Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,320)

Search Parameters:
Keywords = cooperative vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4895 KiB  
Article
Scalable Energy Management Model for Integrating V2G Capabilities into Renewable Energy Communities
by Niccolò Pezzati, Eleonora Innocenti, Lorenzo Berzi and Massimo Delogu
World Electr. Veh. J. 2025, 16(8), 450; https://doi.org/10.3390/wevj16080450 (registering DOI) - 7 Aug 2025
Abstract
To promote a more decentralized energy system, the European Commission introduced the concept of Renewable Energy Communities (RECs). Meanwhile, the increasing penetration of Electric Vehicles (EVs) may significantly increase peak power demand and consumption ramps when charging sessions are left uncontrolled. However, by [...] Read more.
To promote a more decentralized energy system, the European Commission introduced the concept of Renewable Energy Communities (RECs). Meanwhile, the increasing penetration of Electric Vehicles (EVs) may significantly increase peak power demand and consumption ramps when charging sessions are left uncontrolled. However, by integrating smart charging strategies, such as Vehicle-to-Grid (V2G), EV storage can actively support the energy balance within RECs. In this context, this work proposes a comprehensive and scalable model for leveraging smart charging capabilities in RECs. This approach focuses on an external cooperative framework to optimize incentive acquisition and reduce dependence on Medium Voltage (MV) grid substations. It adopts a hybrid strategy, combining Mixed-Integer Linear Programming (MILP) to solve the day-ahead global optimization problem with local rule-based controllers to manage power deviations. Simulation results for a six-month case study, using historical demand data and synthetic charging sessions generated from real-world events, demonstrate that V2G integration leads to a better alignment of overall power consumption with zonal pricing, smoother load curves with a 15.5% reduction in consumption ramps, and enhanced cooperation with a 90% increase in shared power redistributed inside the REC. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
25 pages, 3588 KiB  
Article
An Intelligent Collaborative Charging System for Open-Pit Mines
by Jinbo Li, Lin Bi, Zhuo Wang and Liyun Zhou
Appl. Sci. 2025, 15(15), 8720; https://doi.org/10.3390/app15158720 - 7 Aug 2025
Abstract
To address challenges in automated charging operations of bulk explosive trucks in open-pit mines—specifically difficulties in borehole identification, positioning inaccuracies, and low operational efficiency—this study proposes an intelligent collaborative charging system integrating three modular components: (1) an explosive transport vehicle (with onboard terminal, [...] Read more.
To address challenges in automated charging operations of bulk explosive trucks in open-pit mines—specifically difficulties in borehole identification, positioning inaccuracies, and low operational efficiency—this study proposes an intelligent collaborative charging system integrating three modular components: (1) an explosive transport vehicle (with onboard terminal, explosive compartment, and mobility system enabling optimal routing and quantitative dispensing), (2) a charging robot (equipped with borehole detection, loading mechanisms, and mobility system for optimized search path planning and precision positioning), and (3) interconnection systems (coupling devices and interfaces facilitating auxiliary explosive transfer). This approach resolves three critical limitations of conventional systems: (i) mechanical arm-based borehole detection difficulties, (ii) blast hole positioning inaccuracies, and (iii) complex transport routing. The experimental results demonstrate that the intelligent cooperative charging method for open-pit mines achieves an 18% improvement in operational efficiency through intelligent collaboration among its modular components, while simultaneously realizing automated and intelligent charging operations. This advancement has significant implications for promoting intelligent development in open-pit mining operations. Full article
(This article belongs to the Special Issue Novel Technologies in Intelligent Coal Mining)
Show Figures

