Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = copper–tungsten

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7158 KB  
Article
2,2-Bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethanol: A Versatile Heteroscorpionate Ligand for Transition and Main Group Metal Complexes
by Uwe Böhme, Betty Günther and Anke Schwarzer
Crystals 2025, 15(10), 865; https://doi.org/10.3390/cryst15100865 - 30 Sep 2025
Abstract
2,2-Bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethanol (HL) is a heteroscorpionate ligand capable of coordinating metal ions through two nitrogen atoms and one oxygen atom. We report a base free synthetic route to metal complexes of L and explore the resulting structural diversity. Notably, complex composition varies substantially depending [...] Read more.
2,2-Bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethanol (HL) is a heteroscorpionate ligand capable of coordinating metal ions through two nitrogen atoms and one oxygen atom. We report a base free synthetic route to metal complexes of L and explore the resulting structural diversity. Notably, complex composition varies substantially depending on the metal ion, including dinuclear molybdenum species and distinct coordination behavior with silicon and copper. The isolated compounds include the dinuclear, oxygen-bridged complexes (LMoO2)2O and (LMoO)(μ-O)2, as well as the mononuclear complexes LTi(NMe2)3, LZrCl3, LGeCl3, LWO2Cl, LCu(acetate)2H, and LSiMe2Cl. Single crystal X-ray diffraction reveals that the bulky complex structures generate cavities in the crystal lattice, frequently occupied by solvent molecules. The titanium, zirconium, molybdenum, tungsten, and germanium complexes exhibit octahedral coordination, while structural peculiarities are observed for copper and silicon. The copper(II) complex shows a distorted octahedral geometry with one elongated ligand bond; the silicon complex is pentacoordinated in the solid state. Additional characterization includes melting points, NMR, and IR spectroscopy. The developed synthetic strategy provides a straightforward and versatile route to heteroscorpionate metal complexes. Full article
(This article belongs to the Section Organic Crystalline Materials)
18 pages, 5515 KB  
Article
Experimental and Simulation Study on Residual Stress of Pure Copper Welded Joint by Laser Shock Peening
by Yandong Ma, Siwei Li, Yang Tang and Yongkang Zhang
Materials 2025, 18(17), 4088; https://doi.org/10.3390/ma18174088 - 1 Sep 2025
Viewed by 539
Abstract
To accurately assess the residual stress distribution on the superficial layer of the weld for a pure copper butt-welded joint after laser shock peening (LSP), a coupled model was established by integrating experimental measurements with numerical simulations. This model simulates both the tungsten [...] Read more.
To accurately assess the residual stress distribution on the superficial layer of the weld for a pure copper butt-welded joint after laser shock peening (LSP), a coupled model was established by integrating experimental measurements with numerical simulations. This model simulates both the tungsten inert gas (TIG) welding process of pure copper and the subsequent LSP treatment applied to the weld. On this basis, the effects of the spot overlapping rate, number of impact layers, and pulse width on the weld residual stress profile were evaluated via multi-point LSP simulations. The findings imply that LSP converts the weld’s superficial residual stress from tensile to compressive, which verifies the accuracy of the simulations through the experimental data. Multi-point LSP numerical simulations demonstrate that elevating the spot overlapping rate and number of impact layers enhances the amplitude and affected depth of the surface compressive residual stress (CRS). A slight decrease in the CRS on the superficial layer of the weld was observed with an increase in pulse width. Compared with increasing the overlapping rate and pulse width, increasing the number of impact layers has a more significant strengthening effect. When the impact layer reached 3 times, the surface CRS reached −219.4 MPa, and the influence depth was 1.3 mm. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

