Formulation-Dependent Extrudability of Highly Filled Alginate System for Vaginal Drug Delivery
Abstract
1. Introduction
2. Results and Discussion
2.1. Metronidazole Particle Size Distribution
2.2. Solutions and CaCO3 Suspensions Flow Behavior Without MTZ Powder
2.3. MTZ Suspensions Flow Behavior
2.4. Extrudability
2.5. Dynamic Mechanical Response ALG Based Hydrogels
2.6. Swelling Behavior and Stability
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Metronidazole Preparation
4.2.2. Hydrogel Preparation
4.2.3. Rotational Rheological Measurement on Solutions and Suspensions
4.2.4. Extrudability/3D Printability
4.2.5. Dynamic Mechanical Analysis
4.2.6. Samples Preparation
- -
- custom made cylindric mold (radius = 12.5 mm, high = 1 mm) to provide samples suitable for dynamical mechanical test.
- -
- silicon multi-portion mold with dome-shaped geometry (design shown in Figure 13) to supply samples for the swelling test. This geometry could in principle allow the estimation of both swelling and MTZ mass and volume release. The former can be obtained by mass measurement, as described below, while the latter from the optical observation of the dissolution front, exploiting the sample spherical symmetry and under the hypothesis of isotropic dissolution.
4.2.7. Swelling and Stability Tests
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malkin, A.Y.; Kulichikhin, V.G.; Khashirova, S.Y.; Simonov-Emelyanov, I.D.; Mityukov, A.V. Rheology of Highly Filled Polymer Compositions-Limits of Filling, Structure, and Transport Phenomena. Polymers 2024, 16, 442. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Shi, J.; Liu, Y.; Shi, X.; Sun, J.; He, Z.; Luo, C.; Zhang, S. Engineered hydrogel platform for diabetic wound healing. Chem. Eng. J. 2025, 507, 160379. [Google Scholar]
- Lee, K.K.; Go, K.; Lee, E.; Kim, H.; Kim, S.; Kim, J.-H.; Chae, M.S.; Jeong, J.-O. Multifunctional hydrogels for advanced cancer treatment: Diagnostic imaging and therapeutic modalities. Gels 2025, 11, 426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Huang, Y.; Pan, W.; Tong, X.; Zeng, Q.; Su, T.; Qi, X.; Shen, J. Polydopamine-incorporated dextran hydrogel drug carrier with tailorable structure for wound healing. Carbohydr. Polym. 2021, 253, 117213. [Google Scholar] [CrossRef]
- Gu, Z.; Chen, L.; Xu, Y.; Liu, Y.; Zhao, Z.; Zhao, C.; Lei, W.; Rong, Q.; Fang, R.; Zhao, T.; et al. General strategy to fabricate highly filled microcomposite hydrogels with high mechanical strength and stiffness. ACS Appl. Mater. Interfaces 2018, 10, 4161–4167. [Google Scholar] [CrossRef]
- Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C.; et al. Advances in drug delivery systems, challenges and future directions. Heliyon 2023, 9, e17488. [Google Scholar] [CrossRef]
- Bordbar-Khiabani, A.; Gasik, M. Smart hydrogels for advanced drug delivery systems. Int. J. Mol. Sci. 2022, 23, 3665. [Google Scholar] [CrossRef]
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and their applications in targeted drug delivery. Molecules 2019, 24, 603. [Google Scholar] [CrossRef]
- Alshemary, A.Z.; Bilgin, S.; Işık, G.; Motameni, A.; Tezcaner, A.; Evis, Z. Biomechanical evaluation of an injectable alginate/dicalcium phosphate cement composites for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2021, 118, 104439. [Google Scholar] [CrossRef]
