Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = coplanarity evaluation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 11595 KB  
Article
An Automated Workflow for Generating 3D Solids from Indoor Point Clouds in a Cadastral Context
by Zihan Chen, Frédéric Hubert, Christian Larouche, Jacynthe Pouliot and Philippe Girard
ISPRS Int. J. Geo-Inf. 2025, 14(11), 429; https://doi.org/10.3390/ijgi14110429 - 31 Oct 2025
Viewed by 868
Abstract
Accurate volumetric modeling of indoor spaces is essential for emerging 3D cadastral systems, yet existing workflows often rely on manual intervention or produce surface-only models, limiting precision and scalability. This study proposes and validates an integrated, largely automated workflow (named VERTICAL) that converts [...] Read more.
Accurate volumetric modeling of indoor spaces is essential for emerging 3D cadastral systems, yet existing workflows often rely on manual intervention or produce surface-only models, limiting precision and scalability. This study proposes and validates an integrated, largely automated workflow (named VERTICAL) that converts classified indoor point clouds into topologically consistent 3D solids served as materials for land surveyor’s cadastral analysis. The approach sequentially combines RANSAC-based plane detection, polygonal mesh reconstruction, mesh optimization stage that merges coplanar faces, repairs non-manifold edges, and regularizes boundaries and planar faces prior to CAD-based solid generation, ensuring closed and geometrically valid solids. These modules are linked through a modular prototype (called P2M) with a web-based interface and parameterized batch processing. The workflow was tested on two condominium datasets representing a range of spatial complexities, from simple orthogonal rooms to irregular interiors with multiple ceiling levels, sloped roofs, and internal columns. Qualitative evaluation ensured visual plausibility, while quantitative assessment against survey-grade reference models measured geometric fidelity. Across eight representative rooms, models meeting qualitative criteria achieved accuracies exceeding 97% for key metrics including surface area, volume, and ceiling geometry, with a height RMSE around 0.01 m. Compared with existing automated modeling solutions, the proposed workflow has the ability of dealing with complex geometries and has comparable accuracy results. These results demonstrate the workflow’s capability to produce topologically consistent solids with high geometric accuracy, supporting both boundary delineation and volume calculation. The modular, interoperable design enables integration with CAD environments, offering a practical pathway toward an automated and reliable core of 3D modeling for cadastre applications. Full article
Show Figures

Figure 1

12 pages, 3114 KB  
Article
Planar CPW-Fed MIMO Antenna Array Design with Enhanced Isolation Using T-Shaped Neutralization Lines
by Mohamed Morsy
Electronics 2025, 14(18), 3683; https://doi.org/10.3390/electronics14183683 - 17 Sep 2025
Viewed by 780
Abstract
This paper presents the design and performance evaluation of a compact four-element coplanar waveguide (CPW)-fed antenna array operating in the 3.3–3.6 GHz frequency band. The proposed antenna is tailored for sub-6 GHz 5G New Radio (NR) applications, specifically aligning with the n77/n78 bands [...] Read more.
This paper presents the design and performance evaluation of a compact four-element coplanar waveguide (CPW)-fed antenna array operating in the 3.3–3.6 GHz frequency band. The proposed antenna is tailored for sub-6 GHz 5G New Radio (NR) applications, specifically aligning with the n77/n78 bands widely adopted for mid-band 5G deployment. The CPW feeding technique enables low-profile integration and ease of fabrication, while the multi-element configuration supports enhanced gain and spatial diversity. Both simulated and measured results demonstrate good impedance matching (|S11| < −10 dB), stable radiation patterns, and inter-element isolation suitable for MIMO operation. The design offers a promising solution for compact 5G antenna systems and can be extended to future wireless communication platforms requiring high efficiency and compact form factors. Full article
Show Figures

