Gait Kinematics of Individuals with SYNGAP1-Related Disorder Compared with Age-Matched Neurotypical Individuals
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Data Processing
2.4. Linear Measures
2.5. Non-Linear Measures
3. Results
3.1. Linear Measures
3.2. Non-Linear Measures
4. Discussion
Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SynGAP Research Fund. SYNGAP1 CENSUS 2024 Update. Retrieved from SYNGAP1 CENSUS 2024 Update: +43 in Q3 2024; Total = 1497—Syngap Research Fund. 2024. Available online: https://curesyngap1.org/blog/syngap1-census-2024-update-43-in-q3-2024-total-1497/ (accessed on 19 May 2025).
- Weldon, M.; Kilinc, M.; Lloyd Holder, J.; Rumbaugh, G. The first international conference on SYNGAP1-related brain disorders: A stakeholder meeting of families, researchers, clinicians, and regulators. J. Neurodev. Disord. 2018, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Johnston, M.V.; Stafstrom, C.E. SYNGAP1 mutations: Clinical, genetic, and pathophysiological features. Int. J. Dev. Neurosci. 2019, 78, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Mignot, C.; von Stülpnagel, C.; Nava, C.; Ville, D.; Sanlaville, D.; Lesca, G.; Rastetter, A.; Gachet, B.; Marie, Y.; Korenke, G.C.; et al. Genetic and neurodevelopmental spectrum of SYNGAP1 -associated intellectual disability and epilepsy. J. Med. Genet. 2016, 53, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.J.; Fryer, A.E.; Shears, D.J.; Lachlan, K.L.; McKee, S.A.; Magee, A.C.; Mohammed, S.; Vasudevan, P.C.; Park, S.-M.; Benoit, V.; et al. De novo, heterozygous, loss-of-function mutations in SYNGAP1 cause a syndromic form of intellectual disability: SYNGAP1 Syndrome. Am. J. Med. Genet. 2015, 167, 2231–2237. [Google Scholar] [CrossRef] [PubMed]
- Holder, J.L.; Hamdan, F.F.; Michaud, J.L. SYNGAP1-Related Intellectual Disability. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2019. [Google Scholar]
- Vlaskamp, D.R.M.; Shaw, B.J.; Burgess, R.; Mei, D.; Montomoli, M.; Xie, H.; Myers, C.T.; Bennett, M.F.; XiangWei, W.; Williams, D.; et al. SYNGAP1 encephalopathy: A distinctive generalized developmental and epileptic encephalopathy. Neurology 2019, 92, e96–e107. [Google Scholar] [CrossRef] [PubMed]
- Araki, Y.; Gerber, E.E.; Rajkovich, K.E.; Hong, I.; Johnson, R.C.; Lee, H.K.; Kirkwood, A.; Huganir, R.L. Mouse models of SYNGAP1-related intellectual disability. Proc. Natl. Acad. Sci. USA 2023, 120, e2308891120. [Google Scholar] [CrossRef] [PubMed]
- Llamosas, N.; Arora, V.; Vij, R.; Kilinc, M.; Bijoch, L.; Rojas, C.; Reich, A.; Sridharan, B.; Willems, E.; Piper, D.R.; et al. SYNGAP1 Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons. J. Neurosci. 2020, 7980–7994. [Google Scholar] [CrossRef] [PubMed]
- John Hopkins University Technology Publisher. Available Technologies; John Hopkins University Technology Publisher: Baltimore, MD, USA, 2024. [Google Scholar]
- Yang, R.; Feng, X.; Arias-Cavieres, A.; Mitchell, R.M.; Polo, A.; Hu, K.; Zhong, R.; Qi, C.; Zhang, R.S.; Westneat, N.; et al. Upregulation of SYNGAP1 expression in mice and human neurons by redirecting alternative splicing. Neuron 2023, 111, 1637–1650.e5. [Google Scholar] [CrossRef] [PubMed]
