Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (516)

Search Parameters:
Keywords = coordinate measuring techniques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1125 KiB  
Article
Gait Kinematics of Individuals with SYNGAP1-Related Disorder Compared with Age-Matched Neurotypical Individuals
by Charles S. Layne, Dacia Martinez Diaz, Christopher A. Malaya, Bernhard Suter and Jimmy Lloyd Holder
Appl. Sci. 2025, 15(15), 8267; https://doi.org/10.3390/app15158267 - 25 Jul 2025
Abstract
SYNGAP1-related disorder is a rare neurodevelopmental disorder characterized by intellectual and motor disabilities, including disordered gait control. Currently, there have been few studies that have assessed the gait of individuals with SYNGAP1-related disorder using technology-based collection techniques. The purpose of this [...] Read more.
SYNGAP1-related disorder is a rare neurodevelopmental disorder characterized by intellectual and motor disabilities, including disordered gait control. Currently, there have been few studies that have assessed the gait of individuals with SYNGAP1-related disorder using technology-based collection techniques. The purpose of this investigation was to characterize the kinematic gait pattern of these individuals using camera-based motion capture technology during treadmill walking. Both linear and non-linear analysis techniques were used to analyze bilateral lower-limb joint motion and compare the results to age-matched neurotypical individuals. Results indicate that joint range of motion and velocity were decreased in the patient population relative to the neurotypical participants with the non-linear measures of angle–angle and phase portrait areas reflecting similar outcomes. The combination of linear and non-linear measures provide complementary information that, when used in combination, can provide deeper insights into the coordination and control of gait than if either of the measurement techniques are used in isolation. Such information can be useful to clinicians and therapists to develop targeted interventions designed to improve the gait of individuals with SYNGAP1-related disorder. Full article
(This article belongs to the Special Issue Motor Control and Movement Biomechanics)
Show Figures

Figure 1

13 pages, 2793 KiB  
Article
Upconversion and Color Tunability in Er3+–Tm3+–Yb3+ Tri-Doped Fluorophosphate Glasses
by Fernando Rivera-López, Palamandala Babu, Vemula Venkatramu and Víctor Lavín
Photonics 2025, 12(8), 745; https://doi.org/10.3390/photonics12080745 - 24 Jul 2025
Abstract
A series of Er3+–Tm3+–Yb3+ tri-doped fluorophosphate glasses with different molar compositions were synthesized using the conventional melt-quenching technique, and their optical properties were measured and analyzed. Under laser excitation at 980 nm, blue, green and red upconverted emissions [...] Read more.
A series of Er3+–Tm3+–Yb3+ tri-doped fluorophosphate glasses with different molar compositions were synthesized using the conventional melt-quenching technique, and their optical properties were measured and analyzed. Under laser excitation at 980 nm, blue, green and red upconverted emissions were observed at around 475, 545 and 660 nm, respectively. Based on the results and the energy level diagrams, energy transfer processes were proposed to explain the population mechanisms of the emitting levels. A final characterization was developed within the framework of the CIE 1931 chromaticity coordinate diagram. Varying the doping concentrations of the optically active rare-earth ions, as well as the laser pumping power, enabled modulation of the three primary colors, resulting in blue, green and relatively close to white light emissions. This tunability of the upconverted emissions highlights the potential of these fluorophosphate glasses as tunable optical devices, laser systems and visual show effects. Full article
Show Figures