Figure 1

22 pages, 715 KiB  
Article
Research on the Development of the New Energy Vehicle Industry in the Context of ASEAN New Energy Policy
by Yalin Mo, Lu Li and Haihong Deng
Sustainability 2025, 17(15), 7073; https://doi.org/10.3390/su17157073 - 4 Aug 2025
Viewed by 109
Abstract
The green transformation of traditional energy structures and the development of the new energy industry are crucial drivers of sustainable development in the country. The ASEAN Plan of Action for Energy Cooperation (2016–2025; APAEC [2016–2025]), established in 2016, has significantly promoted the growth [...] Read more.
The green transformation of traditional energy structures and the development of the new energy industry are crucial drivers of sustainable development in the country. The ASEAN Plan of Action for Energy Cooperation (2016–2025; APAEC [2016–2025]), established in 2016, has significantly promoted the growth of the new energy sector and enhanced energy structures across Association of Southeast Asian Nations (ASEAN). This initiative has also inspired these countries to develop corresponding industrial policies aimed at supporting the new energy vehicle (NEV) industry, resulting in significant growth in this sector within the ASEAN region. This paper analyzes the factors influencing the development of the NEV industry in the context of ASEAN’s new energy policies, drawing empirical insights from data collected across six ASEAN countries from 2013 to 2024. Following the implementation of the APAEC (2016–2025), it was observed that ASEAN countries reached a consensus on energy development and cooperation, collaboratively advancing the NEV industry through regional policies. Furthermore, factors such as national governance, financial development, education levels, and the size of the automotive market positively contribute to the growth of the NEV industry in ASEAN. Conversely, high energy consumption can hinder its progress. Additionally, further research indicates that the APAEC (2016–2025) has exerted a more pronounced impact on countries with robust automotive industry foundations or those prioritizing relevant policies. The findings of this paper offer valuable insights for ASEAN countries in the formulating policies for the NEV industry, optimizing energy structures, and achieving low-carbon energy transition and sustainable development. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 - 1 Aug 2025
Viewed by 298
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 1714 KiB  
Article
A Kalman Filter-Based Localization Calibration Method Optimized by Reinforcement Learning and Information Matrix Fusion
by Zijia Huang, Qiushi Xu, Menghao Sun and Xuzhen Zhu
Entropy 2025, 27(8), 821; https://doi.org/10.3390/e27080821 - 1 Aug 2025
Viewed by 236
Abstract
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement [...] Read more.
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement learning network is designed to adaptively adjust the state covariance matrix, enhancing the Kalman filter’s adaptability to environmental changes. Meanwhile, a multi-trajectory information matrix fusion strategy is introduced, which aggregates multiple trajectories in the information domain via weighted inverse covariance matrices to suppress error propagation and improve system consistency. Experiments using both simulated and real-world sensor data demonstrate that the proposed method outperforms traditional extended Kalman filter approaches in terms of localization accuracy and stability, providing a novel solution for cooperative localization calibration of unmanned aerial vehicle (UAV) swarms in dynamic environments. Full article
(This article belongs to the Special Issue Complexity, Entropy and the Physics of Information II)
Show Figures

Figure 1

23 pages, 3580 KiB  
Article
Distributed Collaborative Data Processing Framework for Unmanned Platforms Based on Federated Edge Intelligence
by Siyang Liu, Nanliang Shan, Xianqiang Bao and Xinghua Xu
Sensors 2025, 25(15), 4752; https://doi.org/10.3390/s25154752 - 1 Aug 2025
Viewed by 321
Abstract
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this [...] Read more.
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this issue, this study designs an unmanned platform cluster architecture inspired by the cloud-edge-end model. This architecture integrates federated learning for privacy protection, leverages the advantages of distributed model training, and utilizes edge computing’s near-source data processing capabilities. Additionally, this paper proposes a federated edge intelligence method (DSIA-FEI), which comprises two key components. Based on traditional federated learning, a data sharing mechanism is introduced, in which data is extracted from edge-side platforms and placed into a data sharing platform to form a public dataset. At the beginning of model training, random sampling is conducted from the public dataset and distributed to each unmanned platform, so as to mitigate the impact of data distribution heterogeneity and class imbalance during collaborative data processing in unmanned platforms. Moreover, an intelligent model aggregation strategy based on similarity measurement and loss gradient is developed. This strategy maps heterogeneous model parameters to a unified space via hierarchical parameter alignment, and evaluates the similarity between local and global models of edge devices in real-time, along with the loss gradient, to select the optimal model for global aggregation, reducing the influence of device and model heterogeneity on cooperative learning of unmanned platform swarms. This study carried out extensive validation on multiple datasets, and the experimental results showed that the accuracy of the DSIA-FEI proposed in this paper reaches 0.91, 0.91, 0.88, and 0.87 on the FEMNIST, FEAIR, EuroSAT, and RSSCN7 datasets, respectively, which is more than 10% higher than the baseline method. In addition, the number of communication rounds is reduced by more than 40%, which is better than the existing mainstream methods, and the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