Figure 1

25 pages, 27627 KB  
Article
Robust Line Segment Matching for Space-Based Stereo Vision via Multi-Constraint Global Optimization
by Xingxing Zhang and Ling Wang
Sensors 2025, 25(17), 5466; https://doi.org/10.3390/s25175466 - 3 Sep 2025
Viewed by 999
Abstract
Robust and accurate line segment matching remains a critical challenge in stereo vision, particularly in space-based applications where weak texture, structural symmetry, and strong illumination variations are common. This paper presents a multi-constraint progressive matching framework that integrates epipolar geometry, coplanarity verification, local [...] Read more.
Robust and accurate line segment matching remains a critical challenge in stereo vision, particularly in space-based applications where weak texture, structural symmetry, and strong illumination variations are common. This paper presents a multi-constraint progressive matching framework that integrates epipolar geometry, coplanarity verification, local homography, angular consistency, and distance-ratio invariance to establish reliable line correspondences. A unified cost matrix is constructed by quantitatively encoding these geometric residuals, enabling comprehensive candidate evaluation. To ensure global consistency and suppress mismatches, the final assignment is optimized using a Hungarian algorithm under one-to-one matching constraints. Extensive experiments on a wide range of stereo image pairs demonstrate that the proposed method consistently outperforms several advanced conventional approaches in terms of accuracy, robustness, and computational efficiency, as evidenced by both quantitative and qualitative evaluations. Full article
(This article belongs to the Special Issue Stereo Vision Sensing and Image Processing)
Show Figures

Figure 1

30 pages, 7805 KB  
Article
A Large-Span Ring Deployable Perimeter Truss for the Mesh Reflector Deployable Antenna
by Changqing Gao, Hanlin Wang, Nan Yang, Jianan Guo, Fei Liu and Jingli Du
Symmetry 2025, 17(9), 1388; https://doi.org/10.3390/sym17091388 - 25 Aug 2025
Cited by 1 | Viewed by 826
Abstract
This paper presents a novel large-span ring deployable perimeter truss for the mesh reflector deployable antennas, which is made up of two parts including a single-mobility driving mechanism and a ring deployable metamorphic mechanism. The mechanism design employs polygon approximation, and each side [...] Read more.
This paper presents a novel large-span ring deployable perimeter truss for the mesh reflector deployable antennas, which is made up of two parts including a single-mobility driving mechanism and a ring deployable metamorphic mechanism. The mechanism design employs polygon approximation, and each side is treated as a basic unit using a modular design approach. By reasonable assembly, a ring deployable metamorphic mechanism with a small folded state and a large deployed state can be formed. Here, multiple singular positions, the axis of its three revolute joints being parallel and coplanar, are used in the fully deployed state, which forms multiple dead-center positions and changes the constraint conditions. The metamorphic motion is thus achieved, and a stable self-locking state is established that greatly enhances the stability. The paper first introduces the mechanism design and evaluation method; the kinematic and dynamic analysis is then conducted, and the simulation validation is also performed. Moreover, a principle design for cable-net structural setting and connection is illustrated. Finally, with the design of a driving system and the fabrication of a physical prototype, the deployable experiments are carried out, and the results show that the perimeter truss can efficiently act as the mesh reflector deployable antennas. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 3453 KB  
Article
Optimization and Analysis of Sensitive Areas for Look-Ahead Electromagnetic Logging-While-Drilling Based on Geometric Factors
by Guoyu Li, Zhenguan Wu, Xiaoqiao Liao, Xizhou Yue, Xiang Zhang, Tianlin Liu and Yunxin Zeng
Energies 2025, 18(12), 3014; https://doi.org/10.3390/en18123014 - 6 Jun 2025
Viewed by 838
Abstract
Look-ahead electromagnetic (EM) logging-while-drilling (LWD) plays an indispensable role in the prediction of deep and ultra-deep reservoirs. Traditional electromagnetic logging-while-drilling (EMLWD) and ultra-deep EMLWD technologies exhibit certain limitations in the real-time detection of ahead-of-bit formations, making it challenging to meet precision drilling requirements [...] Read more.
Look-ahead electromagnetic (EM) logging-while-drilling (LWD) plays an indispensable role in the prediction of deep and ultra-deep reservoirs. Traditional electromagnetic logging-while-drilling (EMLWD) and ultra-deep EMLWD technologies exhibit certain limitations in the real-time detection of ahead-of-bit formations, making it challenging to meet precision drilling requirements under complex well conditions, with the development of petroleum and gas geology and exploration progress I n the direction of deep, ultra-deep, and complex reservoirs. As a new LWD technology, look-ahead EMLWD enables real-time identification of formation structures, fluid distributions, and interface positions ahead of the drill bit during the drilling process by leveraging the propagation characteristics of EM. This capability provides critical decision-making support for wellbore trajectory optimization, drilling risk assessment, and reservoir evaluation. Therefore, this paper conducts research on theoretical methodologies for look-ahead EMLWD. Leveraging the Born geometric factor theory, we derive the expression for the 3D geometric factor spatial signal and analyze the sensitivity of each component related to look-ahead. Building on this foundation, we establish the sensitivity expression for look-ahead operations and investigate the impact of various antenna configurations on its signal. The results indicate that the coaxial component (gzz) and coplanar components (gxx and gyy) are the primary contributors to look-ahead EMLWD. As frequency decreases and spacing increases, the sensitive region for look-ahead expands. Moreover, look-ahead detection sensitivity becomes increasingly concentrated in front of the drill bit, while the signal at the opposite end is attenuated by incorporating additional coils. Under identical formation conditions, compared with a single-transmitter single-receiver system, a single-transmitter double-receiver coil system exhibits a significantly stronger signal amplitude and more pronounced changes at the formation boundary. Additionally, this configuration enhances sensitivity and extends the sensitive distance in response to variations in formation resistivity. Full article
(This article belongs to the Special Issue Advancements in Electromagnetic Technology for Electrical Engineering)
Show Figures