Figure 1

18 pages, 774 KiB  
Article
Bayesian Inertia Estimation via Parallel MCMC Hammer in Power Systems
by Weidong Zhong, Chun Li, Minghua Chu, Yuanhong Che, Shuyang Zhou, Zhi Wu and Kai Liu
Energies 2025, 18(15), 3905; https://doi.org/10.3390/en18153905 - 22 Jul 2025
Viewed by 81
Abstract
The stability of modern power systems has become critically dependent on precise inertia estimation of synchronous generators, particularly as renewable energy integration fundamentally transforms grid dynamics. Increasing penetration of converter-interfaced renewable resources reduces system inertia, heightening the grid’s susceptibility to transient disturbances and [...] Read more.
The stability of modern power systems has become critically dependent on precise inertia estimation of synchronous generators, particularly as renewable energy integration fundamentally transforms grid dynamics. Increasing penetration of converter-interfaced renewable resources reduces system inertia, heightening the grid’s susceptibility to transient disturbances and creating significant technical challenges in maintaining operational reliability. This paper addresses these challenges through a novel Bayesian inference framework that synergistically integrates PMU data with an advanced MCMC sampling technique, specifically employing the Affine-Invariant Ensemble Sampler. The proposed methodology establishes a probabilistic estimation paradigm that systematically combines prior engineering knowledge with real-time measurements, while the Affine-Invariant Ensemble Sampler mechanism overcomes high-dimensional computational barriers through its unique ensemble-based exploration strategy featuring stretch moves and parallel walker coordination. The framework’s ability to provide full posterior distributions of inertia parameters, rather than single-point estimates, helps for stability assessment in renewable-dominated grids. Simulation results on the IEEE 39-bus and 68-bus benchmark systems validate the effectiveness and scalability of the proposed method, with inertia estimation errors consistently maintained below 1% across all generators. Moreover, the parallelized implementation of the algorithm significantly outperforms the conventional M-H method in computational efficiency. Specifically, the proposed approach reduces execution time by approximately 52% in the 39-bus system and by 57% in the 68-bus system, demonstrating its suitability for real-time and large-scale power system applications. Full article
Show Figures

Figure 1

34 pages, 3579 KiB  
Review
A Comprehensive Review of Mathematical Error Characterization and Mitigation Strategies in Terrestrial Laser Scanning
by Mansoor Sabzali and Lloyd Pilgrim
Remote Sens. 2025, 17(14), 2528; https://doi.org/10.3390/rs17142528 - 20 Jul 2025
Viewed by 284
Abstract
In recent years, there has been an increasing transition from 1D point-based to 3D point-cloud-based data acquisition for monitoring applications and deformation analysis tasks. Previously, many studies relied on point-to-point measurements using total stations to assess structural deformation. However, the introduction of terrestrial [...] Read more.
In recent years, there has been an increasing transition from 1D point-based to 3D point-cloud-based data acquisition for monitoring applications and deformation analysis tasks. Previously, many studies relied on point-to-point measurements using total stations to assess structural deformation. However, the introduction of terrestrial laser scanning (TLS) has commenced a new era in data capture with a high level of efficiency and flexibility for data collection and post processing. Thus, a robust understanding of both data acquisition and processing techniques is required to guarantee high-quality deliverables to geometrically separate the measurement uncertainty and movements. TLS is highly demanding in capturing detailed 3D point coordinates of a scene within either short- or long-range scanning. Although various studies have examined scanner misalignments under controlled conditions within the short range of observation (scanner calibration), there remains a knowledge gap in understanding and characterizing errors related to long-range scanning (scanning calibration). Furthermore, limited information on manufacturer-oriented calibration tests highlights the motivation for designing a user-oriented calibration test. This research focused on investigating four primary sources of error in the generic error model of TLS. These were categorized into four geometries: instrumental imperfections related to the scanner itself, atmospheric effects that impact the laser beam, scanning geometry concerning the setup and varying incidence angles during scanning, and object and surface characteristics affecting the overall data accuracy. This study presents previous findings of TLS calibration relevant to the four error sources and mitigation strategies and identified current challenges that can be implemented as potential research directions. Full article
Show Figures

Figure 1

18 pages, 2680 KiB  
Article
Spatio-Temporal Evolution, Factors, and Enhancement Paths of Ecological Civilization Construction Effectiveness: Empirical Evidence Based on 48 Cities in the Yellow River Basin of China
by Haifa Jia, Pengyu Liang, Xiang Chen, Jianxun Zhang, Wanmei Zhao and Shaowen Ma
Land 2025, 14(7), 1499; https://doi.org/10.3390/land14071499 - 19 Jul 2025
Viewed by 238
Abstract
Climate change, resource scarcity, and ecological degradation have become critical bottlenecks constraining socio-economic development. Basin cities serve as key nodes in China’s ecological security pattern, playing indispensable roles in ecological civilization construction. This study established an evaluation index system spanning five dimensions to [...] Read more.
Climate change, resource scarcity, and ecological degradation have become critical bottlenecks constraining socio-economic development. Basin cities serve as key nodes in China’s ecological security pattern, playing indispensable roles in ecological civilization construction. This study established an evaluation index system spanning five dimensions to assess the effectiveness of ecological civilization construction. This study employs the entropy-weighted Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Back-Propagation (BP) neural network methods to evaluate the level of ecological civilization construction in the Yellow River Basin from 2010 to 2022, to analyze its indicator weights, and to explore the spatio-temporal evolution characteristics of each city. The results demonstrate the following: (1) Although the ecological civilization construction level of cities in the Yellow River Basin shows a steady improvement, significant regional development disparities persist. (2) The upper reaches are primarily constrained by ecological fragility and economic underdevelopment. The middle reaches exhibit significant internal divergence, with provincial capitals leading yet demonstrating limited spillover effects on neighboring areas. The lower reaches face intense anthropogenic pressures, necessitating greater economic–ecological coordination. (3) Among the dimensions considered, Territorial Space and Eco-environmental Protection emerged as the two most influential dimensions contributing to performance differences. According to the ecological civilization construction performance and changing characteristics of the 48 cities, this study proposes differentiated optimization measures and coordinated development pathways to advance the implementation of the national strategy for ecological protection and high-quality development in the Yellow River Basin. Full article
Show Figures

