Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (229)

Search Parameters:
Keywords = conventional ultrasound treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3788 KiB  
Review
Advances in Photoacoustic Imaging of Breast Cancer
by Yang Wu, Keer Huang, Guoxiong Chen and Li Lin
Sensors 2025, 25(15), 4812; https://doi.org/10.3390/s25154812 - 5 Aug 2025
Abstract
Breast cancer is the leading cause of cancer-related mortality among women world-wide, and early screening is critical for improving patient survival. Medical imaging plays a central role in breast cancer screening, diagnosis, and treatment monitoring. However, conventional imaging modalities—including mammography, ultrasound, and magnetic [...] Read more.
Breast cancer is the leading cause of cancer-related mortality among women world-wide, and early screening is critical for improving patient survival. Medical imaging plays a central role in breast cancer screening, diagnosis, and treatment monitoring. However, conventional imaging modalities—including mammography, ultrasound, and magnetic resonance imaging—face limitations such as low diagnostic specificity, relatively slow imaging speed, ionizing radiation exposure, and dependence on exogenous contrast agents. Photoacoustic imaging (PAI), a novel hybrid imaging technique that combines optical contrast with ultrasonic spatial resolution, has shown great promise in addressing these challenges. By revealing anatomical, functional, and molecular features of the breast tumor microenvironment, PAI offers high spatial resolution, rapid imaging, and minimal operator dependence. This review outlines the fundamental principles of PAI and systematically examines recent advances in its application to breast cancer screening, diagnosis, and therapeutic evaluation. Furthermore, we discuss the translational potential of PAI as an emerging breast imaging modality, complementing existing clinical techniques. Full article
(This article belongs to the Special Issue Optical Imaging for Medical Applications)
Show Figures

Figure 1

18 pages, 914 KiB  
Review
Advances in Surgical Management of Malignant Gastric Outlet Obstruction
by Sang-Ho Jeong, Miyeong Park, Kyung Won Seo and Jae-Seok Min
Cancers 2025, 17(15), 2567; https://doi.org/10.3390/cancers17152567 - 4 Aug 2025
Viewed by 185
Abstract
Malignant gastric outlet obstruction (MGOO) is a serious complication arising from advanced gastric or pancreatic head cancer, significantly impairing patients’ quality of life by disrupting oral intake and inducing severe gastrointestinal symptoms. With benign causes such as peptic ulcer disease on the decline, [...] Read more.
Malignant gastric outlet obstruction (MGOO) is a serious complication arising from advanced gastric or pancreatic head cancer, significantly impairing patients’ quality of life by disrupting oral intake and inducing severe gastrointestinal symptoms. With benign causes such as peptic ulcer disease on the decline, malignancies now account for 50–80% of gastric outlet obstruction (GOO) cases globally. This review outlines the pathophysiology, evolving epidemiology, and treatment modalities for MGOO. Therapeutic approaches include conservative management, endoscopic stenting, surgical gastrojejunostomy (GJ), stomach partitioning gastrojejunostomy (SPGJ), and endoscopic ultrasound-guided gastroenterostomy (EUS-GE). While endoscopic stenting offers rapid symptom relief with minimal invasiveness, it has higher rates of re-obstruction. Surgical options like GJ and SPGJ provide more durable palliation, especially for patients with longer expected survival. SPGJ, a modified surgical technique, demonstrates reduced incidence of delayed gastric emptying and may improve postoperative oral intake and survival compared to conventional GJ. EUS-GE represents a promising, minimally invasive alternative that combines surgical durability with endoscopic efficiency, although long-term data remain limited. Treatment selection should consider patient performance status, tumor characteristics, prognosis, and institutional resources. This comprehensive review underscores the need for individualized, multidisciplinary decision-making to optimize symptom relief, nutritional status, and overall outcomes in patients with MGOO. Full article
(This article belongs to the Special Issue Advances in the Treatment of Upper Gastrointestinal Cancer)
Show Figures

