Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,403)

Search Parameters:
Keywords = controlled release formulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3065 KiB  
Article
Matrix Metalloproteinase-2-Responsive Peptide-Modified Cleavable PEGylated Liposomes for Paclitaxel Delivery
by Xingyu Zhao and Yinghuan Li
Pharmaceuticals 2025, 18(7), 1042; https://doi.org/10.3390/ph18071042 - 15 Jul 2025
Viewed by 142
Abstract
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity [...] Read more.
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity to enhance tissue-specific drug delivery. In this study, we engineered MMP-2-responsive GPLGVRG peptide-modified cleavable PEGylated liposomes for targeted paclitaxel (PTX) delivery. Methods: Molecular docking simulations employed the MMP-2 crystal structure (PDB ID: 7XJO) to assess GPLGVRG peptide binding affinity. A cleavable, enzyme-sensitive peptide-PEG conjugate (Chol-PEG2K-GPLGVRG-PEG5K) was synthesized via small-molecule liquid-phase synthesis and characterized by 1H NMR and MALDI-TOF MS. Liposomes incorporating this conjugate (S-Peps-PEG5K) were formulated to evaluate whether MMP-2-mediated peptide degradation triggers detachment of long-chain PEG moieties, thereby enhancing internalization by 4T1 breast cancer cells. Additionally, the effects of tumor microenvironmental pH (~6.5) and MMP-2 concentration on drug release dynamics were investigated. Results: Molecular docking revealed robust GPLGVRG-MMP-2 interactions, yielding a binding energy of −7.1 kcal/mol. The peptide formed hydrogen bonds with MMP-2 residues Tyr A:23 and Arg A:53 (bond lengths: 2.4–2.5 Å) and engaged in hydrophobic contacts, confirming MMP-2 as the primary recognition site. Formulations containing 5 mol% Chol-PEG2K-GPLGVRG-PEG5K combined with 0.15 µg/mL MMP-2 (S-Peps-PEG5K +MMP) exhibited superior internalization efficiency and significantly reduced clonogenic survival compared to controls. Notably, acidic pH (~6.5) induced MMP-2-mediated cleavage of the GPLGVRG peptide, accelerating S-Peps-PEG5K dissociation and facilitating drug release. Conclusions: MMP-2-responsive, cleavable PEGylated liposomes markedly improve PTX accumulation and controlled release at tumor sites by dynamically modulating their stealth properties, offering a promising strategy to enhance chemotherapy efficacy in breast cancer. Full article
Show Figures

Graphical abstract

26 pages, 3728 KiB  
Article
Structural Properties, Mechanical Behavior, and Food Protecting Ability of Chickpea Protein-Derived Biopolymer Films
by Mehmet Şükrü Karakuş
Polymers 2025, 17(14), 1938; https://doi.org/10.3390/polym17141938 - 15 Jul 2025
Viewed by 70
Abstract
This study aimed to enhance the characteristic properties of chickpea proteins enriched with quercetin by incorporating whey proteins. For this, whey proteins were supplemented into the film systems at 10, 20, 30, 40, and 50% of the total protein content, and these formulations [...] Read more.
This study aimed to enhance the characteristic properties of chickpea proteins enriched with quercetin by incorporating whey proteins. For this, whey proteins were supplemented into the film systems at 10, 20, 30, 40, and 50% of the total protein content, and these formulations were labeled as CWF1, CWF2, CWF3, CWF4, and CWF5, in that order. Negative control (CF) was designed with chickpea protein alone. Essential amino acid content of chickpea protein (16.48%) was higher than that of whey protein (8.09%). FTIR spectra revealed protein–protein interactions occurred within film systems. Raising the whey protein content above 40% led to morphological issues in the films. Differences in moisture content, thickness, color, and opacity were obvious (p < 0.05). As the protein content boasted, a decrease in solubility and an increase in the swelling ratio of the films was detected (p < 0.05). CWF4 exhibited enhanced barriers and mechanical properties, followed by CWF3, CWF2, CWF1, CF, and CWF5 (p < 0.05). Moreover, in food simulators, quercetin release from films was monitored, and the highest release of quercetin occurred in 50% ethanol, followed by water and 95% ethanol. Ultimately, highly functional quercetin-loaded edible films, especially CWF4, stood out in protecting fresh strawberries. Full article
(This article belongs to the Special Issue Mechanical Behavior of Polymer Materials and Its Applications)
Show Figures

