Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (201)

Search Parameters:
Keywords = cooling/heating load reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 3995 KiB  
Review
Recent Advancements in Latent Thermal Energy Storage and Their Applications for HVAC Systems in Commercial and Residential Buildings in Europe—Analysis of Different EU Countries’ Scenarios
by Belayneh Semahegn Ayalew and Rafał Andrzejczyk
Energies 2025, 18(15), 4000; https://doi.org/10.3390/en18154000 - 27 Jul 2025
Viewed by 562
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) has emerged as a promising strategy to enhance HVAC efficiency. This review systematically examines the role of latent thermal energy storage using phase change materials (PCMs) in optimizing HVAC performance to align with EU climate targets, including the Energy Performance of Buildings Directive (EPBD) and the Energy Efficiency Directive (EED). By analyzing advancements in PCM-enhanced HVAC systems across residential and commercial sectors, this study identifies critical pathways for reducing energy demand, enhancing grid flexibility, and accelerating the transition to nearly zero-energy buildings (NZEBs). The review categorizes PCM technologies into organic, inorganic, and eutectic systems, evaluating their integration into thermal storage tanks, airside free cooling units, heat pumps, and building envelopes. Empirical data from case studies demonstrate consistent energy savings of 10–30% and peak load reductions of 20–50%, with Mediterranean climates achieving superior cooling load management through paraffin-based PCMs (melting range: 18–28 °C) compared to continental regions. Policy-driven initiatives, such as Germany’s renewable integration mandates for public buildings, are shown to amplify PCM adoption rates by 40% compared to regions lacking regulatory incentives. Despite these benefits, barriers persist, including fragmented EU standards, life cycle cost uncertainties, and insufficient training. This work bridges critical gaps between PCM research and EU policy implementation, offering a roadmap for scalable deployment. By contextualizing technical improvement within regulatory and economic landscapes, the review provides strategic recommendations to achieve the EU’s 2030 emissions reduction targets and 2050 climate neutrality goals. Full article
Show Figures

Figure 1

29 pages, 6641 KiB  
Article
Climate-Adaptive Passive Design Strategies for Near-Zero-Energy Office Buildings in Central and Southern Anhui, China
by Jun Xu, Yu Gao and Lizhong Yang
Sustainability 2025, 17(14), 6535; https://doi.org/10.3390/su17146535 - 17 Jul 2025
Viewed by 374
Abstract
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in [...] Read more.
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in the hot-summer/cold-winter, high-humidity zone of central and southern Anhui. Using multi-year climate records and energy-use surveys from five cities and one scenic area (2013–2024), we systematically investigate climate-adaptive passive-design strategies. Climate-Consultant simulations identify composite envelopes, external shading, and natural ventilation as the three most effective measures. Empirical evidence confirms that optimized envelope thermal properties significantly curb heating and cooling loads; a Huangshan office-building case validates the performance of the proposed passive measures, while analysis of a near-zero-energy demonstration project in Chuzhou yields a coordinated insulation-and-heat-rejection scheme. The results demonstrate that region-specific passive design can provide a comprehensive technical framework for ultra-low-energy buildings in transitional climates and thereby supporting China’s carbon-neutrality targets. Full article
(This article belongs to the Special Issue Building Sustainability within a Smart Built Environment)
Show Figures

Figure 1

31 pages, 16050 KiB  
Article
Biomimetic Opaque Ventilated Façade for Low-Rise Buildings in Hot Arid Climate
by Ahmed Alyahya, Simon Lannon and Wassim Jabi
Buildings 2025, 15(14), 2491; https://doi.org/10.3390/buildings15142491 - 16 Jul 2025
Viewed by 402
Abstract
Enhancing the thermal performance of building façades is vital for reducing energy demand in hot desert climates, where envelope heat gain increases cooling loads. This study investigates the integration of biomimicry into opaque ventilated façade (OVF) systems as a novel approach to reduce [...] Read more.
Enhancing the thermal performance of building façades is vital for reducing energy demand in hot desert climates, where envelope heat gain increases cooling loads. This study investigates the integration of biomimicry into opaque ventilated façade (OVF) systems as a novel approach to reduce façade surface temperatures. Thirteen bio-inspired façade configurations, modeled after strategies observed in nature, were evaluated using computational fluid dynamics simulations to assess their effectiveness in increasing airflow and reducing inner skin surface temperatures. Results show that all proposed biomimetic solutions outperformed the baseline OVF in terms of thermal performance, with the wide top mound configuration achieving the greatest temperature reduction—up to 5.9 °C below the baseline OVF and 16.4 °C below an unventilated façade. The study introduces an innovative methodology that derives façade design parameters from nature and validates them through simulation. These findings highlight the potential of nature-based solutions to improve building envelope performance in extreme climates. Full article
Show Figures