27 pages, 9585 KB  
Article
Shock Response Characteristics and Equation of State of High-Mass-Fraction Pressed Tungsten Powder/Polytetrafluoroethylene-Based Composites
by Wei Zhu, Weihang Li, Wenbin Li, Xiaoming Wang and Wenjin Yao
Polymers 2025, 17(17), 2309; https://doi.org/10.3390/polym17172309 - 26 Aug 2025
Viewed by 513
Abstract
Tungsten powder/polytetrafluoroethylene (W/PTFE) composites have the potential to replace traditional metallic materials as casings for controllable power warheads. Under explosive loading, they generate high-density and relatively uniformly distributed metal powder particles, thereby enhancing close-range impact effects while reducing collateral damage. To characterize the [...] Read more.
Tungsten powder/polytetrafluoroethylene (W/PTFE) composites have the potential to replace traditional metallic materials as casings for controllable power warheads. Under explosive loading, they generate high-density and relatively uniformly distributed metal powder particles, thereby enhancing close-range impact effects while reducing collateral damage. To characterize the material’s response under impact loading, plate impact tests were conducted to investigate the effects of tungsten content (70 wt%, 80 wt%, and 90 wt%) and tungsten particle size (200 μm, 400 μm, and 600 μm) on the impact behavior of the composites. The free surface velocity histories of the target plates were measured using a 37 mm single-stage light gas gun and a full-fiber laser interferometer (DISAR), enabling the determination of the shock velocity–particle velocity relationship to establish the equation of state. Experimental data show a linear relationship between shock velocity and particle velocity, with the 80 wt% and 90 wt% composites exhibiting similar shock velocities. The fitted slope increases from 2.792 to 2.957 as the tungsten mass fraction rises from 70 wt% to 90 wt%. With particle size increasing from 200 μm to 600 μm, the slope decreases from 3.204 to 2.756, while c0 increases from 224.7 to 633.3. Comparison of the Hugoniot pressure curves of different specimens indicated that tungsten content significantly affects the impact behavior, whereas variations in tungsten particle size have a negligible influence on the Hugoniot pressure. A high tungsten content with small particle size (e.g., 90 wt% with ~200 μm) improves the overall compressive properties of composite materials. Based on the experimental results, a mesoscale finite element model consistent with the tests was developed. The overall error between the numerical simulations and experimental results was less than 5% under various conditions, thereby validating the accuracy of the model. Numerical simulations revealed the coupling mechanism between tungsten particle plastic deformation and matrix flow. The strong rarefaction unloading effect initiated at the composite’s free surface caused matrix spallation and jetting. Multiple wave systems were generated at the composite–copper interface, whose interference and coupling ultimately resulted in a nearly uniform macroscopic pressure field. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 4749 KB  
Article
High Thermal Conductivity Diamond–Copper Composites Prepared via Hot Pressing with Tungsten–Coated Interfacial Layer Optimization
by Qiang Wang, Zhijie Ye, Lei Liu, Jie Bai, Yuning Zhao, Qiang Hu, Hong Liu, Lang Hu, Xiaodong Guo, Yongneng Xiao, Wenxin Cao and Zhenhuai Yang
Materials 2025, 18(16), 3882; https://doi.org/10.3390/ma18163882 - 19 Aug 2025
Viewed by 679
Abstract
Diamond–copper composites, due to their exceptional thermal conductivity, hold significant potential in the field of electronic device thermal management. Hot-press sintering is a promising fabrication technique with industrial application prospects; however, the thermal conductivity of composites prepared by this method has yet to [...] Read more.
Diamond–copper composites, due to their exceptional thermal conductivity, hold significant potential in the field of electronic device thermal management. Hot-press sintering is a promising fabrication technique with industrial application prospects; however, the thermal conductivity of composites prepared by this method has yet to reach optimal levels. In this study, tungsten was deposited on the surface of diamond particles by magnetron sputtering as an interfacial transition layer, and hot-press sintering was employed to fabricate the composites. The findings reveal that with prolonged annealing time, tungsten gradually transformed into W2C and WC, significantly enhancing interfacial bonding strength. When the diamond volume content was 50% and the interfacial coating consisted of 2 wt.% W, 92 wt.% WC, and 6 wt.% W2C, the composite exhibited a thermal conductivity of 640 W/(m·K), the highest value reported among hot-press sintered composites with diamond content below 50%. Additionally, the AMM (Acoustic Mismatch Model) and DMM (Diffusion Mismatch Model) models were utilized to calculate the interfacial thermal conductance between different phases, identifying the optimal interfacial structure as diamond/W2C/WC/W2C/Cu. This composite material shows potential for application in high-power electronic device cooling, thermal management systems, and thermoelectric conversion, providing a more efficient thermal dissipation solution for related devices. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