Figure 1

17 pages, 2144 KiB  
Article
Percutaneous Electrolysis, Percutaneous Peripheral Nerve Stimulation, and Eccentric Exercise for Shoulder Pain and Functionality in Supraspinatus Tendinopathy: A Single-Blind Randomized Clinical Trial
by Jorge Góngora-Rodríguez, Manuel Rodríguez-Huguet, Daniel Rodríguez-Almagro, Rocío Martín-Valero, Pablo Góngora-Rodríguez, Carmen Ayala-Martínez and Miguel Ángel Rosety-Rodríguez
J. Funct. Morphol. Kinesiol. 2025, 10(3), 295; https://doi.org/10.3390/jfmk10030295 - 30 Jul 2025
Viewed by 531
Abstract
Objectives: This study aimed to investigate the efficacy of Percutaneous Electrolysis (PE), Percutaneous peripheral Nerve Stimulation (PNS), and Eccentric Exercise (EE) in patients with supraspinatus tendinopathy. Methods: Forty-six participants with supraspinatus tendinopathy were randomly allocated to either an invasive therapy group [...] Read more.
Objectives: This study aimed to investigate the efficacy of Percutaneous Electrolysis (PE), Percutaneous peripheral Nerve Stimulation (PNS), and Eccentric Exercise (EE) in patients with supraspinatus tendinopathy. Methods: Forty-six participants with supraspinatus tendinopathy were randomly allocated to either an invasive therapy group (four sessions in four weeks of PE+PNS and EE program) or a conventional physical therapy group (ten sessions for 2 weeks). The multimodal physical program included Ultrasound therapy (US), Transcutaneous Electric Nerve Stimulation (TENS) and the same EE program. The Numerical Pain Rating Scale (NPRS), shoulder Range of Motion (ROM), Pressure Pain Threshold (PPT), and disability (DASH and SPADI) were measured at baseline, at the end of treatment, and at 12- and 24-weeks follow-up. Results: The PE+PNS+EE group demonstrated consistently greater and statistically significant improvements across nearly all pain, mobility, and functional outcomes at all follow-up points (post-treatment, 12-weeks, and 24-weeks) compared to the TENS+US+EE group, with generally medium to large effect sizes. Conclusions: This study concludes that the combined PE+PNS+EE intervention offers safe and effective treatment for supraspinatus tendinopathy, demonstrating statistically significant improvements in pain, mobility, and function compared to conventional electrotherapy. Full article
(This article belongs to the Section Functional Anatomy and Musculoskeletal System)
Show Figures

Figure 1

21 pages, 1893 KiB  
Article
Relationship Between Body Composition and Biomarkers in Adult Females with Breast Cancer: 1-Year Follow-Up Prospective Study
by Angélica Larrad-Sáinz, María Gemma Hernández Núñez, Ana Barabash Bustelo, Inés Gil Prados, Johanna Valerio, José Luis Espadas Gil, María Eugenia Olivares Crespo, María Herrera de la Muela, Blanca Bernaldo Madrid, Irene Serrano García, Ignacio Cristóbal García, Miguel Ángel Rubio-Herrera, Alfonso Luis Calle-Pascual, Juana María Brenes Sánchez and Pilar Matía-Martín
Nutrients 2025, 17(15), 2487; https://doi.org/10.3390/nu17152487 - 30 Jul 2025
Viewed by 269
Abstract
Background/Objectives: After diagnosis, it is common for women with breast cancer to gain weight, which is associated with worse clinical outcomes. However, traditional measures such as body weight, BMI, and waist circumference do not detect key changes in body composition, such as fat [...] Read more.
Background/Objectives: After diagnosis, it is common for women with breast cancer to gain weight, which is associated with worse clinical outcomes. However, traditional measures such as body weight, BMI, and waist circumference do not detect key changes in body composition, such as fat redistribution or muscle loss. The objective of this exploratory study was to assess the evolution of body composition and muscle strength after one year of treatment, and their relationship with metabolic biomarkers. Methods: Prospective observational study in newly diagnosed breast cancer patients. Body composition was assessed using bioelectrical impedance analysis (BIA) and ultrasound (US); muscle strength was measured by handgrip dynamometry. Biomarkers analyzed included glucose, insulin, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), glycosylated hemoglobin (HbA1c), total cholesterol (and its fractions), triglycerides, C-reactive protein (CRP), 6-interleukin (IL-6), vitamin D, myostatin, and fibroblast growth factor 21 (FGF-21). Results: Sixty-one women (mean age 58 years) were included. After one year, fat mass and related parameters significantly increased, while skeletal muscle mass and muscle strength decreased. Sarcopenic obesity prevalence rose from 1.16% to 4.9%. No significant changes were found in biomarkers, but positive correlations were observed between fat parameters and insulin, HOMA-IR, and triglycerides, and negative correlations with HDL-cholesterol. Conclusions: BIA and US can detect unfavorable changes in body composition that are not reflected in conventional measurements. At one year post-diagnosis, women showed increased fat accumulation, muscle loss, and reduced strength, even without significant metabolic biomarker changes. Further research is warranted to elucidate the long-term clinical implications of these findings and the external validity in larger cohorts. Full article
(This article belongs to the Special Issue Body Composition and Nutritional Status in Cancer Patients)
Show Figures