Figure 1

18 pages, 4285 KiB  
Article
Application of a Phase-Change Material Heat Exchanger to Improve the Efficiency of Heat Pumps at Partial Loads
by Koharu Tani, Sayaka Kindaichi, Keita Kawasaki and Daisaku Nishina
Energies 2025, 18(14), 3694; https://doi.org/10.3390/en18143694 - 12 Jul 2025
Viewed by 335
Abstract
Inverter-equipped heat pumps allow for increased energy efficiency. However, air conditioning (AC) systems often operate at low load ratios below where inverter control is effective, which reduces their energy efficiency. We developed an AC system that increases the apparent load ratio of the [...] Read more.
Inverter-equipped heat pumps allow for increased energy efficiency. However, air conditioning (AC) systems often operate at low load ratios below where inverter control is effective, which reduces their energy efficiency. We developed an AC system that increases the apparent load ratio of the heat pump by using a phase-change material (PCM). Cooling and heating experiments were conducted with a PCM heat exchanger, which comprised aluminum plates and fins filled with paraffinic PCM. The result indicated a high heat transfer coefficient of >70 W/(m2·K). A simplified numerical model of the PCM heat exchanger as a lumped constant system was created based on the experiment. The calculations generally reproduced the experimental results, with root mean squared errors of 0.39 K for cooling and 0.84 K for heating, confirming their accuracy. Simulations were then conducted to evaluate the energy performance of the proposed system for the cooling season. While low load operation accounted for 39% of the total AC time for a non-PCM system, it was reduced to 2.7% for the proposed system. The proposed system demonstrated load ratios of 50–60% for most of the season, achieving an energy reduction of 11.4% owing to the improved efficiency at partial load ratios. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

22 pages, 3505 KiB  
Article
Coupled Study on the Building Load Dynamics and Thermal Response of Ground Sources in Shallow Geothermal Heat Pump Systems Under Severe Cold Climate Conditions
by Jianlin Li, Xupeng Qi, Xiaoli Li, Huijie Huang and Jian Gao
Modelling 2025, 6(3), 63; https://doi.org/10.3390/modelling6030063 - 7 Jul 2025
Viewed by 209
Abstract
To address thermal imbalance and ground temperature degradation in shallow geothermal heat pump (GSHP) systems in severely cold climates, this study analyzes a typical logistics building using an hourly dynamic load model. Multiyear simulations were conducted to investigate the coupling between building load [...] Read more.
To address thermal imbalance and ground temperature degradation in shallow geothermal heat pump (GSHP) systems in severely cold climates, this study analyzes a typical logistics building using an hourly dynamic load model. Multiyear simulations were conducted to investigate the coupling between building load variation and soil thermal response. The results indicate that with a cumulative heating load of 14.681 million kWh and cooling load of 6.3948 million kWh, annual heat extraction significantly exceeds heat rejection, causing ground temperature to decline by about 1 °C per year. Over five and ten years, the cumulative drops reached 2.65 °C and 4.71 °C, respectively, leading to a noticeable reduction in borehole heat exchanger performance and system COP. The study quantitatively evaluates ground temperature and heat exchange degradation, highlighting the key role of load imbalance. To mitigate long-term thermal deterioration, strategies such as load optimization, summer heat reinjection, and operational adjustments are proposed. The findings offer guidance for the design and sustainable operation of GSHP systems in cold regions. Full article
Show Figures

Figure 1

18 pages, 8224 KiB  
Article
Cascaded Absorption Heat Pump Integration in Biomass CHP Systems: Multi-Source Waste Heat Recovery for Low-Carbon District Heating
by Pengying Wang and Hangyu Zhou
Sustainability 2025, 17(13), 5870; https://doi.org/10.3390/su17135870 - 26 Jun 2025
Viewed by 265
Abstract
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from [...] Read more.
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from semi-dry flue gas desulfurization exhaust and turbine condenser cooling water. A multi-source operational framework is developed, coordinating biomass CHP units with coal-fired boilers for peak-load regulation. The proposed system employs a two-stage heat recovery methodology: preliminary sensible heat extraction from non-saturated flue gas (elevating primary heating loop (PHL) return water from 50 °C to 55 °C), followed by serial AHPs utilizing turbine extraction steam to upgrade waste heat from circulating cooling water (further heating PHL water to 85 °C). Parametric analyses demonstrate that the cascaded AHP system reduces turbine steam extraction by 4.4 to 8.8 t/h compared to conventional steam-driven heating, enabling 3235 MWh of annual additional power generation. Environmental benefits include an annual CO2 reduction of 1821 tonnes, calculated using regional grid emission factors. The integration of waste heat recovery and multi-source coordination achieves synergistic improvements in energy efficiency and operational flexibility, advancing low-carbon transitions in district heating systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