14 pages, 4572 KB  
Article
Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly
by Yueyang Wu, Honglong Ning, Ruiqi Luo, Muyun Li, Zijian Zhang, Rouqian Huang, Junjie Wang, Mingyue Peng, Runjie Zhuo, Rihui Yao and Junbiao Peng
Inorganics 2025, 13(6), 200; https://doi.org/10.3390/inorganics13060200 - 14 Jun 2025
Viewed by 1299
Abstract
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based [...] Read more.
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based electrochromic systems. Cu-doped W18O49 nanowires with varying Cu concentrations (0–12 mol%) were synthesized hydrothermally and assembled into thin films via the LB technique, with LB precursors characterized by contact angle, surface tension, viscosity, and thermogravimetric-differential scanning calorimetry (TG-DSC) analyses. The films were systematically evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry, and transmittance spectroscopy. Experimental results reveal an optimal Cu-doping concentration of 8 mol%, achieving a near-infrared optical modulation amplitude of 76.24% at 1066 nm, rapid switching kinetics (coloring/bleaching: 5.0/3.0 s), and a coloration efficiency of 133.00 cm2/C. This performance is speculated to be a balance between Cu-induced improvements in ion intercalation kinetics and LB-ordering degradation caused by lattice strain and interfacial charge redistribution, while mitigating excessive doping effects such as structural deterioration and thermodynamic instability. The work establishes a dual-modification framework for designing high-performance electrochromic interfaces, emphasizing the critical role of surface chemistry and nanoscale assembly in advancing adaptive optoelectronic devices like smart windows. Full article
(This article belongs to the Special Issue Optical and Quantum Electronics: Physics and Materials)
Show Figures

Figure 1

22 pages, 6877 KB  
Article
Inspection of Bulk Crystals for Quality Control in Crystal Growth: Assessment of High-Energy X-Ray Transmission Topography and Back-Reflection Topography Pinpointed for Physical Vapor Transport-Grown Aluminum Nitride
by Roland Weingärtner, Boris Epelbaum, Andreas Lesnik, Gleb Lukin, Stephan Müller, Leon Schiller, Elke Meissner, Matthias Weisser and Sven Besendörfer
Crystals 2025, 15(5), 449; https://doi.org/10.3390/cryst15050449 - 9 May 2025
Viewed by 746
Abstract
A comprehensive X-ray topography analysis of two selected aluminum nitride (AlN) bulk crystals is presented. We compare surface inspection X-ray topography in back-reflection geometry with high-energy transmission topography in the Lang and Laue configuration using the monochromatic Kα1 excitation wavelength of copper, [...] Read more.
A comprehensive X-ray topography analysis of two selected aluminum nitride (AlN) bulk crystals is presented. We compare surface inspection X-ray topography in back-reflection geometry with high-energy transmission topography in the Lang and Laue configuration using the monochromatic Kα1 excitation wavelength of copper, silver, and tungsten, respectively. A detailed comparison of the results allows the assessment of both the high- and low-energy X-ray topography methods with respect to performance and structural information, giving essential feedback for crystal growth. This is demonstrated for two selected AlN freestanding faceted crystals up to 8 mm in thickness grown in all directions using the physical vapor transport (PVT) method. Structural defects of all facets of the crystals are determined using the X-ray topography in back-reflection geometry. The mean threading dislocation densities are 480 ± 30 cm−2 for both crystals of either the Al- or N-face. Clustering of dislocations could be observed. The m-facets show the presence of basal plane dislocations and their accumulation as clusters. The integral transmission topographs of the 101¯0 (m-plane) reflection family show that basal plane dislocations of the screw type in 131¯21¯0 directions decorate threading dislocation clusters. Three-dimensional section transmission topography reveals that the basal plane dislocation clusters mainly originate at the seed boundary and propagate in the 131¯21¯0 direction along the growth front. In newly laterally grown material, the Borrmann effect has been observed for the first time in PVT-grown bulk AlN, indicating very high structural perfection of the crystalline material in this region. This agrees with a low mean FWHM of 10.6 arcsec of the 101¯0 reflection determined through focused high-energy Laue transmission mappings. The latter method also opens the analysis of the 2θ-shift correlated to the residual stress distribution inside the bulk crystal, which is dominated by dislocation clusters. Contrary to Lang transmission topography, the de-focused high-energy Laue transmission penetrates the 8 mm-thick crystal enabling a defect analysis in the bulk. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