Figure 1

28 pages, 12051 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Population Aging in the Triangle of Central China at Multiple Scales
by Jingyuan Sun, Jinchuan Huang, Xiujuan Jiang, Xinlan Song and Nan Zhang
Sustainability 2025, 17(14), 6549; https://doi.org/10.3390/su17146549 - 17 Jul 2025
Viewed by 184
Abstract
This study focuses on the Triangle of Central China and investigates the spatiotemporal evolution, driving factors, and impacts of population aging on regional sustainable development from 2000 to 2020. The study adopts an innovative two-scale analytical framework at the prefecture and district/county level, [...] Read more.
This study focuses on the Triangle of Central China and investigates the spatiotemporal evolution, driving factors, and impacts of population aging on regional sustainable development from 2000 to 2020. The study adopts an innovative two-scale analytical framework at the prefecture and district/county level, integrating spatial autocorrelation analysis, the Geodetector model, and geographically weighted regression. The results show a significant acceleration in population aging across the study area, accompanied by pronounced spatial clustering, particularly in western Hubei and the Wuhan metropolitan area. Over time, the spatial distribution has evolved from a relatively dispersed pattern to one of high concentration. Key drivers of the spatial heterogeneity of aging include economic disparities, demographic transitions, and the uneven spatial allocation of public services such as healthcare and education. These aging patterns profoundly affect the region’s potential for sustainable development. Accordingly, the study proposes a multi-scale collaborative governance strategy: At the prefecture level, efforts should focus on promoting the coordinated development of the silver economy and optimizing the spatial redistribution of healthcare resources; At the district and county level, priorities should include strengthening infrastructure, curbing the outflow of young labor, and improving access to basic public services. By integrating spatial analysis techniques with sustainable development policy recommendations, this study provides a basis for scientifically measuring, understanding, and managing demographic transitions. This is essential for achieving long-term socioeconomic sustainability in rapidly aging regions. Full article
Show Figures

Figure 1

27 pages, 3217 KiB  
Article
Identification of Writing Strategies in Educational Assessments with an Unsupervised Learning Measurement Framework
by Cheng Tang, Jiawei Xiong and George Engelhard
Educ. Sci. 2025, 15(7), 912; https://doi.org/10.3390/educsci15070912 - 17 Jul 2025
Viewed by 260
Abstract
This study proposes a framework that leverages natural language processing and unsupervised machine learning techniques to measure, identify, and classify examinees’ writing strategies. The framework integrates three categories of writing strategies (text complexity, evidence use, and argument structure) to identify the characteristics of [...] Read more.
This study proposes a framework that leverages natural language processing and unsupervised machine learning techniques to measure, identify, and classify examinees’ writing strategies. The framework integrates three categories of writing strategies (text complexity, evidence use, and argument structure) to identify the characteristics of examinees’ writing. Additionally, a measurement model is used to calibrate examinees’ writing proficiency. An empirical example is presented to demonstrate the performance of the framework. The data comprise 430 Grade 8 examinees’ responses to English Language Arts (ELA) assessments in the United States. Using K-means clustering, distinct patterns were identified in each category. The one-parameter logistic measurement model was applied to estimate examinees’ writing proficiency. Analyses revealed significant effects of text complexity and evidence use on writing proficiency, while argument structure was not significant. This study has implications for writing instruction and assessment design that highlight the point that effective writing is not simply a matter of isolated skill acquisition, but rather the coordinated implementation of complementary strategies, a finding that supports cognitive developmental theories of writing. Full article
(This article belongs to the Section Education and Psychology)
Show Figures