Figure 1

25 pages, 3886 KiB  
Article
Amikacin Coated 3D-Printed Metal Devices for Prevention of Postsurgical Infections (PSIs)
by Chu Zhang, Ishwor Poudel, Nur Mita, Xuejia Kang, Manjusha Annaji, Seungjong Lee, Peter Panizzi, Nima Shamsaei, Oladiran Fasina, R. Jayachandra Babu and Robert D. Arnold
Pharmaceutics 2025, 17(7), 911; https://doi.org/10.3390/pharmaceutics17070911 (registering DOI) - 14 Jul 2025
Viewed by 132
Abstract
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated [...] Read more.
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated with postsurgical infections caused by bacterial adhesion remain a clinical issue. To address this, local antibiotic therapies are receiving extensive attention to minimize the risk of implant-related infections. This study investigated the use of amikacin (AMK), a broad-spectrum aminoglycoside antibiotic, incorporated onto 3D-printed 316L stainless steel implants using biodegradable polymer coatings of chitosan and poly lactic-co-glycolic acid (PLGA). Methods: This research examined different approaches to coat 3DP implants with amikacin. Various polymer-based coatings were studied to determine the optimal formulation based on the characteristics and release profile. The optimal formulation was performed on the antibacterial activity studies. Results: AMK-chitosan with PLGA coating implants controlled the rate of drug release for up to one month. The 3DP drug-loaded substrates demonstrated effective, concentration-dependent antibacterial activity against common infective pathogens. AMK-loaded substrates showed antimicrobial effectiveness for one week and inhibited bacteria significantly compared to the uncoated controls. Conclusions: This study demonstrated that 3DP metal surfaces coated with amikacin can provide customizable drug release profiles while effectively inhibiting bacterial growth. These findings highlight the potential of combining 3D printing with localized delivery strategies to prevent implant-associated infections and advance the development of personalized therapies. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

41 pages, 3033 KiB  
Review
Analyzing Molecular Determinants of Nanodrugs’ Cytotoxic Effects
by Alicia Calé, Petra Elblová, Hana Andělová, Mariia Lunova and Oleg Lunov
Int. J. Mol. Sci. 2025, 26(14), 6687; https://doi.org/10.3390/ijms26146687 - 11 Jul 2025
Viewed by 333
Abstract
Nanodrugs hold great promise for targeted therapies, but their potential for cytotoxicity remains a major area of concern, threatening both patient safety and clinical translation. In this systematic review, we conducted a systematic investigation of nanotoxicity studies—identified through an AI-assisted screening procedure using [...] Read more.
Nanodrugs hold great promise for targeted therapies, but their potential for cytotoxicity remains a major area of concern, threatening both patient safety and clinical translation. In this systematic review, we conducted a systematic investigation of nanotoxicity studies—identified through an AI-assisted screening procedure using Scopus, PubMed, and Elicit AI—to establish the molecular determinants of nanodrug-induced cytotoxicity. Our findings reveal three dominant and linked mechanisms that consistently act in a range of nanomaterials: oxidative stress, inflammatory signaling, and lysosomal disruption. Key nanomaterial properties like chemical structure, size, shape, surface charge, tendency to aggregate, and biocorona formation control these pathways, modulating cellular uptake, reactive oxygen species generation, cytokine release, and subcellular injury. Notably, the most frequent mechanism was oxidative stress, which often initiated downstream inflammatory and apoptotic signaling. By linking these toxicity pathways with particular nanoparticle characteristics, our review presents necessary guidelines for safer, more biocompatible nanodrug formulation design. This extensive framework acknowledges the imperative necessity for mechanistic toxicity assessment in nanopharmaceutical design and underscores the strength of AI tools in driving systematic toxicology studies. Full article
(This article belongs to the Special Issue Molecular Research on Nanotoxicology)
Show Figures