Figure 1

16 pages, 5818 KiB  
Case Report
Novel Sonoguided Digital Palpation and Ultrasound-Guided Hydrodissection of the Long Thoracic Nerve for Managing Serratus Anterior Muscle Pain Syndrome: A Case Report with Technical Details
by Nunung Nugroho, King Hei Stanley Lam, Theodore Tandiono, Teinny Suryadi, Anwar Suhaimi, Wahida Ratnawati, Daniel Chiung-Jui Su, Yonghyun Yoon and Kenneth Dean Reeves
Diagnostics 2025, 15(15), 1891; https://doi.org/10.3390/diagnostics15151891 - 28 Jul 2025
Viewed by 1092
Abstract
Background and Clinical Significance: Serratus Anterior Muscle Pain Syndrome (SAMPS) is an underdiagnosed cause of anterior chest wall pain, often attributed to myofascial trigger points of the serratus anterior muscle (SAM) or dysfunction of the Long Thoracic Nerve (LTN), leading to significant disability [...] Read more.
Background and Clinical Significance: Serratus Anterior Muscle Pain Syndrome (SAMPS) is an underdiagnosed cause of anterior chest wall pain, often attributed to myofascial trigger points of the serratus anterior muscle (SAM) or dysfunction of the Long Thoracic Nerve (LTN), leading to significant disability and affecting ipsilateral upper limb movement and quality of life. Current diagnosis relies on exclusion and physical examination, with limited treatment options beyond conservative approaches. This case report presents a novel approach to chronic SAMPS, successfully diagnosed using Sonoguided Digital Palpation (SDP) and treated with ultrasound-guided hydrodissection of the LTN using 5% dextrose in water (D5W) without local anesthetic (LA), in a patient where conventional treatments had failed. Case Presentation: A 72-year-old male presented with a three-year history of persistent left chest pain radiating to the upper back, exacerbated by activity and mimicking cardiac pain. His medical history included two percutaneous coronary interventions. Physical examination revealed tenderness along the anterior axillary line and a positive hyperirritable spot at the mid axillary line at the 5th rib level. SDP was used to visualize the serratus anterior fascia (SAF) and LTN, and to reproduce the patient’s concordant pain by palpating the LTN. Ultrasound-guided hydrodissection of the LTN was then performed using 20–30cc of D5W without LA to separate the nerve from the surrounding tissues, employing a “fascial unzipping” technique. The patient reported immediate pain relief post-procedure, with the pain reducing from 9/10 to 1/10 on the Numeric Rating Scale (NRS), and sustained relief and functional improvement at the 12-month follow-up. Conclusions: Sonoguided Digital Palpation (SDP) of the LTN can serve as a valuable diagnostic adjunct for visualizing and diagnosing SAMPS. Ultrasound-guided hydrodissection of the LTN with D5W without LA may provide a promising and safe treatment option for patients with chronic SAMPS refractory to conservative management, resulting in rapid and sustained pain relief. Further research, including controlled trials, is warranted to evaluate the long-term efficacy and generalizability of these findings and to compare D5W to other injectates. Full article
Show Figures