Figure 1

17 pages, 14201 KB  
Article
Displacement Sensing Using Bimodal Resonance in Over-Coupled Inductors
by Alexis Hernandez Arroyo, George Overton, Anthony J. Mulholland and Robert R. Hughes
Sensors 2025, 25(6), 1822; https://doi.org/10.3390/s25061822 - 14 Mar 2025
Cited by 1 | Viewed by 994
Abstract
This paper presents the theory and key experimental findings for investigating the generation of bimodal resonance (frequency-splitting) phenomena in mutually over-coupled inductive sensors and its exploitation to evaluate relative separation and angular displacement between coils. This innovative measurement technique explores the bimodal resonant [...] Read more.
This paper presents the theory and key experimental findings for investigating the generation of bimodal resonance (frequency-splitting) phenomena in mutually over-coupled inductive sensors and its exploitation to evaluate relative separation and angular displacement between coils. This innovative measurement technique explores the bimodal resonant phenomena observed between two coil designs—solenoid and planar coil geometries. The proposed sensors are evaluated against first-order analytical functions and finite element models, before experimentally validating the predicted phenomenon for the different sensor configurations. The simulated and experimental results show excellent agreement, and first-order best-fit functions are employed to predict displacement variables experimentally. Co-planar separation and angular displacement are shown to be experimentally predictable to within ±1 mm and ±1° using this approach. This study validates the first-order physics-based models employed and demonstrates the first proof of principle for using resonant phenomena in inductive array sensors for evaluating relative displacement between array elements. Full article
(This article belongs to the Special Issue Electromagnetic Non-Destructive Testing and Evaluation)
Show Figures

Figure 1

16 pages, 23338 KB  
Article
Passive Rotor Noise Reduction Through Axial and Angular Blade Spacing Modulation
by Chingiz Arystanbekov, Altay Zhakatayev and Basman Elhadidi
Aerospace 2025, 12(3), 167; https://doi.org/10.3390/aerospace12030167 - 20 Feb 2025
Cited by 3 | Viewed by 2020
Abstract
This study investigates the aerodynamic and aeroacoustic performance of a novel two-stage two-bladed coaxial propeller that is axially and angularly spaced. Aerodynamic propulsive thrust and efficiency are validated and evaluated using a Reynolds-averaged Navier–Stokes computational fluid dynamics (CFD) model for the two-bladed APC27x13 [...] Read more.
This study investigates the aerodynamic and aeroacoustic performance of a novel two-stage two-bladed coaxial propeller that is axially and angularly spaced. Aerodynamic propulsive thrust and efficiency are validated and evaluated using a Reynolds-averaged Navier–Stokes computational fluid dynamics (CFD) model for the two-bladed APC27x13 propeller. Aeroacoustic assessment is conducted using a Ffowcs Williams–Hawkings integral model. A four-bladed coplanar APC27x13 propeller is simulated and considered as the baseline propeller. The CFD results suggest that changes in the rotor thrust for the coaxial blades are within 3% for propellers with 0.25D axial spacing (where D is the propeller diameter) and 30 angular spacing for the advance ratio of J=0.30.5. The aeroacoustic assessment for J=0.3 reveals that blades with 30 and 60 azimuthal spacing and 0.25D axial spacing significantly reduce noise compared to the baseline propeller. The reduction is attributed to the redistribution of tonal noise blade passing frequencies, resulting in a reduction in the A-weighted noise levels by up to 2 dBA. Additionally, the study accounts for the effect of the blade tip Mach number, concluding that a tip Mach number ranging between 0.7 and 0.9 is optimal for noise reduction in the 30 configuration. The results highlight the potential noise reduction benefits of uneven axial and angular blade spacing while maintaining similar aerodynamic performance. Full article
Show Figures