Figure 1

21 pages, 5918 KiB  
Article
Development of a Real-Time Online Automatic Measurement System for Propeller Manufacturing Quality Control
by Yuan-Ming Cheng and Kuan-Yu Hsu
Appl. Sci. 2025, 15(14), 7750; https://doi.org/10.3390/app15147750 - 10 Jul 2025
Viewed by 187
Abstract
The quality of machined marine propellers plays a critical role in underwater propulsion performance. Precision casting is the predominant manufacturing technique; however, deformation of wax models and rough blanks during manufacturing frequently cause deviations in the dimensions of final products and, thus, affect [...] Read more.
The quality of machined marine propellers plays a critical role in underwater propulsion performance. Precision casting is the predominant manufacturing technique; however, deformation of wax models and rough blanks during manufacturing frequently cause deviations in the dimensions of final products and, thus, affect propellers’ performance and service life. Current inspection methods primarily involve using coordinate measuring machines and sampling. This approach is time-consuming, has high labor costs, and cannot monitor manufacturing quality in real-time. This study developed a real-time online automated measurement system containing a high-resolution CITIZEN displacement sensor, a four-degree-of-freedom measurement platform, and programmable logic controller-based motion control technology to enable rapid, automated measurement of blade deformation across the wax model, rough blank, and final product processing stages. The measurement data are transmitted in real time to a cloud database. Tests conducted on a standardized platform and real propeller blades confirmed that the system consistently achieved measurement accuracy to the second decimal place under the continual measurement mode. The system also demonstrated excellent repeatability and stability. Furthermore, the continuous measurement mode outperformed the single-point measurement mode. Overall, the developed system effectively reduces labor requirements, shortens measurement times, and enables real-time monitoring of process variation. These capabilities underscore its strong potential for application in the smart manufacturing and quality control of marine propellers. Full article
Show Figures

Figure 1

27 pages, 3868 KiB  
Article
Spatiotemporal Evolution and Driving Factors of Coupling Coordination Degree Between New Urbanization and Urban Resilience: A Case of Huaihai Economic Zone
by Heng Zhang, Shuang Li and Jiang Chang
ISPRS Int. J. Geo-Inf. 2025, 14(7), 271; https://doi.org/10.3390/ijgi14070271 - 9 Jul 2025
Viewed by 408
Abstract
Rapid urbanization and climate extremes expose cities to multi-dimensional risks, necessitating the coordinated development of new urbanization and urban resilience for achieving urban sustainability. While existing studies focus on core economic zones like the Yangtze River Delta, secondary economic cooperation regions remain understudied. [...] Read more.
Rapid urbanization and climate extremes expose cities to multi-dimensional risks, necessitating the coordinated development of new urbanization and urban resilience for achieving urban sustainability. While existing studies focus on core economic zones like the Yangtze River Delta, secondary economic cooperation regions remain understudied. This study examined the Huaihai Economic Zone (HEZ)—a quadri-provincial border area—by constructing the evaluation systems for new urbanization and urban resilience. The development indices of the two systems were measured using the entropy weight-CRITIC method. The spatiotemporal evolution characteristics of their coupling coordination degree (CCD) were analyzed through a CCD model, while key driving factors influencing the CCD were investigated using a grey relational analysis model. The results indicated that both the new urbanization construction and urban resilience development indices in the HEZ exhibited a steady upward trend during the study period, with the urban resilience development index surpassing the new urbanization construction index. The new urbanization index increased from 0.3026 (2013) to 0.4702 (2023), and the urban resilience index increased from 0.3520 (2013) to 0.6366 (2023). The CCD between new urbanization and urban resilience reached 0.7368 by 2023, with 80% of cities in the HEZ achieving good coordination types. The variation of the CCD among cities was minimal, revealing a spatially clustered coordinated development pattern. In terms of driving factors, economic development level, public service capacity, and municipal resilience level were identified as core drivers for enhancing coupling coordination. Infrastructure construction, digital capabilities, and spatial intensification served as important supports, while ecological governance capacity remained a weakness. This study establishes a transferable framework for the coordinated development of secondary economic cooperation region, though future research should integrate diverse data sources and expand indicator coverage for higher precision. Moreover, the use of linear models to analyze the key driving factors of the CCD has limitations. The incorporation of non-linear techniques can better elucidate the complex interactions among factors. Full article
Show Figures