Figure 1

11 pages, 3767 KiB  
Case Report
Confirming the Presence of Neurapraxia and Its Potential for Immediate Reversal by Novel Diagnostic and Therapeutic Ultrasound-Guided Hydrodissection Using 5% Dextrose in Water Without Local Anesthetics: Application in a Case of Acute Radial Nerve Palsy
by Ho Won Lee, Jihyo Hwang, Chanwool Park, Minjae Lee, Yonghyun Yoon, Yeui-Seok Seo, Hyemi Yu, Rowook Park, Jaehyun Shim, Junhyuk Ann, Daniel Chiung-Jui Su, Teinny Suryadi, Keneath Dean Reeves and King Hei Stanley Lam
Diagnostics 2025, 15(15), 1880; https://doi.org/10.3390/diagnostics15151880 - 26 Jul 2025
Viewed by 2091
Abstract
Background and Clinical Significance: Radial nerve palsy typically presents as wrist drop due to nerve compression, with conventional management often yielding prolonged recovery. We report a case where ultrasound-guided hydrodissection (HD) with 5% dextrose in water (D5W) achieved immediate functional restoration, suggesting neurapraxia [...] Read more.
Background and Clinical Significance: Radial nerve palsy typically presents as wrist drop due to nerve compression, with conventional management often yielding prolonged recovery. We report a case where ultrasound-guided hydrodissection (HD) with 5% dextrose in water (D5W) achieved immediate functional restoration, suggesting neurapraxia as the underlying pathology. Case Presentation: A 54-year-old diabetic female presented with acute left wrist drop without trauma. Examination confirmed radial nerve palsy (MRC grade 0 wrist extension), while radiographs ruled out structural causes. Ultrasound revealed fascicular swelling at the spiral groove. Under real-time guidance, 50 mL D5W (no local anesthetic) was injected to hydrodissect the radial nerve. Immediate post-procedure assessment showed restored wrist extension (medical research council (MRC) grade 4+). At one- and three-month follow-ups, the patient maintained complete resolution of symptoms and normal function. Conclusions: This case highlights two key findings: (1) HD with D5W can serve as both a diagnostic tool (confirming reversible neurapraxia through immediate response) and therapeutic intervention, and (2) early HD may circumvent prolonged disability associated with conservative management. The absence of electrodiagnostic studies limits objective severity assessment, though ultrasound localized the lesion. While promising, these observations require validation through controlled trials comparing HD to standard care, particularly in diabetic patients with heightened compression susceptibility. Technical considerations—including optimal injectate volume and the role of adjuvant therapies—warrant further investigation. US-guided HD with D5W emerges as a minimally invasive, surgery-sparing option for acute compressive radial neuropathies, with potential to redefine treatment paradigms when applied at symptom onset. Full article
(This article belongs to the Special Issue Recent Advances and Application of Point of Care Ultrasound)
Show Figures

Figure 1

14 pages, 699 KiB  
Article
Effects of 5% Caffeine Ultrasonophoresis on Gynoid Lipodystrophy—A Randomized Controlled Study
by Diana Santos Cabral and Andreia Noites
Lipidology 2025, 2(3), 13; https://doi.org/10.3390/lipidology2030013 - 18 Jul 2025
Viewed by 199
Abstract
Introduction: Gynoid lipodystrophy (GL) affects most women, manifesting itself from puberty to adulthood. Its multifactorial etiology generates controversy in the literature about the most suitable treatment. Several methods are used, from the smallest to the most invasive, in the search for an effective [...] Read more.
Introduction: Gynoid lipodystrophy (GL) affects most women, manifesting itself from puberty to adulthood. Its multifactorial etiology generates controversy in the literature about the most suitable treatment. Several methods are used, from the smallest to the most invasive, in the search for an effective fight against the severity of GL. The positive effect of ultrasound therapy (US) in decreasing subcutaneous adipose tissue is in increasing the skin permeability of pharmacological molecules, and it has aroused interest in the effect of a combination of the two techniques on the severity of GL. However, the results of this technique associated with an exercise program are unknown. Objective(s): To analyze the effect of three sessions of US + 5% caffeine in association with the realization of an exercise program, in females, on the level of severity of GL in the gluteal region and on the posterior proximal third part of the thigh. Methods: A total of 36 healthy women, aged between 18 and 55, who were considered to have GL, were randomly allocated in two experimental groups and one placebo group. The placebo group (PG) performed only physical exercise during the study. Experimental group 1 (EP1) performed US with 5% caffeine alongside a physical exercise protocol and experimental group 2 (EP2) performed US with a conventional US gel alongside a physical exercise protocol. The three groups completed three intervention sessions over 3 weeks, with one session per week. In addition to the level of severity assessed by the Cellulite Several Scale (CSS), anthropometric measures, body composition, and lipid profile of the participants were evaluated. The first assessment was carried out before the intervention (M0) and the last assessment after the three interventions (M1). The results were analyzed using the ANOVA test. The Tukey test was used for multiple comparisons of the groups in all variables, except for those related to the CSS, where the Kruskal–Wallis test was used with a significance level of 0.05. Results: A total of 29 women completed the study. There was a significant decrease inside the PG related to triglycerides (p = 0.012). In M1, all groups started to present median values below 200 mg of triglycerides. In cholesterol, a significant reduction was observed in all groups (p = 0.05). On the gluteal level at 5 cm, there was a decrease in EP1 and EP2 between M0 and M1 with p = 0.006 and p = 0.002, respectively. On the CSS there were no significant differences between groups or between moments. Conclusions: Three sessions of 5% caffeine and US in association with a physical exercise protocol have no effect on reducing the level of severity of GL. Full article
Show Figures