Figure 1

12 pages, 1900 KB  
Article
The Effect of Area Density of Polysilicon Thermocouples on Thermoelectric Performance
by Shih-Ming Yang, Zen-Wen Lai and Ai-Lin Liu
Sensors 2025, 25(4), 1098; https://doi.org/10.3390/s25041098 - 12 Feb 2025
Viewed by 876
Abstract
Thermoelectric energy generators (TEGs) that can convert body heat into electricity are considered most promising to drive wearable devices. Many TEG designs with a polysilicon thermocouple have been proposed for implementation in high-yield semi-conductor foundry services. This study shows that the area density, [...] Read more.
Thermoelectric energy generators (TEGs) that can convert body heat into electricity are considered most promising to drive wearable devices. Many TEG designs with a polysilicon thermocouple have been proposed for implementation in high-yield semi-conductor foundry services. This study shows that the area density, defined by the number of thermocouples per mm2, is a better index than the fill factor in evaluating TEG performance. The effects of thermocouple length, width, and spacing (between the adjacent thermocouples) on area density, and hence on TEG performance, are analyzed. For a TEG with 33 × 1 μm (length × width) co-planar thermocouples (P- and N-thermoleg side by side) and 1 μm spacing between two adjacent thermocouples, the area density is 4902 thermocouples per mm2 and it can deliver a 0.110 μW/cm2K2 power factor and a 12.906 V/cm2K voltage factor. The performance can be improved further by 57 × 1 μm stacked thermocouples (P-thermoleg above N-thermoleg) with a higher area density 8621 to achieve results of 0.110 μW/cm2K2 and 22.638 V/cm2K. Such a high area density not only increases TEG performance, but also improves the DC–DC converter efficiency. A 5 × 5 mm2 TEG chip with co-planar or stacked thermocouples is shown to deliver above 3 μW and over 3 V when operating at a 10 °C temperature difference. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting and Sensor Systems)
Show Figures

Figure 1

21 pages, 1594 KB  
Article
Comparative Evaluation of the Antibacterial and Antitumor Activities of Marine Alkaloid 3,10-Dibromofascaplysin
by Maxim E. Zhidkov, Polina A. Smirnova, Natalia E. Grammatikova, Elena B. Isakova, Andrey E. Shchekotikhin, Olga N. Styshova, Anna A. Klimovich and Aleksandr M. Popov
Mar. Drugs 2025, 23(2), 68; https://doi.org/10.3390/md23020068 - 6 Feb 2025
Cited by 1 | Viewed by 1662
Abstract
Fascaplysins form a group of marine natural products with unique cationic five-ring coplanar backbone. Native fascaplysin exhibits a broad spectrum of bioactivities, among which the cytotoxic activity has been the most investigated. Several fascaplysin derivatives have more selective biological effects and are promising [...] Read more.
Fascaplysins form a group of marine natural products with unique cationic five-ring coplanar backbone. Native fascaplysin exhibits a broad spectrum of bioactivities, among which the cytotoxic activity has been the most investigated. Several fascaplysin derivatives have more selective biological effects and are promising as lead compounds. Thus, the introduction of a substituent at C-9 of fascaplysin leads to a strong increase in its antimicrobial properties. Here, a comparative assessment of the antimicrobial activity of synthetic analogs of the marine alkaloids 3-bromofascaplysin, 10-bromofascaplysin, and 3,10-dibromofascaplysin, along with some of their isomers and analogs, was carried out against a panel of Gram-positive bacteria in vitro. For the first time, a significant increase in the antimicrobial activity of fascaplysin was observed when a substituent was introduced at C-3. The introduction of two bromine atoms at C-2 and C-9 enhances the antimicrobial properties by 4 to 16 times, depending on the tested strain. Evaluation of the antimicrobial potential in vivo showed that fascaplysin and 3,10-dibromofascaplysin had comparable efficacy in the mouse staphylococcal sepsis model. Additionally, 3,10-dibromofascaplysin demonstrated a strong and reliable antitumor effect in vivo on the Ehrlich carcinoma inoculated subcutaneously, with a value of tumor growth inhibition by 49.2% 20 days after treatment. However, further studies on alternative chemical modifications of fascaplysin are needed to improve its chemotherapeutic properties. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents, 4th Edition)
Show Figures