Graphical abstract

24 pages, 1920 KiB  
Review
Advances in Doxorubicin Chemotherapy: Emerging Polymeric Nanocarriers for Drug Loading and Delivery
by Abhi Bhadran, Himanshu Polara, Godwin K. Babanyinah, Sruthy Baburaj and Mihaela C. Stefan
Cancers 2025, 17(14), 2303; https://doi.org/10.3390/cancers17142303 - 10 Jul 2025
Viewed by 321
Abstract
Background/Objectives: Effective and targeted delivery of doxorubicin (DOX) remains a significant challenge due to its dose-limiting cardiotoxicity and systemic side effects. Liposomal formulations like Doxil® have improved tumor targeting and reduced toxicity, but issues such as limited stability, poor release control, and [...] Read more.
Background/Objectives: Effective and targeted delivery of doxorubicin (DOX) remains a significant challenge due to its dose-limiting cardiotoxicity and systemic side effects. Liposomal formulations like Doxil® have improved tumor targeting and reduced toxicity, but issues such as limited stability, poor release control, and insufficient site-specific delivery persist. As a result, there is a growing interest in advanced drug delivery systems, particularly polymeric nanocarriers, which offer biocompatibility, tunable properties, and ease of fabrication. Methods: This review is organized into two key sections. The first section provides a comprehensive overview of DOX, including its mechanism of action, clinical challenges, and the limitations of current chemotherapy approaches. The second section highlights recent advances in polymeric nanocarriers for DOX delivery, focusing on polymeric micelles as well as other promising systems like hydrogels, dendrimers, polymersomes, and polymer–drug conjugates. Results: Initial discussions explore current strategies enhancing DOX’s clinical translation, including methods to address cardiotoxicity and multidrug resistance. The latter part presents recent studies that report improved drug loading efficiency in polymeric nanocarriers through techniques such as core/shell modifications, enhanced hydrophobic interactions, and polymer–drug conjugation. Conclusions: Despite notable progress in polymeric nanocarrier-based DOX delivery, challenges like limited circulation time, immunogenicity, and manufacturing scalability continue to hinder clinical application. Continued innovation in this field is crucial for the development of safe, effective, and clinically translatable polymeric nanocarriers for cancer therapy. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

21 pages, 1170 KiB  
Review
Innovative Controlled-Release Systems for Fucoxanthin: Research Progress and Applications
by Shiyan Wang, Mengran Guo and Zhaohui Jin
Pharmaceutics 2025, 17(7), 889; https://doi.org/10.3390/pharmaceutics17070889 - 8 Jul 2025
Viewed by 273
Abstract
Fucoxanthin, a marine-derived carotenoid primarily sourced from algae and microalgae, holds significant potential for pharmaceutical and nutraceutical applications. However, its highly unsaturated structure presents critical challenges, including structural instability, poor aqueous solubility, and limited bioavailability. These restrict its application despite its abundant natural [...] Read more.
Fucoxanthin, a marine-derived carotenoid primarily sourced from algae and microalgae, holds significant potential for pharmaceutical and nutraceutical applications. However, its highly unsaturated structure presents critical challenges, including structural instability, poor aqueous solubility, and limited bioavailability. These restrict its application despite its abundant natural availability. Recently, various controlled-release nanotechnologies have been applied to improve the properties of fucoxanthin formulations. In this review, we systematically summarized the bioactivities of fucoxanthin and highlighted recent advancements in controlled-release systems designed to address the limitations. These controlled-release systems mainly use natural or synthetic organic materials and are employed to develop various formulations, including emulsions, nanoparticles, nanofibers, and nanostructured lipid carriers. In addition, the emerging bioinspired drug delivery systems, particularly extracellular vesicles and cell-membrane-derived biomimetic systems, have gained prominence for their immunocompatibility and ability to penetrate physiological barriers, which is regarded as superior encapsulation vesicles for fucoxanthin. Focusing on innovations, we discussed the state-of-the-art delivery systems for fucoxanthin encapsulation and emphasized their roles in improving biosafety, enhancing bioavailability, preserving bioactivity, and optimizing therapeutic performance across various disease models. These insights will provide promising guidance for engineering controlled-release platforms and will aim to unlock fucoxanthin’s full potential in drug development and dietary supplement formulations. Full article
Show Figures