40 pages, 1622 KiB  
Review
A Review of Phase-Change Material-Based Thermal Batteries for Sustainable Energy Storage of Solar Photovoltaic Systems Coupled to Heat Pumps in the Building Sector
by Shafquat Rana and Joshua M. Pearce
Energies 2025, 18(13), 3265; https://doi.org/10.3390/en18133265 - 22 Jun 2025
Viewed by 604
Abstract
Buildings account for about a third of global energy and it is thus imperative to eliminate the use of fossil fuels to power and provide for their thermal needs. Solar photovoltaic (PV) technology can provide power and with electrification, heating/cooling, but there is [...] Read more.
Buildings account for about a third of global energy and it is thus imperative to eliminate the use of fossil fuels to power and provide for their thermal needs. Solar photovoltaic (PV) technology can provide power and with electrification, heating/cooling, but there is often a load mismatch with the intermittent solar supply. Electric batteries can overcome this challenge at high solar penetration rates but are still capital-intensive. A promising solution is thermal energy storage (TES), which has a low cost per unit of energy. This review provides an in-depth analysis of TES but specifically focuses on phase change material (PCM)-based TES, and its significance in the building sector. The classification, characterization, properties, applications, challenges, and modeling of PCM-TES are detailed. Finally, the potential for integrating TES with PV and heat pump (HP) technologies to decarbonize the residential sector is detailed. Although many studies show proof of carbon reduction for the individual and coupled systems, the integration of PV+HP+PCM-TES systems as a whole unit has not been developed to achieve carbon neutrality and facilitate net zero emission goals. Overall, there is still a lack of available literature and experimental datasets for these complex systems which are needed to develop models for global implementation as well as studies to quantify their economic and environmental performance. Full article
Show Figures

Graphical abstract

43 pages, 1295 KiB  
Review
Enhancing Building Thermal Performance: A Review of Phase Change Material Integration
by Khaled Alassaad, James Minto and Pieter de Wilde
Energies 2025, 18(12), 3200; https://doi.org/10.3390/en18123200 - 18 Jun 2025
Viewed by 965
Abstract
Buildings are responsible for over one-third of global energy use and greenhouse gas emissions, with heating and cooling being major contributors. Phase change materials (PCMs) offer a promising passive solution to improve thermal regulation and reduce heating and cooling loads. This review analyses [...] Read more.
Buildings are responsible for over one-third of global energy use and greenhouse gas emissions, with heating and cooling being major contributors. Phase change materials (PCMs) offer a promising passive solution to improve thermal regulation and reduce heating and cooling loads. This review analyses different experimental and simulation-based studies on the integration of PCMs into building structures for enhancing building energy performance. The key variables examined include melting temperature, latent heat capacity, thermal conductivity (λ), PCM positioning (interior, exterior, or embedded), thickness, and climate zone. The results show that PCMs reduce heat transfer by up to 47.6%, stabilize indoor temperatures with up to a 46% reduction in fluctuations, and decrease heating and cooling demands by as much as 31%, depending on component placement and climate. The optimal melting range for moderate climates lies between 22 °C and 28 °C. This review identifies critical trade-offs between PCM quantity, placement, and climatic suitability and provides a matrix of design recommendations for various building types. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Performance in Building)
Show Figures