- Chen, M.H.; Wang, L.L.; Chung, J.J.; Kim, Y.-H.; Atluri, P.; Burdick, J.A. Methods to assess shear-thinning hydrogels for application as injectable biomaterials. ACS Biomater. Sci. Eng. 2017, 3, 3146–3160. [Google Scholar] [CrossRef]
- Alasvandian, S.; Shahgholi, M.; Karimipour, A. Investigating the effects of chitosan atomic ratio and drug type on mechanical properties of silica aerogel/chitosan nanocomposites using molecular dynamics approach. J. Mol. Liq. 2024, 401, 124639. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.M.; Aggor, F.S.; Awad, A.M.; El-Aref, A.T. An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr. Polym. 2012, 91, 693–698. [Google Scholar] [CrossRef]
- Lohani, A.; Saxena, R.; Duarte, J.G.; Khan, S.; Figueiras, A.; Mascarenhas-Melo, F. Tailored polymeric hydrogels for regenerative medicine and drug delivery: From material design to clinical applications. Int. J. Pharm. 2025, 681, 125818. [Google Scholar] [CrossRef]
- Mathew, A.P.; Uthaman, S.; Cho, K.-H.; Cho, C.-S.; Park, K.-K. Injectable hydrogels for delivering biotherapeutic molecules. Int. J. Biol. Macromol. 2018, 110, 17–29. [Google Scholar] [CrossRef]
- Bakhrushina, E.O.; Mikhel, I.B.; Buraya, L.M.; Moiseev, E.D.; Zubareva, I.M.; Belyatskaya, A.V.; Evzikov, G.Y.; Bondarenko, A.P.; Krasnyuk, I.I., Jr.; Krasnyuk, I.I. Implantation of in situ gelling systems for the delivery of chemotherapeutic agents. Gels 2024, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Pan, W.; Su, T.; Zhang, M.; Dong, W.; Qi, X. Recent advances in natural polymer-based drug delivery systems. React. Funct. Polym. 2020, 148, 104501. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 2020, 162, 1414–1428. [Google Scholar] [CrossRef]
- Besiri, I.N.; Goudoulas, T.B.; Fattahi, E.; Becker, T. Experimental advances in the real-time recording of cross-linking alginate in situ gelation: A review. Polymers 2023, 15, 2875. [Google Scholar] [CrossRef]
- Zeng, H.; Tang, L.; Huang, L.; Yang, N.; Chen, X.; Peng, X.; Chen, Z.; Guo, J.; Weng, J.; Guo, T. A novel multi-functional PVA-alginate hydrogel with dynamic bond crosslinking for infected wound repair. Carbohydr. Polym. 2025, 362, 123636. [Google Scholar] [CrossRef]
- Guagliano, G.; Volpini, C.; Sardelli, L.; Bloise, N.; Briatico-Vangosa, F.; Icaro Cornaglia, A.; Dotti, S.; Villa, R.; Visai, L.; Petrini, P. Hep3Gel: A shape-shifting extracellular matrix-based, three-dimensional liver model adaptable to different culture systems. ACS Biomater. Sci. Eng. 2023, 9, 211–229. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.; Abrahim, B.; Veiga, F.; Seiça, R.; Cabral, L.M.; Arnaud, P.; Andrade, J.C.; Ribeiro, A.J. Preparation methods and applications behind alginate-based particles. Expert Opin. Drug Deliv. 2017, 14, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.N.; Perez, T.A.; Pedreiro, L.N.; Prezotti, F.G.; Boni, F.I.; Cardoso, V.M.O.; Venâncio, T.; Gremião, M.P.D. A novel pH-responsive hydrogel-based on calcium alginate engineered by the previous formation of polyelectrolyte complexes (PECs) intended to vaginal administration. Drug Dev. Ind. Pharm. 2017, 43, 1656–1668. [Google Scholar] [CrossRef]