Figure 1

22 pages, 2464 KiB  
Article
Development and Characterization of LL37 Antimicrobial-Peptide-Loaded Chitosan Nanoparticles: An Antimicrobial Sustained Release System
by Fazilet Canatan Ergün, Meltem Demirel Kars and Gökhan Kars
Polymers 2025, 17(13), 1884; https://doi.org/10.3390/polym17131884 - 7 Jul 2025
Viewed by 401
Abstract
CSNPs synthesized via the ionic gelation method have emerged as a promising nanoplatform in diverse fields such as pharmaceuticals, nanotechnology, and polymer science due to their biocompatibility, ease of fabrication, and tunable properties. This study focuses on the development and characterization of LL37-loaded [...] Read more.
CSNPs synthesized via the ionic gelation method have emerged as a promising nanoplatform in diverse fields such as pharmaceuticals, nanotechnology, and polymer science due to their biocompatibility, ease of fabrication, and tunable properties. This study focuses on the development and characterization of LL37-loaded CSNPs, designed to enhance antibacterial efficacy while maintaining biocompatibility. This study pioneers a systematic loading optimization approach by evaluating the encapsulation efficiency (%EE) of antimicrobial peptide LL37 across multiple concentrations (7.5, 15, and 30 µg/mL), thereby identifying the formulation that maximizes peptide incorporation while preserving controlled release characteristics. The multi-concentration analysis establishes a new methodological benchmark for peptide delivery system development. To achieve this, CSNPs were optimized for size and stability by adjusting parameters such as the chitosan concentration, pH, and stabilizer. LL37, a potent antimicrobial peptide, was successfully encapsulated into CSNPs at concentrations of 7.5, 15, and 30 µg/mL, yielding formulations with favorable physicochemical properties. Dynamic light scattering (DLS) and Zeta sizer analyses revealed that blank CSNPs exhibited an average particle size of 180.40 ± 2.16 nm, a zeta potential (ZP) of +40.57 ± 1.82 mV, and a polydispersity index (PDI) of 0.289. In contrast, 15-LL37-CSNPs demonstrated an increased size of 210.9 ± 2.59 nm with an enhanced zeta potential of +51.21 ± 0.93 mV, indicating an improved stability and interaction potential. Field emission scanning electron microscopy (FE-SEM) analyses exhibited the round shaped morphology of nanoparticles. The release profile of LL37 exhibited a concentration-dependent rate and showed the best fit with the first-order kinetic model. Cytocompatibility assessments using the XTT assay confirmed that both blank and LL37-loaded CSNPs did not exhibit cytotoxicity on keratinocyte cells across a range of concentrations (150 µg/mL to 0.29 µg/mL). Notably, LL37-loaded CSNPs demonstrated significant antibacterial activity against E. coli and S. aureus, with the 15-LL37-CSNP formulation exhibiting superior efficacy. Overall, these findings highlight the potential of LL37-CSNPs as a versatile antibacterial delivery system with applications in drug delivery, wound healing, and tissue engineering. Full article
(This article belongs to the Special Issue Biocompatible and Biodegradable Polymer Materials)
Show Figures

Graphical abstract

17 pages, 3316 KiB  
Review
Advances in Liposomal Drug Delivery: Multidirectional Perspectives on Overcoming Biological Barriers
by Żaneta Sobol, Rafał Chiczewski and Dorota Wątróbska-Świetlikowska
Pharmaceutics 2025, 17(7), 885; https://doi.org/10.3390/pharmaceutics17070885 - 5 Jul 2025
Viewed by 456
Abstract
Liposomes represent a cornerstone of modern drug delivery systems due to their unique structural and physicochemical characteristics. Extensive research has refined their formulation, stability, and targeting capabilities, leading to numerous clinical applications, particularly in oncology. A key clinical feature is their ability to [...] Read more.
Liposomes represent a cornerstone of modern drug delivery systems due to their unique structural and physicochemical characteristics. Extensive research has refined their formulation, stability, and targeting capabilities, leading to numerous clinical applications, particularly in oncology. A key clinical feature is their ability to accumulate in malignant tissues via the enhanced permeability and retention effect, offering improved pharmacokinetics and reduced systemic toxicity. Advances in liposomal engineering, including PEGylation and ligand-based targeting, have significantly enhanced pharmacokinetic profiles and tissue specificity, minimizing off-target toxicity. The modern approach to nanocarrier-based drugs offers multidirectional perspectives on targeted therapy. Liposomes can bypass drug resistance mechanisms and provide controlled or stimuli-responsive drug release. Current trends in liposome research focus on hybrid nanocarriers, personalized medicine applications, and combination therapies. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