Graphical abstract

50 pages, 4165 KiB  
Review
Sustainable Insulation Technologies for Low-Carbon Buildings: From Past to Present
by Pinar Mert Cuce
Sustainability 2025, 17(11), 5176; https://doi.org/10.3390/su17115176 - 4 Jun 2025
Viewed by 1058
Abstract
Building facade insulation technologies have evolved from primitive thermal barriers to high-performance, multifunctional systems that enhance energy efficiency and indoor comfort. Historical insulation methods, such as thick masonry walls and timber-based construction, have gradually been replaced by advanced materials and innovative facade designs. [...] Read more.
Building facade insulation technologies have evolved from primitive thermal barriers to high-performance, multifunctional systems that enhance energy efficiency and indoor comfort. Historical insulation methods, such as thick masonry walls and timber-based construction, have gradually been replaced by advanced materials and innovative facade designs. Studies indicate that a significant proportion of a building’s heat loss occurs through its external walls and windows, highlighting the need for effective insulation strategies. The development of double-skin facades (D-SFSs), adaptive facades (AFs), and green facades has enabled substantial reductions in heating and cooling energy demands. Materials such as vacuum insulation panels (VIPs), aerogels, and phase change materials (PCMs) have demonstrated superior thermal resistance, contributing to improved thermal regulation and reduced carbon emissions. Green facades offer additional benefits by lowering surface temperatures and mitigating urban heat island effects, while D-SF configurations can reduce cooling loads by over 20% in warm climates. Despite these advancements, challenges remain regarding the initial investment costs, durability, and material sustainability. The future of facade insulation technologies is expected to focus on bio-based and recyclable insulation materials, enhanced thermal performance, and climate-responsive facade designs. This study provides a comprehensive review of historical and modern facade insulation technologies, examining their impact on energy efficiency, sustainability, and future trends in architectural design. Full article
Show Figures

Figure 1

26 pages, 8226 KiB  
Article
Effect of Improved Combustion Chamber Design and Biodiesel Blending on the Performance and Emissions of a Diesel Engine
by Ziming Wang, Yanlin Chen, Chao He, Dongge Wang, Yan Nie and Jiaqiang Li
Energies 2025, 18(11), 2956; https://doi.org/10.3390/en18112956 - 4 Jun 2025
Viewed by 524
Abstract
This study aims to investigate the impact of combustion chamber geometry and biodiesel on the performance of diesel engines under various load conditions. Simulations were conducted using AVL FIRE software, followed by experimental validation to compare the performance of the prototype Omega combustion [...] Read more.
This study aims to investigate the impact of combustion chamber geometry and biodiesel on the performance of diesel engines under various load conditions. Simulations were conducted using AVL FIRE software, followed by experimental validation to compare the performance of the prototype Omega combustion chamber with the optimized TCD combustion chamber (T for turbocharger, C for charger air cooling, and D for diesel particle filter). This study utilized four types of fuels: D100, B10, B20, and B50, and was conducted under different load conditions at a rated speed of 1800 revolutions per minute (rpm). The results demonstrate that the TCD combustion chamber outperforms the Omega chamber in terms of indicated thermal efficiency (ITE), in-cylinder pressure, and temperature, and also exhibits a lower indicated specific fuel consumption (ISFC). Additionally, the TCD chamber shows lower soot and carbon monoxide (CO) emissions compared to the Omega chamber, with further reductions as the load increases and the biodiesel blend ratio is raised. The high oxygen content in biodiesel helps to reduce soot and CO formation, while its lower sulfur content and heating value contribute to a decrease in combustion temperature and a reduction in nitrogen oxide (NOx) production. However, the NOx emissions from the TCD chamber are still higher than those from the Omega chamber, possibly due to the increased in-cylinder temperature resulting from its combustion chamber structure. The findings provide valuable insights into diesel engine system design and the application of oxygenated fuels, promoting the development of clean combustion technologies. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

29 pages, 2457 KiB  
Article
Energy and Exergy Analysis of a Photovoltaic-Thermal Geothermal Heat Pump Coupled with Radiant Ceiling and Fresh Air System
by Yaolin Lin, Zhenyan Bu, Wei Yang, Melissa Chan, Lin Tian and Mingqi Dai
Energies 2025, 18(11), 2715; https://doi.org/10.3390/en18112715 - 23 May 2025
Viewed by 373
Abstract
This paper presents energy and exergy studies on a photovoltaic-thermal solar-assisted geothermal heat pump coupled with a radiant ceiling system. The system utilizes renewable solar and geothermal energy. It has an independent fresh air unit that provides clean air to the space. The [...] Read more.
This paper presents energy and exergy studies on a photovoltaic-thermal solar-assisted geothermal heat pump coupled with a radiant ceiling system. The system utilizes renewable solar and geothermal energy. It has an independent fresh air unit that provides clean air to the space. The computer model of the system was developed under the TRNSYST environment and validated with experimental results from open literature. Distribution of the energy consumption and exergy loss of the system were analyzed. It was found that the heat pump unit consumes the largest amount of energy while the transmission and distribution system has the highest exergy loss. Under optimized operating conditions, i.e., both demand side circulation flow and source side circulation flow are maintained at 65% of the design flow rate (design loop water temperature difference of 7.0 °C), the average exergy efficiency of the whole system was found to be 37.56%, which achieves an accumulative exergy loss reduction of 16.5% compared with 100% design flow rate condition during cooling season. The optimal bearing load ratio of the ground source heat pump vs. photovoltaic-thermal system in the heating season was found to be 67%. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