Figure 1

22 pages, 3432 KiB  
Article
Tracking Accuracy Evaluation of Autonomous Agricultural Tractors via Rear Three-Point Hitch Estimation Using a Hybrid Model of EKF Transformer
by Eun-Kuk Kim, Tae-Ho Han, Jun-Ho Lee, Cheol-Woo Han and Ryu-Gap Lim
Agriculture 2025, 15(14), 1475; https://doi.org/10.3390/agriculture15141475 - 9 Jul 2025
Viewed by 284
Abstract
The objective of this study was to improve measurement accuracy in the evaluation of autonomous agricultural tractor performance by addressing external disturbances, such as sensor installation errors, vibrations, and heading-induced bias that occur during the measurement of the conventional rear three-point hitch (Rear [...] Read more.
The objective of this study was to improve measurement accuracy in the evaluation of autonomous agricultural tractor performance by addressing external disturbances, such as sensor installation errors, vibrations, and heading-induced bias that occur during the measurement of the conventional rear three-point hitch (Rear 3-Point) system. To mitigate these disturbances, the measurement point was relocated to the cab, where external interference is comparatively minimal. However, in compliance with the ISO 12188 standard, the Rear 3-Point system must be used as the reference measurement point. Therefore, its coordinates were indirectly estimated using an extended Kalman filter (EKF) and artificial intelligence (AI)-based techniques. A hybrid model was developed in which a transformer-based AI model was trained using the Rear 3-Point coordinates predicted by EKF as the ground truth. While traditional time-series models, such as LSTM and GRU, show limitations in predicting nonlinear data, the application of an attention mechanism was found to enhance prediction performance by effectively learning temporal dependencies and vibration patterns. The experimental results show that the EKF-based estimation achieved a precision of RMSE 1.6 mm, a maximum error of 12.6 mm, and a maximum standard deviation of 3.9 mm compared to actual measurements. From the perspective of experimental design, the proposed hybrid model was able to predict the trajectory of the autonomous agricultural tractor with significantly reduced external disturbances when compared to the actual measured Rear 3-Point coordinates, while also complying with the ISO 12188 standard. These findings suggest that the proposed approach provides an effective and integrated solution for developing high-precision autonomous agricultural systems. Full article
(This article belongs to the Special Issue Soil-Machine Systems and Its Related Digital Technologies Application)
Show Figures

Figure 1

26 pages, 4845 KiB  
Article
Modeling and Testing of a Phasor Measurement Unit Under Normal and Abnormal Conditions Using Real-Time Simulator
by Obed Muhayimana, Petr Toman, Ali Aljazaeri, Jean Claude Uwamahoro, Abir Lahmer, Mohamed Laamim and Abdelilah Rochd
Energies 2025, 18(14), 3624; https://doi.org/10.3390/en18143624 - 9 Jul 2025
Viewed by 266
Abstract
Abnormal operations, such as faults occurring in an electrical power system (EPS), disrupt its balanced operation, posing potential hazards to human lives and the system’s equipment. Effective monitoring, control, protection, and coordination are essential to mitigate these risks. The complexity of these processes [...] Read more.
Abnormal operations, such as faults occurring in an electrical power system (EPS), disrupt its balanced operation, posing potential hazards to human lives and the system’s equipment. Effective monitoring, control, protection, and coordination are essential to mitigate these risks. The complexity of these processes is further compounded by the presence of intermittent distributed energy resources (DERs) in active distribution networks (ADNs) with bidirectional power flow, which introduces a fast-changing dynamic aspect to the system. The deployment of phasor measurement units (PMUs) within the EPS as highly responsive equipment can play a pivotal role in addressing these challenges, enhancing the system’s resilience and reliability. However, synchrophasor measurement-based studies and analyses of power system phenomena may be hindered by the absence of PMU blocks in certain simulation tools, such as PSCAD, or by the existing PMU block in Matlab/Simulink R2021b, which exhibit technical limitations. These limitations include providing only the positive sequence component of the measurements and lacking information about individual phases, rendering them unsuitable for certain measurements, including unbalanced and non-symmetrical fault operations. This study proposes a new reliable PMU model in Matlab and tests it under normal and abnormal conditions, applying real-time simulation and controller-hardware-in-the-loop (CHIL) techniques. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