39 pages, 5423 KiB  
Review
Dual-Drug Delivery Systems Using Hydrogel–Nanoparticle Composites: Recent Advances and Key Applications
by Moon Sup Yoon, Jae Min Lee, Min Jeong Jo, Su Jeong Kang, Myeong Kyun Yoo, So Yeon Park, Sunghyun Bong, Chan-Su Park, Chun-Woong Park, Jin-Seok Kim, Sang-Bae Han, Hye Jin Lee and Dae Hwan Shin
Gels 2025, 11(7), 520; https://doi.org/10.3390/gels11070520 - 3 Jul 2025
Viewed by 454
Abstract
Dual-drug delivery systems using hydrogel–nanoparticle composites have emerged as a versatile platform for achieving controlled, targeted, and efficient delivery of two distinct therapeutic agents. This approach combines the high loading capacity and tunable release properties of hydrogels with the enhanced stability and targeting [...] Read more.
Dual-drug delivery systems using hydrogel–nanoparticle composites have emerged as a versatile platform for achieving controlled, targeted, and efficient delivery of two distinct therapeutic agents. This approach combines the high loading capacity and tunable release properties of hydrogels with the enhanced stability and targeting ability of nanoparticles, providing synergistic benefits in various biomedical applications. While significant progress has been made, previous research has primarily focused on single-drug systems or simple co-delivery strategies, often lacking precise spatial and temporal control. This gap underscores the need for more sophisticated composite designs that enable programmable, multi-phase release. This review discusses representative fabrication methods, including physical embedding, covalent integration, and layer-by-layer assembly, to offer insights into practical implementation strategies. Also we present recent studies focusing on key applications—including wound healing, cancer therapy, infection prevention, transplant immunosuppression, and tissue regeneration—with an emphasis on composite design and formulation strategies, types of hydrogels and nanoparticles, and mechanisms of dual-drug release and evaluation. Recent advances in nanoparticle engineering and hydrogel formulation have enabled precise control over drug release and improved therapeutic outcomes. Dual-drug delivery systems using hydrogel–nanoparticle composites present a promising approach for overcoming the limitations of conventional monotherapy and achieving synergistic therapeutic effects. Ongoing research continues to optimize the design, efficacy, and safety of these systems, paving the way for their clinical translation. Full article
(This article belongs to the Special Issue Polymer-Based Gels)
Show Figures

Graphical abstract

19 pages, 2810 KiB  
Article
In Vitro Assessment of a Doubly Adjuvanted Self-Emulsified Nanoemulsion as a Delivery Vehicle for Antigenic Proteins
by Evgenia Tsanaktsidou, Maritsa Margaroni, Evdokia Karagouni, Costas Kiparissides and Olga Kammona
Pharmaceutics 2025, 17(7), 870; https://doi.org/10.3390/pharmaceutics17070870 - 2 Jul 2025
Viewed by 324
Abstract
Background/Objectives: Leishmaniasis is a prevailing infectious disease transmitted via infected phlebotomine sandflies. The lack of an efficient vaccine with respect to immunogenic antigens and adjuvanted delivery systems impedes its control. Following the induction of immune responses in mice vaccinated with multi-epitope Leishmania peptides [...] Read more.
Background/Objectives: Leishmaniasis is a prevailing infectious disease transmitted via infected phlebotomine sandflies. The lack of an efficient vaccine with respect to immunogenic antigens and adjuvanted delivery systems impedes its control. Following the induction of immune responses in mice vaccinated with multi-epitope Leishmania peptides (LeishPts) encapsulated in doubly adjuvanted self-nanoemulsifying drug delivery systems (ST-SNEDDSs), this study aims to assess ST-SNEDDS-based nanoemulsions as vehicles for the delivery of antigenic proteins. Methods: Model antigens (e.g., BSA-FITC, OVA) were encapsulated in ST-SNEDDS after being complexed with the cationic phospholipid dimyristoyl phosphatidylglycerol (DMPG) via hydrophobic ion pairing. The nanoemulsions were characterized with respect to droplet diameter, zeta potential, stability, protein loading, protein release from the nanodroplets in different release media and cell uptake. Results: Both model antigens exhibited high encapsulation efficiency (>95%) and their release from the nanodroplets was shown to be strongly affected by the type of release medium (e.g., PBS, FBS 10% v/v) and the ratio of its volume to that of the oily phase, in agreement with predictions of protein release. Protein-loaded nanoemulsion droplets labeled with Cy-5 were found to be efficiently taken up by macrophages (J774A.1) in vitro. However, no colocalization of the labeled nanodroplets and BSA-FITC could be observed. Conclusions: It was revealed that in contrast with LeishPts, whole protein molecules may not be appropriate antigenic cargo for ST-SNEDDS formulations due to the rapid protein release from the nanodroplets in release media simulating in vitro culture and in vivo conditions such as FBS 10% v/v. Full article
Show Figures