22 pages, 1675 KB  
Review
Plasma Spraying of W Coatings for Nuclear Fusion Applications: Advancements and Challenges
by Ekaterina Pakhomova, Alessandra Palombi and Alessandra Varone
Crystals 2025, 15(5), 408; https://doi.org/10.3390/cryst15050408 - 26 Apr 2025
Viewed by 1249
Abstract
The selection of a suitable plasma-facing material (PFM) that must protect the divertor, cooling systems, and structural components is an important challenge in the design of advanced fusion reactors and requires careful consideration. Material degradation due to melting and evaporation may lead to [...] Read more.
The selection of a suitable plasma-facing material (PFM) that must protect the divertor, cooling systems, and structural components is an important challenge in the design of advanced fusion reactors and requires careful consideration. Material degradation due to melting and evaporation may lead to plasma contamination, which must be strictly avoided. Among the candidate materials, tungsten (W) is the most promising because of its thermo-mechanical and physical properties, which allow it to endure repeated exposure to extremely harsh conditions within the reactor. The plasma spraying (PS) technique is gaining increasing interest for the deposition of tungsten (W) coatings to protect heat sink materials, due to its relatively low cost, high deposition rates, and capability to coat complex-shaped surfaces and fix damaged coatings in situ. This review aims to provide a systematic assessment of tungsten (W) coatings produced by PS techniques, evaluating their suitability as PFMs. It discusses W-based materials, plasma spraying technologies, the role of the interface in joining W coating and metallic substrates such as copper alloys and steels, and the main issues related to coating surface erosion under steady-state and transient heat loads associated with advanced fusion reactor operation modes and off-normal events. Quantitative data available in the literature, such as porosity, oxygen content, thermal conductivity of the coatings, residual stresses accumulated in the coating–substrate interface, surface temperature, and material loss following heat load events, were summarized and compared to bulk W ones. The results demonstrate that, following optimization of the fabrication process, PS-W coatings exhibit excellent performance. In addition, previously mentioned advantages of PS technology make PS-W coatings an attractive alternative for PFM fabrication. Full article
Show Figures

Graphical abstract

30 pages, 11298 KB  
Article
A Method for Calculating Residual Strength of Crack Arrest Hole on Tungsten-Copper Functionally Graded Materials by Phase-Field Gradient Element Combined with Multi-Fidelity Neural Network
by Bowen Liu, Yisheng Yang, Guishan Wang and Yin Li
Materials 2025, 18(9), 1973; https://doi.org/10.3390/ma18091973 - 26 Apr 2025
Viewed by 415
Abstract
This study develops a computational framework for evaluating the residual strength of tungsten-copper functionally graded materials following crack-arrest hole drilling. The proposed methodology features two pivotal innovations: First, a phase-field isoparametric gradient elements is established through representing the gradient effect within the finite [...] Read more.
This study develops a computational framework for evaluating the residual strength of tungsten-copper functionally graded materials following crack-arrest hole drilling. The proposed methodology features two pivotal innovations: First, a phase-field isoparametric gradient elements is established through representing the gradient effect within the finite element stiffness matrices, incorporating both Amor and Miehe elastic energy decomposition schemes to address tension-compression asymmetry in crack evolution. Second, a multi-fidelity neural network strategy is integrated with the gradient phase-field element to mitigate characteristic length dependency in residual strength predictions. Comparative analyses demonstrate that the gradient finite element achieves smoother field transitions at element interfaces compared to conventional homogeneous elements, as quantified in both stress and damage fields. The Miehe decomposition scheme outperforms the Amor model in capturing complex crack trajectories. Validation against the average strain energy criterion indicates the present approach enhances residual strength prediction accuracy by 39.07% to 44.05%, establishing a robust numerical tool for damage tolerance assessment in graded materials. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