30 pages, 364 KiB  
Article
Optimizing Tax Compliance: Understanding the Link Between Company Tax Administration and Tax Avoidance (A Survey of Public Companies in Indonesia, Malaysia, Singapore, and Thailand for the 2022–2023 Period)
by Arie Pratama and Kamaruzzaman Muhammad
Economies 2025, 13(7), 194; https://doi.org/10.3390/economies13070194 - 6 Jul 2025
Viewed by 539
Abstract
Tax compliance remains a critical issue in corporate taxation research, particularly in understanding the causal link between the administration of corporate tax and tax avoidance. This study investigates the potential simultaneous relationship between the two by analyzing 277 listed firms across four Southeast [...] Read more.
Tax compliance remains a critical issue in corporate taxation research, particularly in understanding the causal link between the administration of corporate tax and tax avoidance. This study investigates the potential simultaneous relationship between the two by analyzing 277 listed firms across four Southeast Asian countries using two-year average data (2022–2023). The administration of corporate tax is measured using eight disclosure-based indicators from the Refinitiv Eikon database, while tax avoidance is proxied by the effective tax rate (ETR). The primary analysis applies multiple regression to assess the effect of tax administration on tax avoidance and logistic regression to evaluate the reverse relationship. To address endogeneity and test for simultaneity, robustness checks using two-stage least squares (2SLS) and instrumental variable techniques are employed. The results confirm a bidirectional relationship: a stronger administration of corporate tax is associated with lower tax avoidance, while tax avoidance behavior also shapes tax administration practices. These findings underscore the importance of strengthening internal tax governance as a foundation for compliance. Given varying levels of tax administration across countries, this study calls for greater international coordination to standardize corporate tax governance practices and reduce avoidance incentives. Full article
25 pages, 5893 KiB  
Article
Design and Validation of a Fixture Device for Machining Surfaces with Barrel End-Mill on a 3-Axis CNC Milling Machine
by Sandor Ravai-Nagy, Alina Bianca Pop and Aurel Mihail Titu
Appl. Sci. 2025, 15(13), 7379; https://doi.org/10.3390/app15137379 - 30 Jun 2025
Viewed by 251
Abstract
This paper presents the design and validation of a novel specialized fixture device for machining inclined planes with barrel cutters on 3-axis CNC machine tools. Barrel milling, also known as Parabolic Performance Cutting (PPC), is extensively used on 5-axis machines to enhance the [...] Read more.
This paper presents the design and validation of a novel specialized fixture device for machining inclined planes with barrel cutters on 3-axis CNC machine tools. Barrel milling, also known as Parabolic Performance Cutting (PPC), is extensively used on 5-axis machines to enhance the efficiency of machining complex surfaces. While significant research has focused on optimizing barrel milling for aspects such as surface roughness and cutting forces, implementing this technique on 3-axis machines poses a challenge due to limitations in tool orientation. To overcome this, an innovative adaptable device was designed, enabling precise workpiece orientation relative to the barrel cutter. To overcome this limitation, an adaptable device was designed that enables precise workpiece orientation relative to the barrel cutter. The device utilizes interchangeable locating elements for different cutter programming angles (such as 18°, 20°, and 42.5°), thereby ensuring correct workpiece positioning. Rigid workpiece clamping is provided by the device’s mechanism to maintain precise workpiece positioning during machining, and probing surfaces are integrated into the device to facilitate the definition of the coordinate system necessary for CNC machine programming. Device control was performed using a Hexagon RA-7312 3D measuring arm. Inspection results indicated minimal dimensional deviations (e.g., surface flatness between 0.002 mm and 0.012 mm) and high angular accuracy (e.g., angular non-closure of 0.006°). The designed device enables the effective and precise use of barrel cutters on 3-axis CNC machines, offering a previously unavailable practical and economical solution for cutting tool tests and cutting regime studies. Full article
Show Figures