Figure 1

17 pages, 373 KiB  
Review
Innovations in Stress Urinary Incontinence: A Narrative Review
by Tamas Szabo, Melinda-Ildiko Mitranovici, Liviu Moraru, Dan Costachescu, Laura Georgiana Caravia, Elena Bernad, Viviana Ivan, Adrian Apostol, Mihai Munteanu and Lucian Puscasiu
Medicina 2025, 61(7), 1272; https://doi.org/10.3390/medicina61071272 - 14 Jul 2025
Viewed by 491
Abstract
Urinary incontinence is characterized by the involuntary leakage of urine. The primary cause of stress urinary incontinence in women is the weakening of the pelvic floor muscles. Stress urinary incontinence (SUI) is a significant global health problem that impacts mainly middle-aged women, with [...] Read more.
Urinary incontinence is characterized by the involuntary leakage of urine. The primary cause of stress urinary incontinence in women is the weakening of the pelvic floor muscles. Stress urinary incontinence (SUI) is a significant global health problem that impacts mainly middle-aged women, with a severe impact on their quality of life. Traditional diagnostic methods and treatments often fail, although technological innovations have improved diagnostic accuracy, such as specific questionnaires or transperineal ultrasound. While medical therapies and surgical procedures are continuously being developed, controversies about the correct choices regarding diagnostic and treatment methods continue to exist. The aim of our review was to identify the innovative diagnostic tools and effective treatment procedures for SUI. A narrative review was conducted due to the heterogeneity of the studies. New methods for diagnosis and treatment have gained ground, and we have covered them in our review; however, the field continues to expand. A personalized approach to diagnosis is also a requirement because of the limitations of conventional urodynamic studies, and we emphasize the importance of such personalization in enhancing clinical decision making. Future medical strategies that combine both preventive and therapeutic care are desirable. Newer technologies were brought to light in this review, including stem cell therapy and laser therapy. Full article
(This article belongs to the Special Issue New Insights into Gynecological Disease)
16 pages, 765 KiB  
Article
Evaluation of Microhardness in Conservative Root Dentin Treatment Techniques After Irrigation with Iron Oxide Nanoparticles Delivered with an External Magnetic Field
by Ehsaan S. Al-Mustwfi and Hussain F. Al-Huwaizi
Appl. Sci. 2025, 15(14), 7728; https://doi.org/10.3390/app15147728 - 10 Jul 2025
Viewed by 293
Abstract
Chemical endodontic irritants can lead to the demineralization of the inorganic tooth structure, its loss of integrity, microhardness changes, erosion, and an increased risk of fractures. We investigated the action of iron oxide nanomagnet particles (IONPs) as an irrigant solution for improving hardness [...] Read more.
Chemical endodontic irritants can lead to the demineralization of the inorganic tooth structure, its loss of integrity, microhardness changes, erosion, and an increased risk of fractures. We investigated the action of iron oxide nanomagnet particles (IONPs) as an irrigant solution for improving hardness and identifying the concentration of element ions in the root canal. There were six groups in total: a control group (no treatment) and experimental groups (UN: ultrasound agitation normal saline, UI: ultrasound agitation IONPs, MSI: magnetic field and endodontic needle with syringe agitation IONPs, MUI: magnetic field and ultrasound agitation IONPs, and EDTA: ethylenediaminetetraacetic acid). We hypothesized that IONPs with magnetic agitation would preserve microhardness better than EDTA. Vickers hardness testing was used to evaluate microhardness, which was then analyzed using energy-dispersive X-ray spectroscopy (EDS) to investigate the calcium/phosphorus ratio and the presence of iron. The IONP groups exhibit a higher VHN value than the EDTA group (p < 0.05). These results support our hypothesis, indicating that utilizing an IONP irrigant solution with an external magnetic field does not change microhardness but enhances it compared to the EDTA group, suggesting that employing an external magnetic field to deliver nanoparticles to the root canal wall does not affect the properties of the tooth structure compared to conventional instrumentation techniques, which lead to unnecessary loss of root structure. Full article
(This article belongs to the Special Issue Advanced Dental Biomaterials: Technologies and Applications)
Show Figures