25 pages, 4273 KiB  
Review
How Can Autonomous Truck Systems Transform North Dakota’s Agricultural Supply Chain Industry?
by Emmanuel Anu Thompson, Jeremy Mattson, Pan Lu, Evans Tetteh Akoto, Solomon Boadu, Herman Benjamin Atuobi, Kwabena Dadson and Denver Tolliver
Future Transp. 2025, 5(3), 100; https://doi.org/10.3390/futuretransp5030100 - 1 Aug 2025
Viewed by 165
Abstract
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop [...] Read more.
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop comprehensive technology readiness frameworks and strategic deployment approaches. The review integrates systematic literature review and event history analysis of 52 studies, categorized using Social–Ecological–Technological Systems framework across six dimensions: technological, economic, social change, legal, environmental, and implementation challenges. The Technology Readiness Level (TRL) analysis reveals 39.5% of technologies achieving commercial readiness (TRL 8–9), including GPS/RTK positioning and V2V communication demonstrated through Minn-Dak Farmers Cooperative deployments, while gaps exist in TRL 4–6 technologies, particularly cold-weather operations. Nonetheless, challenges remain, including legislative fragmentation, inadequate rural infrastructure, and barriers to public acceptance. The study provides evidence-based recommendations that support a strategic three-phase deployment approach for the adoption of autonomous trucks in agriculture. Full article
Show Figures

Figure 1

20 pages, 1449 KiB  
Article
Deep Reinforcement Learning-Based Resource Allocation for UAV-GAP Downlink Cooperative NOMA in IIoT Systems
by Yuanyan Huang, Jingjing Su, Xuan Lu, Shoulin Huang, Hongyan Zhu and Haiyong Zeng
Entropy 2025, 27(8), 811; https://doi.org/10.3390/e27080811 - 29 Jul 2025
Viewed by 316
Abstract
This paper studies deep reinforcement learning (DRL)-based joint resource allocation and three-dimensional (3D) trajectory optimization for unmanned aerial vehicle (UAV)–ground access point (GAP) cooperative non-orthogonal multiple access (NOMA) communication in Industrial Internet of Things (IIoT) systems. Cooperative and non-cooperative users adopt different signal [...] Read more.
This paper studies deep reinforcement learning (DRL)-based joint resource allocation and three-dimensional (3D) trajectory optimization for unmanned aerial vehicle (UAV)–ground access point (GAP) cooperative non-orthogonal multiple access (NOMA) communication in Industrial Internet of Things (IIoT) systems. Cooperative and non-cooperative users adopt different signal transmission strategies to meet diverse, task-oriented, quality-of-service requirements. Specifically, the DRL framework based on the Soft Actor–Critic algorithm is proposed to jointly optimize user scheduling, power allocation, and UAV trajectory in continuous action spaces. Closed-form power allocation and maximum weight bipartite matching are integrated to enable efficient user pairing and resource management. Simulation results show that the proposed scheme significantly enhances system performance in terms of throughput, spectral efficiency, and interference management, while enabling robustness against channel uncertainties in dynamic IIoT environments. The findings indicate that combining model-free reinforcement learning with conventional optimization provides a viable solution for adaptive resource management in dynamic UAV-GAP cooperative communication scenarios. Full article
Show Figures