22 pages, 12898 KiB  
Article
Topology Optimization Design of Phase Change Liquid Cooling Composite Plate
by Xinqiang Xia, Jiancheng Luo, Jiabao Li and Lixia Wei
Energies 2025, 18(10), 2652; https://doi.org/10.3390/en18102652 - 20 May 2025
Viewed by 741
Abstract
To address the challenges of high flow resistance and poor temperature uniformity in conventional PCM–liquid cooling hybrid heat exchangers—which significantly impair the performance and lifespan of electronic devices—a topology optimization approach was adopted. A dual-objective function, aimed at minimizing the average temperature and [...] Read more.
To address the challenges of high flow resistance and poor temperature uniformity in conventional PCM–liquid cooling hybrid heat exchangers—which significantly impair the performance and lifespan of electronic devices—a topology optimization approach was adopted. A dual-objective function, aimed at minimizing the average temperature and pressure drop, was introduced to reconstruct the cooling channel layout and PCM filling region. A two-dimensional transient thermo-fluid model coupling the solid–liquid phase-change process with coolant flow and heat transfer was established, alongside the development of an experimental platform. A comprehensive comparison was performed against a conventional liquid cooling plate with straight channels. The results showed that the topology-optimized cooling plate exhibited a pressure drop of 15.80 Pa and a pumping power of 1.19 × 10⁻4 W, representing reductions of 38.28% and 38.02%, respectively. The PCM solidification time was shortened by 6 min. Under these conditions, the convective heat transfer coefficient (hw) and performance evaluation criterion (j/f) of the optimized plate reached 1319.06 W/(m2·K) and 0.56, which corresponded to increases of 60.71% and 47.5%, respectively. The topology-optimized configuration significantly improved temperature uniformity and overall cooling performance. As the inlet velocity increased from 0.05 m/s to 0.2 m/s, hw increased by 38.65%; however, j/f decreased by 57.14%, due to the limited thermal conductivity of the PCMs, resulting in only a slight reduction in the average PCM temperature. Furthermore, the topology-optimized cooling plate demonstrated stronger steady-state regulation capability under fluctuating thermal loads. This study provides valuable insights and design guidance for the development of high-efficiency hybrid liquid cooling plates. Full article
Show Figures

Figure 1

17 pages, 4856 KiB  
Article
Research on Real-Time Control Strategy of Air-Conditioning Water System Based on Model Predictive Control
by Dehan Liu, Jing Zhao, Yibing Wu and Zhe Tian
Buildings 2025, 15(10), 1654; https://doi.org/10.3390/buildings15101654 - 14 May 2025
Viewed by 505
Abstract
The optimization of the operation strategy for building HVAC systems is the key to achieving energy conservation and consumption reduction in air-conditioning systems. This study proposes an online real-time control strategy for the air-conditioning water system based on the model predictive control (MPC) [...] Read more.
The optimization of the operation strategy for building HVAC systems is the key to achieving energy conservation and consumption reduction in air-conditioning systems. This study proposes an online real-time control strategy for the air-conditioning water system based on the model predictive control (MPC) principle, implemented and validated on the integrated energy experimental platform. The experimental system simulates load generation and dissipation processes using a water tank, where hourly varying heating power output emulates the dynamic cooling loads of buildings. By regulating the chilled water system through different algorithms, the temperature tracking control performance and cooling supply regulation accuracy were rigorously validated. The control module was written in the Python 3.8 environment, and Niagara 4 software was used as an intermediate software to achieve data interaction and logical control with the laboratory system. The experimental results show that this algorithm can follow the hourly optimized parameters with a low overshoot in the short-term domain. Meanwhile, it can achieve the optimal control of cooling capacity and energy consumption in the long-term domain. Compared with the PID strategy, the temperature following control accuracy can be improved by 9.64%, and the cooling capacity can be saved by 6.24%. Compared with the day-ahead MPC algorithm, the temperature following control accuracy can be relatively improved by 16.52%, and the cooling capacity can be saved by 1.24%. Full article
Show Figures