Figure 1

16 pages, 5369 KiB  
Article
Multi-Physical Field Intensification Process for Shale Oil Emulsion Dehydration: Parameter Optimization and Mechanisms Exploration
by Yuejiu Liang, Qian Huang, Qing Li, Zhibiao Li, Donghai Yang, Mofan Li and Bing Liang
Processes 2025, 13(7), 2167; https://doi.org/10.3390/pr13072167 - 7 Jul 2025
Viewed by 241
Abstract
Shale oil, a major unconventional energy source with extensive global reserves, presents significant processing challenges due to the exceptional stability of its emulsions. Characterized by small droplet sizes and high interfacial film strength, these emulsions resist efficient treatment via conventional thermal-chemical or electrostatic [...] Read more.
Shale oil, a major unconventional energy source with extensive global reserves, presents significant processing challenges due to the exceptional stability of its emulsions. Characterized by small droplet sizes and high interfacial film strength, these emulsions resist efficient treatment via conventional thermal-chemical or electrostatic dehydration. To address the difficulties in separation, unclear dehydration mechanisms, and inconsistent single-field (electric) performance, this study investigates dehydration using a novel electric–magnetic–ultrasonic coupling field system. Dehydration efficiency under an electric field alone increased with electric field strength, frequency, duration, and temperature. Magnetic or ultrasonic fields alone yielded negligible effects. Coupling an electric field with ultrasound enhanced efficiency, while adding a magnetic field to electricity provided no improvement and decreased efficiency with longer exposure or higher magnetic intensity. The multi-field coupling achieved significant demulsification. Both optimal dehydration performance and minimum energy consumption operating conditions were identified, capable of reducing shale oil water content below 0.5%. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

36 pages, 1129 KiB  
Review
The Effect of Non-Thermal Processing on the Fate of Pathogenic Bacteria and Hidden Hazardous Risks
by Yanan Wu, Xinxin Li, Xinyu Ma, Qing Ren, Zhanbin Sun and Hanxu Pan
Foods 2025, 14(13), 2374; https://doi.org/10.3390/foods14132374 - 4 Jul 2025
Viewed by 556
Abstract
Non-thermal processing encompasses a range of emerging food technologies, including high-pressure processing (HPP), pulsed electric field (PEF), cold atmospheric plasma (CAP), high-pressure carbon dioxide (HPCD), and ultrasound (US). Unlike traditional thermal processing or chemical preservatives, these methods offer advantages such as lower energy [...] Read more.
Non-thermal processing encompasses a range of emerging food technologies, including high-pressure processing (HPP), pulsed electric field (PEF), cold atmospheric plasma (CAP), high-pressure carbon dioxide (HPCD), and ultrasound (US). Unlike traditional thermal processing or chemical preservatives, these methods offer advantages such as lower energy consumption, enhanced environmental sustainability, and effective microbial inactivation, thereby extending food shelf life. Moreover, they can better preserve the nutritional integrity, color, flavor, and texture of food products. However, a critical concern associated with non-thermal processing is its potential to induce microorganisms into a viable but nonculturable (VBNC) state. These VBNC cells evade detection via conventional culturing techniques and may remain metabolically active and retain virulence, posing hidden food safety risks. Despite these implications, comprehensive reviews addressing the induction of a VBNC state by non-thermal treatments remain limited. This review systematically summarizes the microbial inactivation effects and mechanisms of non-thermal processing techniques, the VBNC state, and their associated hazards. This review aims to support technological innovation and sustainable advancement in non-thermal food processing. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