- Creson, T.K.; Rojas, C.; Hwaun, E.; Vaissiere, T.; Kilinc, M.; Jimenez-Gomez, A.; Holder, J.L., Jr.; Tang, J.; Colgin, L.L.; Miller, C.A.; et al. Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior. eLife 2019, 8, e46752. [Google Scholar] [CrossRef] [PubMed]
- Graglia, J.M.; Harding, A.J.; Helde, K.A. Roadmap to advance therapeutics for SYNGAP1-related disorder: A patient organization perspective from SynGAP Research Fund. Ther. Adv. Rare. Dis. 2025, 6, 26330040241308285. [Google Scholar] [CrossRef] [PubMed]
- Bolbocean, C.; Andújar, F.N.; McCormack, M.; Suter, B.; Holder, J.L., Jr. Health-related quality of life in pediatric patients with syndromic autism and their caregivers. J. Autism Dev. Disord. 2022, 52, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Layne, C.S.; Malaya, C.A.; Young, D.R.; Suter, B.; Holder, J.L., Jr. Comparison of treadmill gait between a pediatric-aged individual with SYNGAP1-related intellectual disability and a fraternal twin. Front. Hum. Neurosci. 2022, 16, 918918. [Google Scholar] [CrossRef] [PubMed]
- Bates, A.V.; McGregor, A.H.; Alexander, C.M. Comparing sagittal plane kinematics and kinetics of gait and stair climbing between hypermobile and non-hypermobile people; a cross-sectional study. BMC Musculoskelet. Disord. 2021, 22, 712. [Google Scholar] [CrossRef] [PubMed]
- van Bloemendaal, M.; Beelen, A.; Kleissen, R.F.M.; Geurts, A.C.; Nollet, F.; Bus, S.A. Concurrent validity and reliability of a low-cost gait analysis system for assessment of spatiotemporal gait parameters. J. Rehabil. Med. 2019, 51, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Siebers, H.; Alrawashdeh, W.; Betsch, M.; Migliorini, F.; Hildebrand, F.; Eschweiler, J. Comparison of different symmetry indices for the quantification of dynamic joint angles. BMC Sports Sci. Med. Rehabil. 2021, 13, 130. [Google Scholar] [CrossRef]
- de Bruin, H.; Russell, D.J.; Latter, J.E.; Sadler, J.T. Angle-angle diagrams in monitoring and quantification of gait patterns for children with cerebral palsy. Am. J. Phys. Med. 1982, 61, 176–192. [Google Scholar] [PubMed]
- Winstein, C.J.; Garfinkel, A. Qualitative dynamics of disordered human locomotion: A preliminary investigation. J. Mot. Behav. 1989, 21, 373–391. [Google Scholar] [CrossRef] [PubMed]
- Hurmuzlu, Y.; Basdogan, C.; Carollo, J.J. Presenting joint kinematics of human locomotion using phase plane portraits and Poincaré maps. J. Biomech. 1994, 27, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, N.; Jensen, J.L.; Bates, B.T.; Scholten, S.D.; Tzetzis, G. A dynamical systems investigation of lower extremity coordination during running over obstacles. Clin. Biomech. 2001, 16, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Layne, C.S.; Diaz, D.; Malaya, C.; Futrell, B.; Alfaro, C.; Gustafson, H.; Suter, B. Using Linear and Non-Linear Techniques to Characterize Gait Coordination Patterns of Two Individuals with NGLY1 Deficiency. CRCM 2024, 13, 391–409. [Google Scholar] [CrossRef]
- Senden, R.; Marcellis, R.; Meijer, K.; Willems, P.; Lenssen, T.; Staal, H.; Janssen, Y.; Groen, V.; Vermeulen, R.J.; Witlox, M. Dataset of 3D gait analysis in typically developing children walking at three different speeds on an instrumented treadmill in virtual reality. Data Br. 2023, 48, 109142. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zou, D.; Jiang, M.; Qian, Q.; Li, H.; Tsai, T.-Y.; Zhang, J. Postoperative hip center position is associated with gait symmetry in range of axial rotation in dysplasia patients after THA. Front. Surg. 2023, 10, 1135327. [Google Scholar] [CrossRef] [PubMed]