16 pages, 5226 KB  
Communication
Flexible Gas Sensor Based on PANI/WO3/CuO for Room-Temperature Detection of H2S
by Dongxiang Zhang, Yingmin Liu, Yang Wang, Zhi Li, Dongkun Xiao, Tianhong Zhou and Mojie Sun
Sensors 2025, 25(9), 2640; https://doi.org/10.3390/s25092640 - 22 Apr 2025
Cited by 1 | Viewed by 806
Abstract
Polyaniline (PANI) is currently one of the most extensively studied conductive polymers in the field of flexible gas sensors. However, sensors based on pure PANI generally suffer from problems such as low sensitivity and poor stability. To address these issues, in this work, [...] Read more.
Polyaniline (PANI) is currently one of the most extensively studied conductive polymers in the field of flexible gas sensors. However, sensors based on pure PANI generally suffer from problems such as low sensitivity and poor stability. To address these issues, in this work, a room-temperature hydrogen sulfide gas sensor of polyaniline/tungsten oxide/copper oxide (PANI/WO3/CuO) was synthesized using in situ polymerization technology. This gas sensor displays a response value of 31.3% to 1 ppm hydrogen sulfide at room temperature, with a response/recovery time of 353/4958 s and a detection limit of 100 ppb. Such an excellent performance is attributed to the high surface area and large adsorption capacity of the ternary composite, as well as the multi-phase interface synergistic effect. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

14 pages, 10631 KB  
Article
3D Printing Assisted Injection Molding of Chemically Plated W-Cu Composite
by Bo Yuan, Wenwxin Liu, Zhen Wang, Zhongkai Li, Xiaofang Pan, Shurong Xu, Shoujing Mao, Ying Wu, Yangyang Li and Jun Liu
Materials 2025, 18(8), 1885; https://doi.org/10.3390/ma18081885 - 21 Apr 2025
Viewed by 759
Abstract
W-Cu composites are widely used in the fields of switch contact materials and electronic packages because of their high hardness, high plasticity, and excellent thermal conductivity, while the traditional W-Cu composite preparation process is often accompanied by problems such as a long production [...] Read more.
W-Cu composites are widely used in the fields of switch contact materials and electronic packages because of their high hardness, high plasticity, and excellent thermal conductivity, while the traditional W-Cu composite preparation process is often accompanied by problems such as a long production cycle, difficulties in the processing of shaped parts, and difficulties in guaranteeing the uniformity. Therefore, this work developed a chemical plating technique to prepare W-20 wt.% Cu composite powder with a core–shell structure and used this powder as a raw material for powder metallurgy to solve the problem of inhomogeneity in the production of W-Cu composite by the conventional solution infiltration method. Moreover, the work also developed a high-temperature-resistant photosensitive resin, which was used as a raw material to prepare injection molds using photocuring to replace traditional steel molds. Compared to steel molds, which take about a month to prepare, 3D printed plastic molds take only a few hours, greatly reducing the production cycle. At the same time, 3D printing also provides the feasibility of the production of shaped parts. The injection molded blanks were degreased and sintered under different sintering conditions. The results show that the resultant chemically plated W-Cu composite powder has a uniform Cu coating on the surface, and the Cu forms a dense and uniform three-dimensional network in the scanning electron microscope images of each subsequent sintered specimen, while the photocuring-prepared molds were used to prepare the W-Cu shaped parts, which greatly shortened the production cycle. This preparation method enables rapid preparation of tungsten–copper composite-shaped parts with good homogeneity. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

20 pages, 6430 KB  
Article
Multi-Scale Numerical Simulation of Short Tungsten Fiber Reinforced Tungsten–Copper Composites: Influence Mechanisms of Fiber Parameters
by Longchao Zhuo, Yixing Xie, Hang Xu, Bin Luo, Nan Liu, Bingqing Chen and Hao Wang
Crystals 2025, 15(3), 209; https://doi.org/10.3390/cryst15030209 - 22 Feb 2025
Viewed by 702
Abstract
Tungsten fiber reinforced tungsten–copper (Wf/W-Cu) composites have broad application prospects in fields such as electronic packaging due to their excellent comprehensive properties. However, the correlation between fiber parameters (content, aspect ratio, orientation) and the mechanical behavior of the materials is not [...] Read more.
Tungsten fiber reinforced tungsten–copper (Wf/W-Cu) composites have broad application prospects in fields such as electronic packaging due to their excellent comprehensive properties. However, the correlation between fiber parameters (content, aspect ratio, orientation) and the mechanical behavior of the materials is not yet clear. In this study, a combination of numerical simulation and experimental research was employed to construct a three-dimensional microstructural mechanic model and systematically investigate the influence of fiber parameters on the tensile properties and mechanisms of Wf/W-Cu composites. The results show that: (1) The critical fiber aspect ratio is 7.6. When below this value, fiber pullout dominates, and when above this value, fiber tensile fracture is the main mechanism. (2) As the fiber content increases from 1% to 6%, the tensile strength of the composite increases by 9.6%, the yield strength increases by 10.2%, while the elongation after fracture decreases by 18.6%. (3) As the fiber orientation angle increases from 0° to 90°, the material strength first increases and then decreases, while the toughness first decreases and then increases. (4) Short fibers achieve interface toughening through fiber pullout, crack deflection, and fiber bridging, while long fibers improve the strength and toughness of the composite through load transfer and fiber bridging effects. (5) The damage evolution mechanism reveals the regulation effect of fiber parameters on the multi-scale mechanical behavior of the material. The research results can guide the composition and structure optimization design of Wf/W-Cu composites, provide new ideas for the research of high-performance fiber composites, and have important significance for their engineering applications in extreme environments. Full article
Show Figures