20 pages, 1558 KiB  
Article
Investigation of the Antioxidant and Antimicrobial Properties of Ultrasound-Assisted Extracted Phenolics from Aronia melanocarpa Pomace
by Iuliana Aprodu, Carmen Lidia Chitescu, Leontina Grigore-Gurgu and Loredana Dumitrașcu
Appl. Sci. 2025, 15(13), 7070; https://doi.org/10.3390/app15137070 - 23 Jun 2025
Viewed by 293
Abstract
Black chokeberry (Aronia melanocarpa; BC) pomace represents an excellent source of compounds with health-promoting properties. This study investigated the contribution of ultrasound treatment to the recovery of phenolic compounds in comparison with conventional extraction, using water and ethanol solvents. The ultrasound [...] Read more.
Black chokeberry (Aronia melanocarpa; BC) pomace represents an excellent source of compounds with health-promoting properties. This study investigated the contribution of ultrasound treatment to the recovery of phenolic compounds in comparison with conventional extraction, using water and ethanol solvents. The ultrasound amplitude was tested between 20% and 60%, for 10 min, with the highest concentrations of total polyphenols and antioxidant activity being measured at a 30% amplitude. Ultrasound treatment was able to reduce the extraction time for the efficient recovery of antioxidants, from 24 h as required in conventional extraction to several minutes while using lower amplitudes. Regardless of the ultrasound extraction conditions, the ethanolic extracts provided higher content of antioxidants compared to water extracts. The chromatographic analysis highlighted the presence of 48 bioactive compounds, including phenolic acids, isoflavones, flavones, flavanones, proanthocyanidins, flavonols and terpenes. BC extracts showed potential to inhibit the growth of Escherichia coli and Staphylococcus aureus. In addition, the potential mechanism associated with the antibacterial activity was revealed after performing molecular docking tests involving, as receptors, essential proteins for the survival and colonization functions of E. coli and S. aureus. Full article
(This article belongs to the Special Issue Application of Natural Components in Food Production)
Show Figures

Figure 1

13 pages, 2502 KiB  
Article
Real-Life Clinical Use and Outcomes of Fusion Imaging-Guided Percutaneous Microwave Ablation of Hepatocellular Carcinoma: Experience from Two Italian Centers
by Pierpaolo Biondetti, Francesco Cicchetti, Gaetano Valerio Davide Amato, Velio Ascenti, Niccolò Finardi, Jacopo Tintori, Francesco Ugo Iovino, Carolina Lanza, Salvatore Alessio Angileri, Pierluca Torcia, Anna Maria Ierardi, Giacomo Vignati, Lorenzo Giovanni Monfardini and Gianpaolo Carrafiello
Diagnostics 2025, 15(13), 1573; https://doi.org/10.3390/diagnostics15131573 - 20 Jun 2025
Viewed by 420
Abstract
Background: Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Percutaneous thermal ablation is an effective treatment, but standard ultrasound (US) guidance is limited in cases of inconspicuous nodules. Ultrasound fusion imaging (USFI), which overlays cross-sectional imaging onto real-time US is [...] Read more.
Background: Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Percutaneous thermal ablation is an effective treatment, but standard ultrasound (US) guidance is limited in cases of inconspicuous nodules. Ultrasound fusion imaging (USFI), which overlays cross-sectional imaging onto real-time US is an emerging technique that improves tumor visibility and technical feasibility. This study reports real-life outcomes of USFI-guided microwave ablation (MWA) for HCC in two Italian centers. Materials and Methods: In this multicentric retrospective study, 56 patients with 73 poorly or non-visible HCC nodules underwent USFI-guided percutaneous MWA with no visibility or poor visibility on B-mode US. Technical success, complications, and local tumor control were evaluated, with follow-up imaging at 1 month and every 3 months thereafter. Results: Complete response (CR) at 1 month was observed in 78.1% of nodules, with residual disease (RD) more common in poorly visible nodules than non-visible nodules (18.1% vs. 4.2%, p = 0.019). During a median 13-month follow-up, local tumor progression (LTP) occurred in 9.6% of patients. No significant association was found with difficult tumor location. Conclusions: USFI-guided MWA is a safe and effective option for treating HCC nodules not adequately visualized with conventional US, expanding eligibility to complex cases. Full article
(This article belongs to the Special Issue Recent Advances in Diagnostic and Interventional Radiology)
Show Figures

