma, V.; Gupta, P.; Sharma, G.; Poddar, P. Luminescence turn-off detection of metal ions and explosives using graphene quantum dots. MRS Commun. 2022, 12, 168–174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Niu, Q.; Pang, X.; Li, S.; Liu, Y.; Li, B.; Li, S.; Wang, L.; Guo, H.; Wang, L. Optimized Sensitivity in Copper(II) Ion Detection: Sustainable Fabrication of Fluorescence Red-Shifted Graphene Quantum Dots via Electron-Withdrawing Modulation. Molecules 2025, 30, 1244. https://doi.org/10.3390/molecules30061244
Li W, Niu Q, Pang X, Li S, Liu Y, Li B, Li S, Wang L, Guo H, Wang L. Optimized Sensitivity in Copper(II) Ion Detection: Sustainable Fabrication of Fluorescence Red-Shifted Graphene Quantum Dots via Electron-Withdrawing Modulation. Molecules. 2025; 30(6):1244. https://doi.org/10.3390/molecules30061244
Chicago/Turabian StyleLi, Weitao, Qian Niu, Xinglong Pang, Shang Li, Yang Liu, Boyu Li, Shuangyan Li, Lei Wang, Huazhang Guo, and Liang Wang. 2025. "Optimized Sensitivity in Copper(II) Ion Detection: Sustainable Fabrication of Fluorescence Red-Shifted Graphene Quantum Dots via Electron-Withdrawing Modulation" Molecules 30, no. 6: 1244. https://doi.org/10.3390/molecules30061244
APA StyleLi, W., Niu, Q., Pang, X., Li, S., Liu, Y., Li, B., Li, S., Wang, L., Guo, H., & Wang, L. (2025). Optimized Sensitivity in Copper(II) Ion Detection: Sustainable Fabrication of Fluorescence Red-Shifted Graphene Quantum Dots via Electron-Withdrawing Modulation. Molecules, 30(6), 1244. https://doi.org/10.3390/molecules30061244