- Shaaban, O.M.; Youssef, A.E.A.; Khodry, M.M.; Mostafa, S.A. Vaginal douching by women with vulvovaginitis and relation to reproductive health hazards. BMC Womens Health 2013, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Cirri, M.; Maestrelli, F.; Scuota, S.; Bazzucchi, V.; Mura, P. Development and microbiological evaluation of chitosan and chitosan-alginate microspheres for vaginal administration of metronidazole. Int. J. Pharm. 2021, 598, 120375. [Google Scholar] [CrossRef]
- Takahashi, Y.; Noda, I.; Nagasawa, M. Zero-shear viscosity of linear polymer solutions over a wide range of concentration. Macromolecules 1985, 18, 1002–1008. [Google Scholar] [CrossRef]
- Wilms, P.; Hinrichs, J.; Kohlus, R. Macroscopic rheology of non-Brownian suspensions at high shear rates: The influence of solid volume fraction and non-Newtonian behaviour of the liquid phase. Rheol. Acta 2022, 61, 123–138. [Google Scholar] [CrossRef]
- Thomas, D.G. Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J. Colloid Sci. 1965, 20, 267–277. [Google Scholar] [CrossRef]
- Acierno, D.; Patti, A. Fused deposition modelling (FDM) of thermoplastic-based filaments: Process and rheological properties—An overview. Materials 2023, 16, 7664. [Google Scholar] [CrossRef]
- Turco, G.; Donati, I.; Grassi, M.; Marchioli, G.; Lapasin, R.; Paoletti, S. Mechanical spectroscopy and relaxometry on alginate hydrogels: A comparative analysis for structural characterization and network mesh size determination. Biomacromolecules 2011, 12, 1272–1282. [Google Scholar] [CrossRef]
- Karvinen, J.; Kellomäki, M. Characterization of self-healing hydrogels for biomedical applications. Eur. Polym. J. 2022, 181, 111641. [Google Scholar] [CrossRef]
- Gabriele, D.; de Cindio, B.; D’Antona, P. A weak gel model for foods. Rheol. Acta 2001, 40, 120–127. [Google Scholar] [CrossRef]
- Ito, F.; Usui, K.; Kawahara, D.; Suenaga, A.; Maki, T.; Kidoaki, S.; Suzuki, H.; Taiji, M.; Itoh, M.; Hayashizaki, Y.; et al. Reversible hydrogel formation driven by protein–peptide–specific interaction and chondrocyte entrapment. Biomaterials 2010, 31, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Chiappa, A.; Fusari, A.; Uboldi, M.; Petrini, P.; Melocchi, A.; Briatico Vangosa, F.; Zema, L. 3D printed reservoir-like vaginal rings for antibiotic delivery. Int. J. Pharm. 2025, 671, 125217. [Google Scholar] [CrossRef] [PubMed]
- Boyd, P.; Variano, B.; Spence, P.; McCoy, C.F.; Murphy, D.J.; Dallal Bashi, Y.H.; Malcolm, R.K. In vitro release testing methods for drug-releasing vaginal rings. J. Control Release 2019, 313, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Guagliano, G.; Volpini, C.; Camilletti, J.; Donnaloja, F.; Briatico-Vangosa, F.; Visai, L.; Petrini, P. Internally crosslinked alginate-based bioinks for the fabrication of in vitro hepatic tissue models. Biofabrication 2023, 15, 035018. [Google Scholar] [CrossRef]
- Maacosko, C.W. 6.2 Capillary Rheometer. In Rheology: Principles, Measurements, and Applications; Wiley-VCH: Weinheim, Germany, 1994. [Google Scholar]
- ASTM D4440-23; Standard Test Method for Plastics: Dynamic Mechanical Properties Melts Rheology. ASTM International: West Conshohocken, PA, USA, 2023.