Figure 1

17 pages, 5301 KB  
Article
Combined Dielectric-Optical Characterization of Single Cells Using Dielectrophoresis-Imaging Flow Cytometry
by Behnam Arzhang, Justyna Lee, Emerich Kovacs, Michael Butler, Elham Salimi, Douglas J. Thomson and Greg E. Bridges
Biosensors 2024, 14(12), 577; https://doi.org/10.3390/bios14120577 - 27 Nov 2024
Cited by 4 | Viewed by 2299
Abstract
In this paper, we present a microfluidic flow cytometer for simultaneous imaging and dielectric characterization of individual biological cells within a flow. Utilizing a combination of dielectrophoresis (DEP) and high-speed imaging, this system offers a dual-modality approach to analyze both cell morphology and [...] Read more.
In this paper, we present a microfluidic flow cytometer for simultaneous imaging and dielectric characterization of individual biological cells within a flow. Utilizing a combination of dielectrophoresis (DEP) and high-speed imaging, this system offers a dual-modality approach to analyze both cell morphology and dielectric properties, enhancing the ability to analyze, characterize, and discriminate cells in a heterogeneous population. A high-speed camera is used to capture images of and track multiple cells in real-time as they flow through a microfluidic channel. A wide channel is used, enabling analysis of many cells in parallel. A coplanar electrode array perpendicular to cell flow is incorporated at the bottom of the channel to perform dielectrophoresis-based dielectric characterization. A frequency-dependent voltage applied to the array produces a non-uniform electric field, translating cells to higher or lower velocity depending on their dielectric polarizability. In this paper, we demonstrate how cell size, obtained by optical imaging, and DEP response, obtained by particle tracking, can be used to discriminate viable and non-viable Chinese hamster ovary cells in a heterogeneous cell culture. Multiphysics electrostatic-fluid dynamics simulation is used to develop a relationship between cell incoming velocity, differential velocity, size, and the cell’s polarizability, which can subsequently be used to evaluate its physiological state. Measurement of a mixture of polystyrene microspheres is used to evaluate the accuracy of the cytometer. Full article
(This article belongs to the Special Issue Biosensing Applications for Cell Monitoring)
Show Figures

Figure 1

17 pages, 3301 KB  
Article
Stereo and LiDAR Loosely Coupled SLAM Constrained Ground Detection
by Tian Sun, Lei Cheng, Ting Zhang, Xiaoping Yuan, Yanzheng Zhao and Yong Liu
Sensors 2024, 24(21), 6828; https://doi.org/10.3390/s24216828 - 24 Oct 2024
Cited by 1 | Viewed by 1867
Abstract
In many robotic applications, creating a map is crucial, and 3D maps provide a method for estimating the positions of other objects or obstacles. Most of the previous research processes 3D point clouds through projection-based or voxel-based models, but both approaches have certain [...] Read more.
In many robotic applications, creating a map is crucial, and 3D maps provide a method for estimating the positions of other objects or obstacles. Most of the previous research processes 3D point clouds through projection-based or voxel-based models, but both approaches have certain limitations. This paper proposes a hybrid localization and mapping method using stereo vision and LiDAR. Unlike the traditional single-sensor systems, we construct a pose optimization model by matching ground information between LiDAR maps and visual images. We use stereo vision to extract ground information and fuse it with LiDAR tensor voting data to establish coplanarity constraints. Pose optimization is achieved through a graph-based optimization algorithm and a local window optimization method. The proposed method is evaluated using the KITTI dataset and compared against the ORB-SLAM3, F-LOAM, LOAM, and LeGO-LOAM methods. Additionally, we generate 3D point cloud maps for the corresponding sequences and high-definition point cloud maps of the streets in sequence 00. The experimental results demonstrate significant improvements in trajectory accuracy and robustness, enabling the construction of clear, dense 3D maps. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

