Analyzing Molecular Determinants of Nanodrugs’ Cytotoxic Effects
Abstract
1. Introduction
2. Materials and Methods
- Investigated FDA-approved or clinically used nanodrugs in therapeutic uses.
- Addressed molecular mechanisms of cytotoxicity induced by nanodrugs (e.g., protein corona formation, oxidative stress, inflammation, lysosomal damage).
- Provided experimental evidence (in vitro or in vivo) and not solely theoretical or computational.
- Provided a comprehensive toxicity or safety profile, such as dose–response curves or IC50 values.
- Analyzed nanodrug metabolism, degradation, or biodistribution in biological systems.
- Focused on therapeutic applications, excluding environmental or non-medical studies.
- Were original research articles or systematic reviews/meta-analyses.
- Addressed molecular-level toxicity mechanisms, beyond drug delivery efficacy.
- Toxicity rates or IC50 values.
- Dose-dependent toxicity responses.
- Molecular mechanisms (e.g., oxidative stress, inflammatory signaling, lysosomal disruption).
- Affected cellular structures (e.g., mitochondria, lysosomes, membrane integrity).
- Biomarkers of oxidative stress and inflammation.
- Observed immunomodulatory effects.
3. Types of Nanodrugs Approved for Clinical Applications
3.1. Defining the Terminology of Nanodrugs
- “a material or end product is engineered to have at least one external dimension, or an internal or surface structure, in the nanoscale range (approximately 1 nm to 100 nm);
- a material or end product is engineered to exhibit properties or phenomena, including physical or chemical properties or biological effects, that are attributable to its dimension (s), even if these dimensions fall outside the nanoscale range, up to one micrometer (1000 nm)” [43].
3.2. Lipid-Based NPs
3.3. Polymer-Based NPs
3.4. Inorganic NPs
4. General Cytotoxic Characteristics of Nanomaterials
4.1. Cytotoxic Effects Determined by Nanomaterial Chemical Composition
4.2. Cytotoxic Effects Determined by Nanomaterial Size
4.3. Cytotoxic Effects Determined by Nanomaterial Shape
4.4. Cytotoxic Effects Determined by Nanomaterial Surface Properties
4.5. Cytotoxicity Driven by Aggregation/Agglomeration
4.6. Impact of Biocorona Formation on Cytotoxicity
4.7. Effects of Degradation and Metabolization Products on Cytotoxicity
5. Defining Molecular Determinants of Nanodrugs’ Cytotoxic Effects
5.1. Key Molecular Pathways Determining Cytotoxicity of Nanodrugs
5.2. Predictive Frameworks Determining Cytotoxicity of Nanodrugs
6. Outlook and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APIs | active pharmaceutical ingredients |
FDA | U.S. Food and Drug Administration |
NPs | Nanoparticles |
EMA | European Medicines Agency |
VZV | Varicella-Zoster Virus |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
AML-MRC | Acute myeloid leukemia with myelodysplasia-related changes |
t-AML | Therapy-related acute myeloid leukemia |
MAC | Mycobacterium avium complex |
NTM | Nontuberculous mycobacteria |
CKD | Chronic kidney disease |
PEG | Polyethylene glycol |
PLGA | Poly(lactic-co-glycolic) acid |
CNTs | Carbon nanotubes |
CTAB | Cetyltrimethylammonium bromide |
LPS | Lipopolysaccharides |
TLR4 | Toll-like receptor 4 |
CME | Clathrin-mediated endocytosis |
FEME | Fast endophilin-mediated endocytosis |
CLIC/GEEC | Clathrin-independent carrier/glycosylphosphatidylinositol-anchored protein-enriched early endocytic compartment endocytosis |
PEI | Polyethyleneimine |
MPS | Mononuclear phagocyte system |
BSA | Bovine serum albumin |
ROS | Reactive Oxygen Species |
ER | Endoplasmic Reticulum |
CDKs | Cyclin-dependent kinases |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
IL-6 | Interleukin 6 |
IL-8 | Interleukin 8 |
IL-1β | Interleukin-1β |
TNF-α | Tumor necrosis factor α. |
HSP70 | Heat shock protein 70 |
TfR1 | Transferrin receptor 1 |
EPR | Enhanced permeability and retention |
MAPK | Mitogen-activated protein kinases |
LMP | Lysosomal membrane permeabilization |
UPR | Unfolded protein response |
COX-2 | Cyclooxygenase-2 |
NLRP3 | NLR family pyrin domain containing 3 |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
DNs | DNA nanostructures |
References
- Bhatia, S.N.; Chen, X.; Dobrovolskaia, M.A.; Lammers, T. Cancer nanomedicine. Nat. Rev. Cancer 2022, 22, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Younis, M.A.; Tawfeek, H.M.; Abdellatif, A.A.H.; Abdel-Aleem, J.A.; Harashima, H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv. Drug Deliv. Rev. 2022, 181, 114083. [Google Scholar] [CrossRef]
- Available online: https://commonfund.nih.gov/nanomedicine (accessed on 27 January 2025).