Figure 1

30 pages, 2734 KiB  
Article
Development of an Intelligent Method for Target Tracking in Radar Systems at the Initial Stage of Operation Under Intentional Jamming Conditions
by Serhii Semenov, Olga Wasiuta, Alla Jammine, Justyna Golec, Magdalena Krupska-Klimczak, Yevhen Tarasenko, Vitalii Voronets, Vitalii Breslavets, Serhii Lvov and Artem Moskalenko
Appl. Sci. 2025, 15(13), 7072; https://doi.org/10.3390/app15137072 - 23 Jun 2025
Viewed by 342
Abstract
The object of this research is the process of tracking air targets at the initial stage of radar system operation. The problem lies in the lack of a comprehensive approach to tracking air targets in difficult conditions that is able to dynamically adapt [...] Read more.
The object of this research is the process of tracking air targets at the initial stage of radar system operation. The problem lies in the lack of a comprehensive approach to tracking air targets in difficult conditions that is able to dynamically adapt filtering parameters, predict signal reliability, and change the processing mode depending on the level of interference. In conditions of signal loss, noise, and unstable measurement reliability, traditional methods do not provide stable and accurate tracking, especially at the initial stages of radar operation. To address this issue, an intelligent method is proposed that integrates a probabilistic graphical evaluation and review technique (GERT) model, a recursive Kalman filter, and a measurement reliability prediction module based on a long short-term memory (LSTM) neural network. The proposed approach allows for the real-time adaptation of filtering parameters, fusion of local and global trajectory estimates, and dynamic switching between tracking modes depending on the environmental conditions. The dynamic weighting algorithm between model estimates ensures a balance between accuracy and robustness. Simulation experiments confirmed the effectiveness of the method: the root mean square error (RMSE) of coordinate estimation was reduced by 25%; the probability of tracking loss decreased by half (from 0.2 to 0.1); and the accuracy of loss prediction exceeded 85%. The novelty of the approach lies in integrating stochastic modeling, machine learning, and classical filtering into a unified adaptive loop. The proposed system can be adapted to various types of radar and easily scaled to multi-sensor architectures. This makes it suitable for practical implementation in both defense and civilian air object detection systems operating under complex conditions. Full article
Show Figures

Figure 1

19 pages, 5063 KiB  
Article
Ab Initio Elucidation of the Nature of the Bonding of Tetrahedral Nitrides (BN, AlN, GaN, and InN), Hexagonal BN, and Graphene
by Pawel Strak, Konrad Sakowski, Pawel Kempisty, Izabella Grzegory, Agata Kaminska and Stanislaw Krukowski
Materials 2025, 18(12), 2875; https://doi.org/10.3390/ma18122875 - 18 Jun 2025
Viewed by 303
Abstract
Recent measurements of the band properties of AlN and GaN by fluorescence yield absorption and soft X-ray emission spectroscopies revealed that their valence band (VB) is composed of two separate subbands. The upper VB subband of GaN is composed of gallium sp and [...] Read more.
Recent measurements of the band properties of AlN and GaN by fluorescence yield absorption and soft X-ray emission spectroscopies revealed that their valence band (VB) is composed of two separate subbands. The upper VB subband of GaN is composed of gallium sp and nitrogen p orbitals; the lower subband consists of metal d and nitrogen s orbitals. These findings were confirmed by extensive ab initio simulations. These results are not consistent with the standard tetrahedrally coordinated semiconductors, which are bonded by sp3-hybridized orbitals of metal and nonmetal atoms. The new analysis techniques and ab initio simulations create a new picture, allowing the calculation of overlap integrals to determine the bond order in these crystals. According to these results, bonding occurs between resonant p-states of nitrogen and sp3-hybridized metal orbitals in tetrahedral nitrides, allowing tetrahedral symmetry to be maintained. A similar resonant bonding mechanism is observed in hexagonal BN, where the p orbitals of nitrogen create three resonant states necessary for maintaining the planar symmetry of the lattice. In addition, nonresonant π-type bonds in BN are created by the overlap of pz orbitals of boron and nitrogen. BN bonding differs from that in graphene, where carbon states are fully sp2-hybridized. Additionally, π-type bonds in graphene have no ionic contributions, which leads to the formation of Dirac states with linear dispersion close to the K point, closing the band gap. Full article
(This article belongs to the Special Issue Ab Initio Modeling of 2D Semiconductors and Semimetals)
Show Figures

Figure 1

Back to TopTop