- Duhamel, A.; Bourriez, J.L.; Devos, P.; Krystkowiak, P.; Destée, A.; Derambure, P.; Defebvre, L. Statistical tools for clinical gait analysis. Gait Posture 2004, 20, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.J.H.; Caspi, A.; Ambler, A.; Broadbent, J.M.; Cohen, H.J.; d’Arbeloff, T.; Elliott, M.; Hancox, R.J.; Harrington, H.; Hogan, S.; et al. Association of neurocognitive and physical function with gait speed in midlife. JAMA Netw. Open. 2019, 2, e1913123. [Google Scholar] [CrossRef] [PubMed]
- Cuddapah, V.A.; Pillai, R.B.; Shekar, K.V.; Lane, J.B.; Motil, K.J.; Skinner, S.A.; Tarquinio, D.C.; Glaze, D.G.; McGwin, G.; Kaufmann, W.E.; et al. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. J. Med. Genet. 2014, 51, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Servais, L.; Strijbos, P.; Poleur, M.; Mirea, A.; Butoianu, N.; Sansone, V.A.; Vuillerot, C.; Schara-Schmidt, U.; Scoto, M.; Seferian, A.M.; et al. Evidentiary basis of the first regulatory qualification of a digital primary efficacy endpoint. Sci. Rep. 2024, 14, 29681. [Google Scholar] [CrossRef] [PubMed]
- Danner, S.M.; Hofstoetter, U.S.; Freundl, B.; Binder, H.; Mayr, W.; Rattay, F.; Minassian, K. Human spinal locomotor control is based on flexibly organized burst generators. Brain 2015, 138, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Haghpanah, S.A.; Farahmand, F.; Zohoor, H. Modular neuromuscular control of human locomotion by central pattern generator. J. Biomech. 2017, 53, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.; Kenny, A.; Eley, S.; McKechanie, A.G.; Stanfield, A.C. Clinical and behavioural features of SYNGAP1-related intellectual disability: A parent and caregiver description. J. Neurodev. Disord. 2022, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- Dibbern, K.N.; Krzak, M.G.; Olivas, A.; Albert, M.V.; Krzak, J.J.; Kruger, K.M. Scoping Review of Machine Learning Techniques in Marker-Based Clinical Gait Analysis. Bioengineering 2025, 12, 591. [Google Scholar] [CrossRef] [PubMed]
- Trusov, P.M.; Diaz, D.M.; Layne, C.S. Digital Twin-Based Controls in Gait Analysis: A Machine Learning Approach. J. Phys. Med. Rehabil. 2024, 12, 27. Available online: https://www.longdom.org/open-access/digital-twinbased-controls-in-gait-analysis-a-machine-learning-approach-1100550.html (accessed on 19 May 2025).
Participant | Biological Sex | Age | Syngap Genetic Mutation |
---|---|---|---|
1 | M | 9 | c.3718C>T (p.R1240X) |
2 | F | 9 | c.3190C>T (p.Q1064X) |
3 | M | 8 | c.3583-9G>A (IVS16-9G>A) |
4 | F | 12 | c.1677-2A>C (IVS10-2A>C) |
5 | F | 4 | c.659T>C (p.F220S) |
6 | F | 17 | c.3541_3557del (p.K1181Aspfs*3) |
7 | F | 5 | c.3535A>T (p.K1179*) |
8 | F | 5 | c.3535A>T (p.K1179*) |
SRD | NT | p Value | NT CI | |
---|---|---|---|---|
Stride Time | 1.07 (0.19) | 1.06 (0.16) | 0.7680 | 0.93–1.19 |
CV | 17.8 | 15.1 | ||
Peak Velocity | SRD | NT | NT CI | |
Hip | 1.43 (0.23) * | 2.21 (0.24) | 0.0001 | 2.01–2.41 |
CV | 16.1 | 10.9 | ||