ALG (%w/wtot) | CaCO3 (%w/wtot) | η0 (Pa∙s) | m | λ (s) |
---|---|---|---|---|
2 | 0 | 0.100 ± 0.003 | 0.4 ± 0.1 | n.d. |
0.17 | 0.101 ± 0.003 | 0.4 ± 0.1 | n.d. | |
4 | 0 | 0.86 ± 0.01 | 0.60 ± 0.07 | n.d. |
0.34 | 0.88 ± 0.01 | 0.52 ± 0.04 | 0.0043 ± 0.0003 | |
6 | 0 | 4.52 ± 0.06 | 0.50 ± 0.02 | 0.028 ± 0.002 |
0.51 | 6.63 ± 0.05 | 0.470 ± 0.007 | 0.07 ± 0.003 |
NA_ | MTZ Powder, X (%V/Vtot) | η0 (Pa∙s) | m | λ (s) |
---|---|---|---|---|
A | 20 | 0.44 ± 0.05 | 1 ± 0.2 | 1 ± 0.5 |
B | 20 | 0.88 ± 0.02 | 0.5 ± 0.2 | n.d. |
35 | 10 ± 1 | 0.30 ± 0.03 | n.d. | |
50 | 57 ± 4 | 0.45 ± 0.01 | 0.6 ± 0.2 | |
C | 20 | 11.3 ± 0.4 | 0.48 ± 0.09 | 0.06 ± 0.03 |
35 | 40 ± 2 | 0.53 ± 0.04 | 0.16 ± 0.01 | |
50 | 130 ± 9 | 0.56 ± 0.02 | 0.4 ± 0.1 |
MTZ Volume Fraction, (%V/Vtot) | τy (Pa) | k (Pa∙sn) | n |
---|---|---|---|
0 | 0 ± 0.02 | 0.11 ± 0.01 | 0.93 ± 0.01 |
20 | 0 ± 0.09 | 0.33 ± 0.03 | 0.91 ± 0.02 |
35 | 0.5 ± 0.1 | 1.36 ± 0.06 | 0.81 ± 0.01 |
50 | 4.3 ± 0.4 | 5.7 ± 0.2 | 0.74 ± 0.01 |
Formulation | A | B |
---|---|---|
NA_A | 0.11 ± 0.02 | 11.7 ± 0.4 |
NA_B | 0.0025 ± 0.0007 | 18.1 ± 0.5 |
NA_C | 0.08 ± 0.09 | 9 ± 2 |
ALG (% w/wtot) | CaCO3 (% w/wtot) | CaCO3 Suspension Code | MTZ (% V/Vtot) | Drug-Loaded Suspension Code | Hydrogel Code |
---|---|---|---|---|---|
2 | 0.17 | A | 0 | A.0 | HA.0 |
20 | A.20 | HA.20 | |||
35 | A.35 | HA.35 | |||
50 | A.50 | HA.50 | |||
4 | 0.34 | B | 0 | B.0 | HB.0 |
20 | B.20 | HB.20 | |||
35 | B.35 | HB.35 | |||
50 | B.50 | HB.50 | |||
6 | 0.51 | C | 0 | C.0 | HC.0 |
20 | C.20 | HC.20 | |||
35 | C.35 | HC.35 | |||
50 | C.50 | HC.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiappa, A.; Fusari, A.; Uboldi, M.; Cavarzan, F.; Petrini, P.; Zema, L.; Melocchi, A.; Briatico Vangosa, F. Formulation-Dependent Extrudability of Highly Filled Alginate System for Vaginal Drug Delivery. Gels 2025, 11, 510. https://doi.org/10.3390/gels11070510
Chiappa A, Fusari A, Uboldi M, Cavarzan F, Petrini P, Zema L, Melocchi A, Briatico Vangosa F. Formulation-Dependent Extrudability of Highly Filled Alginate System for Vaginal Drug Delivery. Gels. 2025; 11(7):510. https://doi.org/10.3390/gels11070510
Chicago/Turabian StyleChiappa, Arianna, Alice Fusari, Marco Uboldi, Fabiana Cavarzan, Paola Petrini, Lucia Zema, Alice Melocchi, and Francesco Briatico Vangosa. 2025. "Formulation-Dependent Extrudability of Highly Filled Alginate System for Vaginal Drug Delivery" Gels 11, no. 7: 510. https://doi.org/10.3390/gels11070510
APA StyleChiappa, A., Fusari, A., Uboldi, M., Cavarzan, F., Petrini, P., Zema, L., Melocchi, A., & Briatico Vangosa, F. (2025). Formulation-Dependent Extrudability of Highly Filled Alginate System for Vaginal Drug Delivery. Gels, 11(7), 510. https://doi.org/10.3390/gels11070510