Figure 1

27 pages, 405 KiB  
Article
Comparative Analysis of Centralized and Distributed Multi-UAV Task Allocation Algorithms: A Unified Evaluation Framework
by Yunze Song, Zhexuan Ma, Nuo Chen, Shenghao Zhou and Sutthiphong Srigrarom
Drones 2025, 9(8), 530; https://doi.org/10.3390/drones9080530 - 28 Jul 2025
Viewed by 374
Abstract
Unmanned aerial vehicles (UAVs), commonly known as drones, offer unprecedented flexibility for complex missions such as area surveillance, search and rescue, and cooperative inspection. This paper presents a unified evaluation framework for the comparison of centralized and distributed task allocation algorithms specifically tailored [...] Read more.
Unmanned aerial vehicles (UAVs), commonly known as drones, offer unprecedented flexibility for complex missions such as area surveillance, search and rescue, and cooperative inspection. This paper presents a unified evaluation framework for the comparison of centralized and distributed task allocation algorithms specifically tailored to multi-UAV operations. We first contextualize the classical assignment problem (AP) under UAV mission constraints, including the flight time, propulsion energy capacity, and communication range, and evaluate optimal one-to-one solvers including the Hungarian algorithm, the Bertsekas ϵ-auction algorithm, and a minimum cost maximum flow formulation. To reflect the dynamic, uncertain environments that UAV fleets encounter, we extend our analysis to distributed multi-UAV task allocation (MUTA) methods. In particular, we examine the consensus-based bundle algorithm (CBBA) and a distributed auction 2-opt refinement strategy, both of which iteratively negotiate task bundles across UAVs to accommodate real-time task arrivals and intermittent connectivity. Finally, we outline how reinforcement learning (RL) can be incorporated to learn adaptive policies that balance energy efficiency and mission success under varying wind conditions and obstacle fields. Through simulations incorporating UAV-specific cost models and communication topologies, we assess each algorithm’s mission completion time, total energy expenditure, communication overhead, and resilience to UAV failures. Our results highlight the trade-off between strict optimality, which is suitable for small fleets in static scenarios, and scalable, robust coordination, necessary for large, dynamic multi-UAV deployments. Full article
Show Figures

Figure 1

20 pages, 1175 KiB  
Article
A Study on the Site Selection of Urban Logistics Centers Utilizing Public Infrastructure
by Jiarong Chen, Jungwook Lee and Hyangsook Lee
Sustainability 2025, 17(15), 6846; https://doi.org/10.3390/su17156846 - 28 Jul 2025
Viewed by 281
Abstract
The COVID-19 pandemic has highlighted critical vulnerabilities in urban logistics systems, particularly in last-mile delivery. To enhance logistics resilience and efficiency, the Korean government has initiated an innovative project that repurposes idle spaces in subway vehicle bases within the Seoul Metropolitan Area into [...] Read more.
The COVID-19 pandemic has highlighted critical vulnerabilities in urban logistics systems, particularly in last-mile delivery. To enhance logistics resilience and efficiency, the Korean government has initiated an innovative project that repurposes idle spaces in subway vehicle bases within the Seoul Metropolitan Area into logistics centers. This study proposes a comprehensive multi-criteria evaluation framework combining the Analytic Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to assess the suitability of ten candidate sites. The evaluation criteria span four dimensions, facility, geographical, environmental, and social factors, derived from the literature and expert consultations. AHP results indicate that geographical factors, especially proximity to urban centers and major logistics facilities, hold the highest weight. Based on the integrated analysis using TOPSIS, the most suitable locations identified are Sinnae, Godeok, and Cheonwang. The findings suggest the strategic importance of aligning infrastructure development with spatial accessibility and stakeholder cooperation. Policy implications include the need for targeted investment, public–private collaboration, and sustainable logistics planning. Future research is encouraged to incorporate dynamic data and consider social equity and environmental impact for long-term urban logistics planning. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

20 pages, 1487 KiB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 387
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 312
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

31 pages, 4220 KiB  
Article
A Novel Multi-Server Federated Learning Framework in Vehicular Edge Computing
by Fateme Mazloomi, Shahram Shah Heydari and Khalil El-Khatib
Future Internet 2025, 17(7), 315; https://doi.org/10.3390/fi17070315 - 19 Jul 2025
Viewed by 284
Abstract
Federated learning (FL) has emerged as a powerful approach for privacy-preserving model training in autonomous vehicle networks, where real-world deployments rely on multiple roadside units (RSUs) serving heterogeneous clients with intermittent connectivity. While most research focuses on single-server or hierarchical cloud-based FL, multi-server [...] Read more.
Federated learning (FL) has emerged as a powerful approach for privacy-preserving model training in autonomous vehicle networks, where real-world deployments rely on multiple roadside units (RSUs) serving heterogeneous clients with intermittent connectivity. While most research focuses on single-server or hierarchical cloud-based FL, multi-server FL can alleviate the communication bottlenecks of traditional setups. To this end, we propose an edge-based, multi-server FL (MS-FL) framework that combines performance-driven aggregation at each server—including statistical weighting of peer updates and outlier mitigation—with an application layer handover protocol that preserves model updates when vehicles move between RSU coverage areas. We evaluate MS-FL on both MNIST and GTSRB benchmarks under shard- and Dirichlet-based non-IID splits, comparing it against single-server FL and a two-layer edge-plus-cloud baseline. Over multiple communication rounds, MS-FL with the Statistical Performance-Aware Aggregation method and Dynamic Weighted Averaging Aggregation achieved up to a 20-percentage-point improvement in accuracy and consistent gains in precision, recall, and F1-score (95% confidence), while matching the low latency of edge-only schemes and avoiding the extra model transfer delays of cloud-based aggregation. These results demonstrate that coordinated cooperation among servers based on model quality and seamless handovers can accelerate convergence, mitigate data heterogeneity, and deliver robust, privacy-aware learning in connected vehicle environments. Full article
Show Figures