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Cao, Y.; Cao, M.; Wang, Y.; Cao, Y.; Gong, T. Nanomedicine in cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 293. [Google Scholar] [CrossRef]
- Havelikar, U.; Ghorpade, K.B.; Kumar, A.; Patel, A.; Singh, M.; Banjare, N.; Gupta, P.N. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. Discov. Nano 2024, 19, 165. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.Y.; Nie, G.J. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater. 2021, 6, 766–783. [Google Scholar] [CrossRef] [PubMed]
- Szebeni, J.; Storm, G.; Ljubimova, J.Y.; Castells, M.; Phillips, E.J.; Turjeman, K.; Barenholz, Y.; Crommelin, D.J.A.; Dobrovolskaia, M.A. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat. Nanotechnol. 2022, 17, 337–346. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng. Transl. Med. 2021, 6, e10246. [Google Scholar] [CrossRef]
- Uzhytchak, M.; Smolková, B.; Lunova, M.; Frtús, A.; Jirsa, M.; Dejneka, A.; Lunov, O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv. Drug Deliv. Rev. 2023, 197, 114828. [Google Scholar] [CrossRef]
- Herrmann, I.; Li, Z.A.; Bahal, R.; Conde, J. Translating nanomedicines from the lab to the clinic. Cell Rep. Phys. Sci. 2025, 6, 102357. [Google Scholar] [CrossRef]
- Dordevic, S.; Gonzalez, M.M.; Conejos-Sánchez, I.; Carreira, B.; Pozzi, S.; Acúrcio, R.C.; Satchi-Fainaro, R.; Florindo, H.F.; Vicent, M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 2022, 12, 500–525. [Google Scholar] [CrossRef] [PubMed]
- Mitragotri, S.; Lammers, T.; Bae, Y.H.; Schwendeman, S.; De Smedt, S.; Leroux, J.C.; Peer, D.; Kwon, I.C.; Harashima, H.; Kikuchi, A.; et al. Drug delivery research for the future: Expanding the nano horizons and beyond. J. Control. Release 2017, 246, 183–184. [Google Scholar] [CrossRef]
- Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol. 2018, 9, 790. [Google Scholar] [CrossRef] [PubMed]
- Skrypnyk, N.I.; Siskind, L.J.; Faubel, S.; de Caestecker, M.P. Bridging translation for acute kidney injury with better preclinical modeling of human disease. Am. J. Physiol.-Ren. Physiol. 2016, 310, F972–F984. [Google Scholar] [CrossRef]
- Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.B.; Zhang, J.; Watanabe, W. Physical and chemical stability of drug nanoparticles. Adv. Drug Deliv. Rev. 2011, 63, 456–469. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, X.; Wu, Y.; Chen, X.; Feng, L.; Xie, N.; Shen, G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment. Signal Transduct. Target. Ther. 2024, 9, 34. [Google Scholar] [CrossRef]
- Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014. [Google Scholar] [CrossRef]
- Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410. [Google Scholar] [CrossRef]
- Sun, D.X.; Zhou, S.; Gao, W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano 2020, 14, 12281–12290. [Google Scholar] [CrossRef]
- Wáng, Y.X.J.; Idée, J.M. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant. Imaging Med. Surg. 2017, 7, 88–122. [Google Scholar] [CrossRef]
- Kendall, M.; Lynch, I. Long-term monitoring for nanomedicine implants and drugs. Nat. Nanotechnol. 2016, 11, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R. Black box warning for anemia drug. JAMA 2015, 313, 1704. [Google Scholar] [CrossRef]
- Sun, T.; Kang, Y.Y.; Liu, J.; Zhang, Y.L.; Ou, L.L.; Liu, X.N.; Lai, R.F.; Shao, L.Q. Nanomaterials and hepatic disease: Toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. J. Nanobiotechnol. 2021, 19, 108. [Google Scholar] [CrossRef]
- Frtús, A.; Smolková, B.; Uzhytchak, M.; Lunova, M.; Jirsa, M.; Kubinová, S.; Dejneka, A.; Lunov, O. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J. Control. Release 2020, 328, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373–2387. [Google Scholar] [CrossRef] [PubMed]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef]
- Aronson, J.K.; Ferner, R.E. Joining the DoTS: New approach to classifying adverse drug reactions. BMJ 2003, 327, 1222–1225. [Google Scholar] [CrossRef]