Graphical abstract

19 pages, 2844 KiB  
Article
Chitosan Nanoparticles Enhance the Antiproliferative Effect of Lapachol in Urothelial Carcinoma Cell Lines
by Tatiane Roquete Amparo, Kamila de Fátima da Anunciação, Tamires Cunha Almeida, Lucas Resende Dutra Sousa, Viviane Flores Xavier, Janaína Brandão Seibert, Ana Paula Moreira Barboza, Paula Melo de Abreu Vieira, Orlando David Henrique dos Santos, Glenda Nicioli da Silva and Geraldo Célio Brandão
Pharmaceutics 2025, 17(7), 868; https://doi.org/10.3390/pharmaceutics17070868 - 2 Jul 2025
Viewed by 291
Abstract
Backgroud/Objectives: Lapachol is a naturally occurring prenylated naphthoquinone with antiproliferative effects. However, its clinical application remains limited due to several factors, including poor water solubility, low bioavailability, and adverse effects. The development of chitosan-based nanoparticles holds promise in overcoming these challenges and has [...] Read more.
Backgroud/Objectives: Lapachol is a naturally occurring prenylated naphthoquinone with antiproliferative effects. However, its clinical application remains limited due to several factors, including poor water solubility, low bioavailability, and adverse effects. The development of chitosan-based nanoparticles holds promise in overcoming these challenges and has emerged as a potential nanocarrier for cancer therapy, including bladder cancer. The objective of this study was to develop and evaluate the effects of chitosan nanoparticles on bladder tumor cell lines. Methods: The nanoemulsion was prepared using the hot homogenization method, while the chitosan nanoparticles were obtained through the ionic gelation technique. The nanoformulations were characterized in terms of particle size and polydispersity index (PDI) using photon correlation spectroscopy, and zeta potential by electrophoretic mobility. Encapsulation efficiency was determined by ultracentrifugation, and the drug release was analyzed using the dialysis method. The antineoplastic potential was assessed using the MTT assay, and the safety profile was assessed through ex vivo analysis. Cellular uptake was determined by fluorescence microscopy. Results: The study demonstrated that both the chitosan-based nanoemulsion and nanospheres encapsulating lapachol exhibited appropriate particle sizes (around 160 nm), high encapsulation efficiency (>90%), and a controlled release profile (Korsmeyer–Peppas model). These nanoemulsion systems enhanced the antiproliferative activity of lapachol in bladder tumor cells, with the nanospheres showing superior cellular uptake. Histopathological analysis indicated the safety of the formulations when administered intravesically. Conclusions: The results suggest that chitosan nanoparticles may represent a promising alternative for bladder cancer treatment. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