14 pages, 1166 KB  
Article
Dosimetric and Clinical Prognostic Factors in Single-Isocenter Linac-Based Stereotactic Radiotherapy for Brain Metastases
by Valeria Faccenda, Riccardo Ray Colciago, Sofia Paola Bianchi, Elena De Ponti, Denis Panizza and Stefano Arcangeli
Cancers 2024, 16(18), 3243; https://doi.org/10.3390/cancers16183243 - 23 Sep 2024
Cited by 1 | Viewed by 1669
Abstract
Background/Objectives: To report on predictive factors in Linac-based SRT for single and multiple BM. Methods: Consecutive patients receiving either one or three fractions of single-isocenter coplanar VMAT SRT were retrospectively included. The GTV-PTV margin was 1–2 mm. The delivered target dose was estimated [...] Read more.
Background/Objectives: To report on predictive factors in Linac-based SRT for single and multiple BM. Methods: Consecutive patients receiving either one or three fractions of single-isocenter coplanar VMAT SRT were retrospectively included. The GTV-PTV margin was 1–2 mm. The delivered target dose was estimated by recalculating the original plans on roto-translated CT according to errors recorded by post-treatment CBCT. The Kaplan–Meier method estimated local progression-free survival (LPFS), intracranial progression-free survival (IPFS), and overall survival (OS). Log-rank and Wilcoxon–Mann–Whitney tests evaluated inter-group differences, whereas Cox regression analysis assessed prognostic factors. Results: Fifty females and fifty males, with a median age of 69 years, received 107 SRTs. A total of 213 BM (range, 1–10 per treatment) with a median volume of 0.22 cc were irradiated with a median minimum BED of 59.5 Gy. The median delivered GTV D95 reduction was −0.3%. The median follow-up was 11 months. Nineteen LP events and a 1-year LC rate of 90.1% were observed. The GTV coverage did not correlate with LC, while the GTV volume was a risk factor for LP, with the 1-year rate dropping to 73% for volumes ≥ 0.88 cc. The median LPFS, IPFS, and OS were 6, 5, and 7 months, respectively. Multivariate analysis showed that patients with melanoma histology and those receiving a second or subsequent systemic therapy line had the worst outcomes, whereas patients with adenocarcinoma histology and mutations showed better results. Conclusions: The accuracy and efficacy of the Linac-based SRT approach for BM were confirmed, but the dose distribution alone failed to predict the treatment response, suggesting that other factors must be considered to maximize SRT outcomes. Full article
(This article belongs to the Special Issue Stereotactic Radiotherapy in Tumor Ablation: Second Edition)
Show Figures

Figure 1

23 pages, 4398 KB  
Review
Advancements in and Research on Coplanar Capacitive Sensing Techniques for Non-Destructive Testing and Evaluation: A State-of-the-Art Review
by Farima Abdollahi-Mamoudan, Clemente Ibarra-Castanedo and Xavier P. V. Maldague
Sensors 2024, 24(15), 4984; https://doi.org/10.3390/s24154984 - 1 Aug 2024
Cited by 3 | Viewed by 3490
Abstract
In contrast to conventional non-destructive testing (NDT) and non-destructive evaluation (NDE) methodologies, including radiography, ultrasound, and eddy current analysis, coplanar capacitive sensing technique emerges as a novel and promising avenue within the field. This paper endeavors to elucidate the efficacy of coplanar capacitive [...] Read more.
In contrast to conventional non-destructive testing (NDT) and non-destructive evaluation (NDE) methodologies, including radiography, ultrasound, and eddy current analysis, coplanar capacitive sensing technique emerges as a novel and promising avenue within the field. This paper endeavors to elucidate the efficacy of coplanar capacitive sensing, also referred to as capacitive imaging (CI), within the realm of NDT. Leveraging extant scholarly discourse, this review offers a comprehensive and methodical examination of the coplanar capacitive technique, encompassing its fundamental principles, factors influencing sensor efficacy, and diverse applications for defect identification across various NDT domains. Furthermore, this review deliberates on extant challenges and anticipates future trajectories for the technique. The manifold advantages inherent to coplanar capacitive sensing vis-à-vis traditional NDT methodologies not only afford its versatility in application but also underscore its potential for pioneering advancements in forthcoming applications. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