Knee | 2.20 (0.31) * | 3.75 (0.21) | 0.0001 | 3.57–3.93 |
CV | 14.1 | 5.6 | ||
Ankle | 1.30 (0.59) | 1.21 (0.30) | 0.6547 | 0.96–1.46 |
CV | 45.4 | 24.8 |
ROM | SRD | NT | p Value | NT CI |
---|---|---|---|---|
Hip | 26.4 (6.3) * | 42.1 (5.0) | 0.0001 | 37.9–46.3 |
CV | 23.8 | 11.9 | ||
Knee | 33.9 (7.7) * | 63.30 (5.7) | 0.0001 | 58.5–68.1 |
CV | 22.3 | 9.0 | ||
Ankle | 18.3 (10.5) | 24.3 (4.7) | 0.3054 | 20.4–28.2 |
CV | 57.4 | 19.3 |
ROM | HIP | Knee | Ankle | |||
---|---|---|---|---|---|---|
SI | −20.2 (14.1) | −10.0 (8.8) | −43.3 (48.9) | −12.1 (7.9) | −138.8 (77.1) | −27.2 (18.8) |
CI | −17.5–−2.8 | −18.6–−5.7 | −42.8–−11.7 | |||
Velocity (deg/s) | ||||||
SI | −21.6 (11.7) | 12.0 (7.8) | −39.0 (42.0) | −8.8 (7.5) | −117.5 (94.8) | −26.7 (28.2) |
CI | −18.4–−5.5 | −14.8–−2.7 | −50.3–−3.1 |
L Hip | L Knee | L Ankle | R Hip | R Knee | R Ankle | |
---|---|---|---|---|---|---|
Pearson r values | 0.96 | 0.98 | 0.92 | 0.91 | 0.98 | 0.88 |
Percentage | 92% | 84% | 83% | 94% | 91% | 80% |
SRD Hip vs. Knee | NT Hip vs. Knee | p Value | SRD Knee vs. Ankle | NT Knee vs. Ankle | p Value | ||
---|---|---|---|---|---|---|---|
Angle–angle areas (mm2) | Mean SD | 582 * 222 | 1689 316 | 0.0001 | 214 * 110 | 426 85 | 0.0001 |
SRD Hip | NT Hip | p Value | ||
---|---|---|---|---|
Phase portrait areas (deg2/% of gait cycle) | Mean (SD) | 40 * (14) | 106 (22) | 0.0001 |
CV | 34.5 | 21.1 | ||
Phase portrait areas (deg2/% of gait cycle) | Mean (SD) | 114 * (42) | 403 (71) | 0.0001 |
CV | 36.8 | 17.6 | ||
Phase portrait areas (deg2/% of gait cycle) | Mean SD | 42 (39) | 67 (18) | 0.0331 |
CV | 92.9 | 26.0 |
CVs | Hip | Knee | Ankle | |||
---|---|---|---|---|---|---|
ROM | SRD | 23.8 | 22.3 | 57.4 | ||
NT | 11.9 | 9.0 | 19.3 | |||
% Delta | 100 | 148 | 197 | |||
Peak Velocity | SRD | 16.1 | 14.1 | 45.4 | ||
NT | 10.9 | 5.6 | 24.8 | |||
% Delta | 48 | 152 | 83 | |||
Hip vs. Knee | Knee vs. Ankle | |||||
A-A Area | SRD | 38.2 | 51.1 | |||
NT | 18.7 | 20.0 | ||||
% Delta | 104 | 156 | ||||
Hip | Knee | Ankle | ||||
P-P Area | SRD | 65.5 | 70.3 | 174.3 | ||
NT | 40.0 | 33.2 | 51.5 | |||
% Delta | 68 | 156 | 214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Layne, C.S.; Diaz, D.M.; Malaya, C.A.; Suter, B.; Holder, J.L., Jr. Gait Kinematics of Individuals with SYNGAP1-Related Disorder Compared with Age-Matched Neurotypical Individuals. Appl. Sci. 2025, 15, 8267. https://doi.org/10.3390/app15158267
Layne CS, Diaz DM, Malaya CA, Suter B, Holder JL Jr. Gait Kinematics of Individuals with SYNGAP1-Related Disorder Compared with Age-Matched Neurotypical Individuals. Applied Sciences. 2025; 15(15):8267. https://doi.org/10.3390/app15158267
Chicago/Turabian StyleLayne, Charles S., Dacia Martinez Diaz, Christopher A. Malaya, Bernhard Suter, and Jimmy Lloyd Holder, Jr. 2025. "Gait Kinematics of Individuals with SYNGAP1-Related Disorder Compared with Age-Matched Neurotypical Individuals" Applied Sciences 15, no. 15: 8267. https://doi.org/10.3390/app15158267
APA StyleLayne, C. S., Diaz, D. M., Malaya, C. A., Suter, B., & Holder, J. L., Jr. (2025). Gait Kinematics of Individuals with SYNGAP1-Related Disorder Compared with Age-Matched Neurotypical Individuals. Applied Sciences, 15(15), 8267. https://doi.org/10.3390/app15158267