Figure 1

16 pages, 4653 KB  
Article
Stress Analysis in Tungsten Alloys Modified with Plasma Flows and Irradiated with Helium Ions
by Azamat Ryskulov, Vitaliy Shymanski, Bauyrzhan Amanzhulov, Igor Ivanov, Vladimir Uglov, Valiantsin Astashynski, Mikhail Koloberdin, Anton Kuzmitski and Alisher Kurakhmedov
Coatings 2025, 15(2), 198; https://doi.org/10.3390/coatings15020198 - 7 Feb 2025
Viewed by 1355
Abstract
As the development of nuclear fusion depends on plasma-facing materials, new methods for improving the radiation resistance of tungsten are being created and tested. This paper presents the results of studying the structure, surface morphology, phase composition, and residual internal stresses in tungsten [...] Read more.
As the development of nuclear fusion depends on plasma-facing materials, new methods for improving the radiation resistance of tungsten are being created and tested. This paper presents the results of studying the structure, surface morphology, phase composition, and residual internal stresses in tungsten alloys modified by plasma flows and irradiated with helium ions with an energy of 40 keV and doses of (1–3) × 1017 cm−2. It is shown that the effect of compression plasma flows on tungsten leads to the modification of its grain structure in the near-surface layer, forming dispersed cells of 220–320 nm in size due to high-speed crystallization. The results of measuring the lattice parameters and internal stresses in irradiated tungsten alloys showed that the near-surface layer accumulates radiation defects, creating internal stresses, the relaxation of which leads to local destruction of the surface. Preliminary plasma treatment creates an increased density of intergranular boundaries, which serve as sinks for radiation defects and increase the radiation resistance of tungsten alloys. Full article
Show Figures

Figure 1

22 pages, 5456 KB  
Article
Chemical and Mineralogical Characterization of Waste from Abandoned Copper and Manganese Mines in the Iberian Pyrite Belt, Portugal: A First Step Towards the Waste-to-Value Recycling Process
by Daniel P. S. de Oliveira, Teresa P. Silva, Igor Morais and João A. E. Fernandes
Minerals 2025, 15(1), 58; https://doi.org/10.3390/min15010058 - 7 Jan 2025
Viewed by 1861
Abstract
This study examines the chemical and mineralogical composition of waste materials from abandoned copper and manganese mines in the Iberian Pyrite Belt, Portugal, as a first step toward their potential recycling for critical and strategic raw materials (CRM and SRM). Using portable X-ray [...] Read more.
This study examines the chemical and mineralogical composition of waste materials from abandoned copper and manganese mines in the Iberian Pyrite Belt, Portugal, as a first step toward their potential recycling for critical and strategic raw materials (CRM and SRM). Using portable X-ray fluorescence (pXRF) and other analytical techniques, this research highlights the presence of valuable elements, including copper, manganese, and rare earth elements, in concentrations significantly above their crustal abundance. The findings underscore the dual potential of these wastes: as sources of secondary raw materials and for mitigating environmental hazards such as acid mine drainage (AMD). Recovered materials include chalcopyrite, pyrolusite, and rhodochrosite, with critical elements like cobalt, lithium, and tungsten identified. pXRF proved to be a reliable, cost-effective tool for rapid field and laboratory analyses, demonstrating high precision and good correlation with standard laboratory methods. The study emphasizes the importance of characterizing historical mining waste to support a circular economy, reduce reliance on foreign material imports, and address environmental challenges. This approach aligns with the European Union’s Critical Raw Materials Act, promoting sustainable resource use and the recovery of strategic resources from historical mining sites. Full article
Show Figures