Figure 1

23 pages, 5173 KiB  
Article
Improvement of Cooperative Localization for Heterogeneous Mobile Robots
by Efe Oğuzhan Karcı, Ahmet Mustafa Kangal and Sinan Öncü
Drones 2025, 9(7), 507; https://doi.org/10.3390/drones9070507 - 19 Jul 2025
Viewed by 366
Abstract
This research focuses on enhancing cooperative localization for heterogeneous mobile robots composed of a quadcopter and an unmanned ground vehicle. The study employs sensor fusion techniques, particularly the Extended Kalman Filter, to fuse data from various sensors, including GPSs, IMUs, and cameras. By [...] Read more.
This research focuses on enhancing cooperative localization for heterogeneous mobile robots composed of a quadcopter and an unmanned ground vehicle. The study employs sensor fusion techniques, particularly the Extended Kalman Filter, to fuse data from various sensors, including GPSs, IMUs, and cameras. By integrating these sensors and optimizing fusion strategies, the research aims to improve the precision and reliability of cooperative localization in complex and dynamic environments. The primary objective is to develop a practical framework for cooperative localization that addresses the challenges posed by the differences in mobility and sensing capabilities among heterogeneous robots. Sensor fusion is used to compensate for the limitations of individual sensors, providing more accurate and robust localization results. Moreover, a comparative analysis of different sensor combinations and fusion strategies helps to identify the optimal configuration for each robot. This research focuses on the improvement of cooperative localization, path planning, and collaborative tasks for heterogeneous robots. The findings have broad applications in fields such as autonomous transportation, agricultural operation, and disaster response, where the cooperation of diverse robotic platforms is crucial for mission success. Full article
Show Figures

Figure 1

22 pages, 14847 KiB  
Article
Formation Control of Underactuated AUVs Using a Fractional-Order Sliding Mode Observer
by Long He, Mengting Xie, Ya Zhang, Shizhong Li, Bo Li, Zehui Yuan and Chenrui Bai
Fractal Fract. 2025, 9(7), 465; https://doi.org/10.3390/fractalfract9070465 - 18 Jul 2025
Viewed by 331
Abstract
This paper proposes a control method that combines a fractional-order sliding mode observer and a cooperative control strategy to address the problem of path-following for underactuated autonomous underwater vehicles (AUVs) in complex marine environments. First, a fractional-order sliding mode observer is designed, combining [...] Read more.
This paper proposes a control method that combines a fractional-order sliding mode observer and a cooperative control strategy to address the problem of path-following for underactuated autonomous underwater vehicles (AUVs) in complex marine environments. First, a fractional-order sliding mode observer is designed, combining fractional calculus and double-power convergence laws to enhance the estimation accuracy of high-frequency disturbances. An adaptive gain mechanism is introduced to avoid dependence on the upper bound of disturbances. Second, a formation cooperative control strategy based on path parameter coordination is proposed. By setting independent reference points for each AUV and exchanging path parameters, formation consistency is achieved with low communication overhead. For the followers’ speed control problem, an error-based expected speed adjustment mechanism is introduced, and a hyperbolic tangent function is used to replace the traditional arctangent function to improve the response speed of the system. Numerical simulation results show that this control method performs well in terms of path-following accuracy, formation maintenance capability, and disturbance suppression, verifying its effectiveness and robustness in complex marine environments. Full article
Show Figures

Figure 1

Back to TopTop