13 pages, 653 KiB  
Review
Topical Percutaneous Drug Delivery for Allergic Diseases: A Novel Strategy for Site-Directed Pharmacologic Modulation
by Mitsuhiro Kamimura, Hiroaki Todo, Kenji Sugibayashi and Koichiro Asano
Pharmaceutics 2025, 17(7), 867; https://doi.org/10.3390/pharmaceutics17070867 - 2 Jul 2025
Viewed by 222
Abstract
Topical percutaneous drug delivery has recently emerged as a novel strategy for the treatment of allergic diseases, offering targeted drug delivery to mucosal tissues adjacent to the skin. Unlike conventional topical approaches that act on the skin surface or mucosal membranes, topical percutaneous [...] Read more.
Topical percutaneous drug delivery has recently emerged as a novel strategy for the treatment of allergic diseases, offering targeted drug delivery to mucosal tissues adjacent to the skin. Unlike conventional topical approaches that act on the skin surface or mucosal membranes, topical percutaneous drug delivery enables non-invasive pharmacologic modulation of deeper structures such as the conjunctiva, nasal mucosa, and trachea. This review explores the rationale, pharmacokinetic foundation, clinical data, and future prospects of transdermal therapy in allergic conjunctivitis, allergic rhinitis, and asthma-related cough. In allergic conjunctivitis, eyelid-based transdermal delivery of antihistamines such as diphenhydramine and epinastine has shown rapid and long-lasting symptom relief, with epinastine cream recently approved in Japan following a randomized controlled trial (RCT) demonstrating its efficacy. Preclinical and clinical pharmacokinetic studies support the eyelid’s unique permeability and sustained drug release profile, reinforcing its utility as a delivery site for ocular therapies. In allergic rhinitis, diphenhydramine application to the nasal ala demonstrated symptomatic improvement in patients intolerant to intranasal therapies, though anatomical separation from the inflamed turbinates may limit consistent efficacy. Similarly, cervical tracheal application of steroids and antihistamines has shown potential benefit in asthma-related cough, especially for patients refractory to inhaled treatments, despite anatomical and depth-related limitations. Overall, site-specific anatomy, skin permeability, and disease localization are critical factors in determining therapeutic outcomes. While trans-eyelid therapy is supported by robust data, studies on the nasal ala and trachea remain limited to small-scale pilot trials. No major adverse events have been reported with nasal or tracheal application, but eyelid sensitivity requires formulation caution. To validate this promising modality, further RCTs, pharmacokinetic analyses, and formulation optimization are warranted. Topical percutaneous drug delivery holds potential as a non-invasive, site-directed alternative for managing allergic diseases beyond dermatologic indications. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

19 pages, 2575 KiB  
Article
Formulation-Dependent Extrudability of Highly Filled Alginate System for Vaginal Drug Delivery
by Arianna Chiappa, Alice Fusari, Marco Uboldi, Fabiana Cavarzan, Paola Petrini, Lucia Zema, Alice Melocchi and Francesco Briatico Vangosa
Gels 2025, 11(7), 510; https://doi.org/10.3390/gels11070510 - 1 Jul 2025
Viewed by 253
Abstract
The incorporation of solid particles as a filler to a hydrogel is a strategy to modulate its properties for specific applications, or even to introduce new functionalities to the hydrogel itself. The efficacy of such a modification depends on the filler content and [...] Read more.
The incorporation of solid particles as a filler to a hydrogel is a strategy to modulate its properties for specific applications, or even to introduce new functionalities to the hydrogel itself. The efficacy of such a modification depends on the filler content and its interaction with the hydrogel matrix. In drug delivery applications, solid particles can be added to hydrogels to improve drug loading capacity, enable the inclusion of poorly soluble drugs, and modulate release kinetics. This work focuses on the case of alginate (ALG)-based hydrogels, obtained following an internal gelation procedure using CaCO3 as the Ca2+ source and containing a high solid volume fraction (up to 50%) of metronidazole (MTZ), a drug with low water solubility, as a potential extrusion-based drug delivery system. The impact of the hydrogel precursor composition (ALG and MTZ content) on the rheological behavior of the filled hydrogel and precursor suspension were investigated, as well as the hydrogel stability and MTZ dissolution. In the absence of solid MTZ, the precursor solutions showed a slightly shear thinning behavior, more accentuated with the increase in ALG concentration. The addition of drugs exceeding the saturation concentration in the precursor suspension resulted in a substantial increase (about one order of magnitude) in the low-shear viscosity and, for the highest MTZ loadings, a yield stress. Despite the significant changes, precursor formulations retained their extrudability, as confirmed by both numerical estimates and experimental validation. MTZ particles did not affect the crosslinking of the precursors to form the hydrogel, but they did control its viscoelastic behavior. In unfilled hydrogels, the ALG concentration controls stability (from 70 h for the lowest concentration to 650 h for the highest) upon immersion in acetate buffer at pH 4.5, determining the MTZ release/hydrogel dissolution behavior. The correlations between composition and material properties offer a basis for building predictive models for fine-tuning their composition of highly filled hydrogel systems. Full article
(This article belongs to the Special Issue Recent Research on Alginate Hydrogels in Bioengineering Applications)
Show Figures