Figure 1

17 pages, 1412 KiB  
Article
Effect of Acoustic Pressure on Temozolomide-Loaded Oleic Acid-Based Liposomes and Its Safety to Brain Tissue
by Vasilisa D. Dalinina, Vera S. Shashkovskaya, Iman M. Khaskhanova, Daria Yu. Travnikova, Nelly S. Chmelyuk, Dmitry A. Korzhenevskiy, Vsevolod V. Belousov and Tatiana O. Abakumova
Pharmaceuticals 2025, 18(6), 910; https://doi.org/10.3390/ph18060910 - 18 Jun 2025
Viewed by 532
Abstract
Background: Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited therapeutic options, particularly due to the limited blood–brain barrier (BBB) permeability. Nanoparticle-based drug delivery systems, such as liposomes, can prolong drugs’ circulation time and enhance their accumulation within brain tumors, thereby [...] Read more.
Background: Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited therapeutic options, particularly due to the limited blood–brain barrier (BBB) permeability. Nanoparticle-based drug delivery systems, such as liposomes, can prolong drugs’ circulation time and enhance their accumulation within brain tumors, thereby improving therapeutic outcomes. Controlled drug release further contributes to high local drug concentrations while minimizing systemic toxicity. Oleic acid (OA), a monounsaturated fatty acid, is commonly used to enhance drug loading and increase lipid membrane fluidity. In this study, we developed liposomal formulations with optimized temozolomide (TMZ)’s loading and analyze its response to focused ultrasound (FUS). Methods: We synthetized OA-based liposomes with different lipid composition, performed physicochemical characterization (DLS, TEM) and analyzed the TMZ loading efficiency. Different FUS parameters were tested for effective OA-based liposomes destruction. Safety of selected parameters was evaluated in vivo by MRI, histological staining and RT-PCR of pro-inflammatory cytokines. Results: All the formulations exhibited comparable hydrodynamic diameters; however, OA-containing liposomes demonstrated a significantly higher TMZ encapsulation efficiency and enhanced cytotoxicity in U87 glioma cells. Moreover, it was shown that OA-liposomes were disrupted at lower acoustic pressures (5 MPa), while conventional liposomes required higher thresholds (>8 MPa). A safety analysis of FUS parameters indicated that pressures exceeding 11 MPa induced brain edema, necrotic lesions and elevated cytokine levels within 72 h post-treatment. Conclusions: These results suggest that OA-based liposomes possess favorable characteristics, with an increased sonosensitivity for the site-specific delivery of TMZ, offering a promising strategy for glioma treatment. Full article
Show Figures

Figure 1

21 pages, 3721 KiB  
Article
Analysis of the Mechanical Properties of Polymer Composites Reinforced with Charcoal Particulate
by Josinaldo O. Dias, Rayara Davel Siqueira, Bruno Fonseca Coelho and Amanda O. Conceição
Materials 2025, 18(12), 2746; https://doi.org/10.3390/ma18122746 - 11 Jun 2025
Viewed by 389
Abstract
Naturally reinforced polymer composites have emerged as a promising sustainable alternative to conventional polymers due to their biodegradability. This study aimed to develop a composite by incorporating charcoal particulate into a recycled high-density polyethylene (HDPE) matrix and evaluating its mechanical properties. Two manufacturing [...] Read more.
Naturally reinforced polymer composites have emerged as a promising sustainable alternative to conventional polymers due to their biodegradability. This study aimed to develop a composite by incorporating charcoal particulate into a recycled high-density polyethylene (HDPE) matrix and evaluating its mechanical properties. Two manufacturing methods (compression molding and extrusion) and four charcoal concentrations (0, 5, 10, and 15%) were investigated. Characterization involved tensile tests and non-destructive evaluation using wave propagation and ultrasound techniques. The experiment followed a completely randomized design with a 4 × 2 factorial arrangement, comprising eight treatments. Statistical analysis was conducted using Tukey’s test for multiple comparisons. The tensile test results indicated that the manufacturing methods of compression molding and extrusion led to significant differences in the elastic modulus (MOE) variable, in contrast to the results observed for the maximum stress variable. However, the addition of charcoal particulate caused a notable reduction in maximum tensile strength (approximately 50%), from 20.17 to 11.19 MPa, and a 22% decrease in the MOE, from 310.93 to 242.88 MPa, compared to unreinforced HDPE. Non-destructive testing confirmed the tensile test findings, also indicating a reduction in MOE. Despite the decline in mechanical properties, these composites remain viable for applications prioritizing lightweight structures, thermal insulation, or chemical resistance. Furthermore, their use enhances the valorization of waste and increases sustainability by reducing environmental impact. Full article
Show Figures

Figure 1

Back to TopTop