Figure 1

19 pages, 4860 KiB  
Article
Energy Saving in Building Air-Conditioning Systems Based on Hippopotamus Optimization Algorithm for Optimizing Cooling Water Temperature
by Yiyang Zheng, Yaping Gao and Jianwen Gao
Energies 2025, 18(10), 2476; https://doi.org/10.3390/en18102476 - 12 May 2025
Viewed by 476
Abstract
When traditional HVAC (heating, ventilation, and air-conditioning) systems are in operation, they often run according to the designed operating conditions. In fact, they operate under part-load conditions for more than 90% of the time, resulting in energy waste. Therefore, studying the optimization and [...] Read more.
When traditional HVAC (heating, ventilation, and air-conditioning) systems are in operation, they often run according to the designed operating conditions. In fact, they operate under part-load conditions for more than 90% of the time, resulting in energy waste. Therefore, studying the optimization and regulation of their operating conditions during operation is necessary. Given that the control set point for cooling tower outlet water temperature differentially impacts chiller and cooling tower energy consumption during system operation, optimization of this parameter becomes essential. Therefore, this study focuses on optimizing the cooling tower outlet water temperature control point in central air-conditioning systems. We propose the Hippopotamus Optimization Algorithm (HOA), a novel population-based approach, to optimize cooling tower outlet water temperature control points for energy consumption minimization. This optimization is achieved through a coupled computational methodology integrating building envelope dynamics with central air-conditioning system performance. The energy consumption of the cooling tower was analyzed for varying outlet water temperature set points, and the differences between three control strategies were compared. The results showed that the HOA strategy successfully identifies an optimized control set point, achieving the lowest combined energy consumption for both the chiller and cooling tower. The performance of HOA is better compared to other algorithms in the optimization process. The optimized fitness value is minimal, and the function converges after five iterations and completes the optimization in a single time step when run in MATLAB in only 1.96 s. Compared to conventional non-optimized operating conditions, the HOA strategy yields significant energy savings: peak daily savings reach 4.5%, with an average total daily energy reduction of 3.2%. In conclusion, this paper takes full account of the mutual coupling between the building and the air-conditioning system, providing a feasible method for the simulation and optimization of the building air-conditioning system. Full article
Show Figures

Figure 1

13 pages, 3514 KiB  
Article
A Comprehensive Analysis of Thermal Heat Dissipation for Lithium-Ion Battery Packs
by Xuguang Zhang, Hexiang Zhang, Amjad Almansour, Mrityunjay Singh, James D. Kiser, Hengling Zhu, Michael C. Halbig and Yi Zheng
Energies 2025, 18(9), 2234; https://doi.org/10.3390/en18092234 - 28 Apr 2025
Viewed by 796
Abstract
Effective thermal management is essential for the safe and efficient operation of lithium-ion battery packs, particularly in compact, airflow-sensitive applications such as drones. This study presents a comprehensive thermal analysis of a 16-cell lithium-ion battery pack by exploring seven geometric configurations under airflow [...] Read more.
Effective thermal management is essential for the safe and efficient operation of lithium-ion battery packs, particularly in compact, airflow-sensitive applications such as drones. This study presents a comprehensive thermal analysis of a 16-cell lithium-ion battery pack by exploring seven geometric configurations under airflow speeds ranging from 0 to 15 m/s and integrating nano-carbon-based phase change materials (PCMs) to enhance heat dissipation. A Computational Fluid Dynamics (CFD) approach was employed using Ansys Discovery and Workbench 2024 R1 to simulate airflow and heat transfer processes with high spatial resolution. Using high-fidelity 3D simulations, we found that the trapezoidal wide-base configuration, combined with a 5-inlet and 1-outlet airflow design, achieved the most balanced cooling performance across all speed regimes. This configuration maintained battery temperatures within the optimal operating range (∼45 °C) in both low- and high-speed airflow conditions, with a maximum temperature reduction of up to 8.3 °C compared to the standard square configuration. Additionally, PCM integration extended the thermal regulation duration to approximately 12.5 min, effectively buffering thermal spikes during peak loads. These findings underscore the critical role of CFD-driven geometric optimization and advanced material integration in designing high-efficiency, compact cooling systems for energy-dense battery applications in drones and portable electronics. Full article
Show Figures

Figure 1

Back to TopTop