Figure 1

27 pages, 2654 KiB  
Review
Bioactive Compound-Fortified Nanomedicine in the Modulation of Reactive Oxygen Species and Enhancement of the Wound Healing Process: A Review
by Popat Mohite, Abhijeet Puri, Shubham Munde, Nitin Ade, Aarati Budar, Anil Kumar Singh, Deepanjan Datta, Supachoke Mangmool, Sudarshan Singh and Chuda Chittasupho
Pharmaceutics 2025, 17(7), 855; https://doi.org/10.3390/pharmaceutics17070855 - 30 Jun 2025
Viewed by 479
Abstract
Wound healing is a complex biological process that involves the regulation of reactive oxygen species (ROS), which play a critical role in cellular signaling and tissue repair. While the dual nature of ROS means that maintaining controlled levels is essential for effective wound [...] Read more.
Wound healing is a complex biological process that involves the regulation of reactive oxygen species (ROS), which play a critical role in cellular signaling and tissue repair. While the dual nature of ROS means that maintaining controlled levels is essential for effective wound healing, excessive ROS production can hinder the recovery process. Bioactive compounds represent promising therapeutic candidates enriched with polyphenols, which are known for their high therapeutic properties and minimal adverse effects, and are thus highlighted as promising therapeutic candidates for wound healing due to their antioxidant properties. However, their clinical application is often limited due to challenges such as poor solubility and low bioavailability. To overcome this, the encapsulation of these compounds into nanocarriers has been proposed, which enhances their stability, facilitates targeted delivery, and allows for controlled release. The present review highlights emerging innovations in nanomedicine-based drug delivery of natural antioxidants for precise modulation of ROS in wound healing. Moreover, the review elaborates briefly on various in vitro and in vivo studies that assessed the ROS levels using different fluorescent dyes. By modulating ROS levels and improving the local microenvironment at wound sites, these bioactive-nanomedicine formulations can significantly accelerate the healing process of wounds. The review concludes by advocating for further research into optimizing these nano-formulations to maximize their potential in clinical settings, thereby improving therapeutic strategies for wound care and regeneration. Full article
(This article belongs to the Special Issue Biomaterials: Pharmaceutical Applications)
Show Figures

Figure 1

13 pages, 1121 KiB  
Article
Optimizing Nitrogen Use Efficiency and Reducing Nutrient Losses in Maize Using Controlled-Release Coated Fertilizers
by Jong-Hyeong Lee and Hyun-Hwoi Ku
Agrochemicals 2025, 4(3), 10; https://doi.org/10.3390/agrochemicals4030010 - 30 Jun 2025
Viewed by 288
Abstract
This study aimed to evaluate the agronomic performance and environmental impact of controlled-release coated fertilizers (CRCFs) in upland maize systems. Specifically, we sought to determine the optimal nitrogen (N) application rate that maximizes nitrogen use efficiency (NUE) and minimizes nutrient runoff, while maintaining [...] Read more.
This study aimed to evaluate the agronomic performance and environmental impact of controlled-release coated fertilizers (CRCFs) in upland maize systems. Specifically, we sought to determine the optimal nitrogen (N) application rate that maximizes nitrogen use efficiency (NUE) and minimizes nutrient runoff, while maintaining yield comparable to conventional fertilization practices. A two-year field experiment (2017–2018) was conducted to assess CRCF formulations composed of urea, MAP, and potassium sulfate encapsulated in LDPE/EVA coatings with talc, humic acid, and starch additives. Treatments included various nitrogen application rates (33–90 kg N ha−1) using CRCF and a conventional NPK fertilizer (150 kg N ha−1). Measurements included fresh ear yield, aboveground biomass, NUE, and concentrations of total N (TN), nitrate N (NO3–N), and total P (TP) in surface runoff. Statistical analyses were performed using linear and quadratic regression models to determine yield responses and agronomic optimal N rate. CRCF treatments produced yields comparable to or exceeding those of conventional fertilization while using less than half the recommended N input. The modeled agronomic optimum N rate was 88.4 kg N ha−1, which closely matched the maximum observed yield. CRCF application significantly reduced TN, NO3–N, and TP runoff in 2017 and improved NUE up to 71.2%. Subsurface placement and sigmoidal nutrient release contributed to reduced nutrient losses. CRCFs can maintain maize yield while reducing N input by approximately 40%, aligning with climate-smart agriculture principles. This strategy enhances NUE, reduces environmental risks, and offers economic benefits by enabling single basal application. Further multi-site studies are recommended to validate these findings under diverse agroecological conditions. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

Back to TopTop