Figure 1

22 pages, 13972 KB  
Article
Simulation of Arc Discharge in an Argon/Methane Mixture, Taking into Account the Evaporation of Anode Material in Problems Related to the Synthesis of Functional Nanostructures
by Almaz Saifutdinov and Boris Timerkaev
Nanomaterials 2025, 15(1), 54; https://doi.org/10.3390/nano15010054 - 31 Dec 2024
Cited by 3 | Viewed by 1554
Abstract
In this work, within the framework of a self-consistent model of arc discharge, a simulation of plasma parameters in a mixture of argon and methane was carried out, taking into account the evaporation of the electrode material in the case of a refractory [...] Read more.
In this work, within the framework of a self-consistent model of arc discharge, a simulation of plasma parameters in a mixture of argon and methane was carried out, taking into account the evaporation of the electrode material in the case of a refractory and non-refractory cathode. It is shown that in the case of a refractory tungsten cathode, almost the same methane conversion rate is observed, leading to similar values in the density of the main methane conversion products (C, C2, H) at different values of the discharge current density. However, with an increase in the current density, the evaporation rate of copper atoms from the anode increases, and a jump in the IV characteristic is observed, caused by a change in the plasma-forming ion. This is due to the lower ionization energy of copper atoms compared to argon atoms. In this mode, an increase in metal–carbon nanoparticles is expected. It is shown that, in the case of a cathode made of non-refractory copper, the discharge characteristics and the component composition of the plasma depend on the field enhancement factor near the cathode surface. It is demonstrated that increasing the field enhancement factor leads to more efficient thermal field emission, lowering the cathode’s surface temperature and the gas temperature in the discharge gap. This leads to the fact that, in the arc discharge mode with a cathode made of non-refractory copper, the dominant types of particles from which the synthesis of a nanostructure can begin are, in descending order, copper atoms (Cu), carbon clusters (C2), and carbon atoms (C). Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

19 pages, 16333 KB  
Article
Simulation and Study of Manufacturing of W–Cu Functionally Graded Materials by a Selective Laser Melting Process
by Xiaoyu Ding, Di Ma, Yuecheng Fu, Laima Luo, Yucheng Wu and Jianhua Yao
Metals 2024, 14(12), 1421; https://doi.org/10.3390/met14121421 - 11 Dec 2024
Cited by 3 | Viewed by 1064
Abstract
Plasma-facing components (PFCs) were simulated by ANSYS, and the influence of gradient layer number and composition distribution index on the distribution of temperature field and stress field was analyzed. The simulation results show that a gradient structure with four gradient layers and a [...] Read more.
Plasma-facing components (PFCs) were simulated by ANSYS, and the influence of gradient layer number and composition distribution index on the distribution of temperature field and stress field was analyzed. The simulation results show that a gradient structure with four gradient layers and a component distribution index of 1 makes the PFC assembly have lower overall temperature and lower thermal stress. Tungsten–copper functionally graded materials (W–Cu FGMs) (W-20 vol% Cu/W-40 vol% Cu/W-60 vol% Cu/W-80 vol% Cu) were fabricated by a selective laser melting (SLM) process based on finite element simulation results. The effects of microstructure on the hardness, internal stresses, thermal conductivity, and thermal expansion coefficient of the W–Cu FGMs were evaluated. The results show that hardness increases from 196 to 1173 HV0.3 with increasing W content. The internal stresses of W-20 vol% Cu, W-40 vol% Cu, W-60 vol% Cu, and W-80 vol% Cu are about 191.7 MPa, 627 MPa, 1049.5 MPa, and 561.9 MPa, respectively. The thermal conductivity of the W–Cu FGM is 23 W/m·K and the thermal diffusion coefficient is 10 mm2/s at 25 °C, and the thermal conductivity rises to 70 W/m·K and the thermal diffusion coefficient rises to 18.5 mm2/s at 800 °C. After 100 thermal shock cycles, the internal defects increased, but the interface between the gradient layers remained well bonded. Full article
(This article belongs to the Special Issue Laser Processing Technology and Principles of Metal Materials)
Show Figures

Figure 1

Back to TopTop