12 pages, 3906 KB  
Article
Analysis of Local Properties and Performance of Bilayer Epitaxial Graphene Field Effect Transistors on SiC
by Dalal Fadil, Wlodek Strupinski, Emiliano Pallecchi and Henri Happy
Materials 2024, 17(14), 3553; https://doi.org/10.3390/ma17143553 - 18 Jul 2024
Cited by 1 | Viewed by 1338
Abstract
Epitaxial bilayer graphene, grown by chemical vapor deposition on SiC substrates without silicon sublimation, is crucial material for graphene field effect transistors (GFETs). Rigorous characterization methods, such as atomic force microscopy and Raman spectroscopy, confirm the exceptional quality of this graphene. Post-nanofabrication, extensive [...] Read more.
Epitaxial bilayer graphene, grown by chemical vapor deposition on SiC substrates without silicon sublimation, is crucial material for graphene field effect transistors (GFETs). Rigorous characterization methods, such as atomic force microscopy and Raman spectroscopy, confirm the exceptional quality of this graphene. Post-nanofabrication, extensive evaluation of DC and high-frequency properties enable the extraction of critical parameters such as the current gain (fmax) and cut-off frequency (ft) of hundred transistors. The Raman spectra analysis provides insights into material property, which correlate with Hall mobilities, carrier densities, contact resistance and sheet resistance and highlights graphene’s intrinsic properties. The GFETs’ performance displays dispersion, as confirmed through the characterization of multiple transistors. Since the Raman analysis shows relatively homogeneous surface, the variation in Hall mobility, carrier densities and contact resistance cross the wafer suggest that the dispersion of GFET transistor’s performance could be related to the process of fabrication. Such insights are especially critical in integrated circuits, where consistent transistor performance is vital due to the presence of circuit elements like inductance, capacitance and coplanar waveguides often distributed across the same wafer. Full article
(This article belongs to the Special Issue Silicon Carbide: Material Growth, Device Processing and Applications)
Show Figures

Figure 1

16 pages, 8342 KB  
Article
A Wideband High Gain Differential Patch Antenna Featuring In-Phase Radiating Apertures
by Honglin Zhang and Jianhao Ye
Sensors 2024, 24(14), 4641; https://doi.org/10.3390/s24144641 - 17 Jul 2024
Viewed by 2101
Abstract
Communication systems need antennas with wide bandwidths to provide large throughput, while imaging radars benefit from high gain for increased range and wide bandwidths for high-resolution imaging. This paper presents the design and evaluation of a wideband, high-gain antenna that achieves an average [...] Read more.
Communication systems need antennas with wide bandwidths to provide large throughput, while imaging radars benefit from high gain for increased range and wide bandwidths for high-resolution imaging. This paper presents the design and evaluation of a wideband, high-gain antenna that achieves an average gain of 9.7 dBi over a bandwidth of 1.49 GHz to 3.92 GHz by using multiple in-phase radiating apertures. The antenna has a unique structure with a central rectangular short-circuited patch sandwiched between two back-to-back U-shaped radiating patches and two flanking H-shaped short-circuited patches. Each of the U-shaped patches employs a coplanar waveguide as feeding to achieve ultra-wideband impedance matching. Benefiting from design arrangement, in-phase electrical field distributions appear at the gaps between the patches that result in equivalent radiating magnetic currents in the same direction. Theory analysis shows that the close-spaced, same-direction magnetic currents created by the radiating apertures intensify the radiation and increase antenna gain within its impedance bandwidth. Simulated data show that the use of the coplanar waveguide feeding and short-circuited patches increase the bandwidth from 65 MHz to 2.43 GHz. Moreover, the short-circuited patches increase the gain by 3.45 dB at 2.4 GHz. Simulation and measurement results validate the design and show that the antenna features a maximum gain of 11.3 dBi and an average gain of 9.7 dBi in a fractional bandwidth of 89.8%. Because of the high gain values and the wide bandwidth, the antenna is particularly suited for long-range communication systems and high-resolution radar applications. Full article
(This article belongs to the Special Issue Recent Trends and Developments in Antennas: Second Edition)
Show Figures

Figure 1

Back to TopTop