- Coleman, J.J.; Pontefract, S.K. Adverse drug reactions. Clin. Med. 2016, 16, 481–485. [Google Scholar] [CrossRef]
- Liebler, D.C.; Guengerich, F.P. Elucidating mechanisms of drug-induced toxicity. Nat. Rev. Drug Discov. 2005, 4, 410–420. [Google Scholar] [CrossRef]
- Pognan, F.; Beilmann, M.; Boonen, H.C.M.; Czich, A.; Dear, G.; Hewitt, P.; Mow, T.; Oinonen, T.; Roth, A.; Steger-Hartmann, T.; et al. The evolving role of investigative toxicology in the pharmaceutical industry. Nat. Rev. Drug Discov. 2023, 22, 317–335. [Google Scholar] [CrossRef] [PubMed]
- Helal-Neto, E.; de Barros, A.O.D.; Saldanha-Gama, R.; Brandao-Costa, R.; Alencar, L.M.R.; dos Santos, C.C.; Martínez-Máñez, R.; Ricci-Junior, E.; Alexis, F.; Morandi, V.; et al. Molecular and cellular risk assessment of healthy human cells and cancer human cells exposed to nanoparticles. Int. J. Mol. Sci. 2020, 21, 230. [Google Scholar] [CrossRef]
- Laux, P.; Tentschert, J.; Riebeling, C.; Braeuning, A.; Creutzenberg, O.; Epp, A.; Fessard, V.; Haas, K.H.; Haase, A.; Hund-Rinke, K.; et al. Nanomaterials: Certain aspects of application, risk assessment and risk communication. Arch. Toxicol. 2018, 92, 121–141. [Google Scholar] [CrossRef]
- Thu, H.E.; Haider, M.; Khan, S.; Sohail, M.; Hussain, Z. Nanotoxicity induced by nanomaterials: A review of factors affecting nanotoxicity and possible adaptations. OpenNano 2023, 14, 100190. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, Y.; Wargo, J.A.; Lang, F.F.; Kim, B.Y.S. Considerations for designing preclinical cancer immune nanomedicine studies. Nat. Nanotechnol. 2021, 16, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.V.; Laux, P.; Luch, A.; Sudrik, C.; Wiehr, S.; Wild, A.-M.; Santomauro, G.; Bill, J.; Sitti, M. Review of emerging concepts in nanotoxicology: Opportunities and challenges for safer nanomaterial design. Toxicol. Mech. Methods 2019, 29, 378–387. [Google Scholar] [CrossRef]
- Owen, A.; Rannard, S.; Bawa, R.; Feng, S.-S. Interdisciplinary nanomedicine publications through interdisciplinary peer-review. J. Interdiscip. Nanomed. 2016, 1, 4–8. [Google Scholar] [CrossRef]
- Tinkle, S.; McNeil, S.E.; Mühlebach, S.; Bawa, R.; Borchard, G.; Barenholz, Y.; Tamarkin, L.; Desai, N. Nanomedicines: Addressing the scientific and regulatory gap. Ann. New York Acad. Sci. 2014, 1313, 35–56. [Google Scholar] [CrossRef]
- Available online: https://www.ema.europa.eu/en/news/european-medicines-agency-publishes-reflection-paper-general-issues-consideration-regarding-coated (accessed on 27 January 2025).
- Liz-Marzán, L.M.; Nel, A.E.; Brinker, C.J.; Chan, W.C.W.; Chen, C.Y.; Chen, X.D.; Ho, D.A.; Hu, T.; Kataoka, K.; Kotov, N.A.; et al. What do we mean when we say nanomedicine? ACS Nano 2022, 16, 13257–13259. [Google Scholar] [CrossRef]
- Mulvaney, P. Nanoscience vs nanotechnology-Defining the field. ACS Nano 2015, 9, 2215–2217. [Google Scholar] [CrossRef]
- Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considering-whether-fda-regulated-product-involves-application-nanotechnology (accessed on 27 January 2025).
- Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/drug (accessed on 27 January 2025).
- Onoue, S.; Yamada, S.; Chan, H.K. Nanodrugs: Pharmacokinetics and safety. Int. J. Nanomed. 2014, 9, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.L.; Hu, S.Q.; Teng, Y.; Chen, J.L.; Wang, H.Y.; Xu, Y.Z.; Wang, K.Y.; Xu, J.G.; Cheng, Y.Z.; Gao, X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct. Target. Ther. 2024, 9, 200. [Google Scholar] [CrossRef]
- Shan, X.T.; Gong, X.; Li, J.; Wen, J.Y.; Li, Y.P.; Zhang, Z.W. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B 2022, 12, 3028–3048. [Google Scholar] [CrossRef] [PubMed]
- Khurana, N.; Sünner, T.; Hubbard, O.; Imburgia, C.; Stoddard, G.J.; Yellepeddi, V.; Ghandehari, H.; Watt, K.M. Micellar encapsulation of propofol reduces its adsorption on extracorporeal membrane oxygenator (ECMO) circuit. AAPS J. 2023, 25, 52. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, V.; Tiwari, R.K.; Ravidas, V.; Pandey, K.; Kumar, A. Amphotericin B: A drug of choice for Visceral Leishmaniasis. Acta Trop. 2022, 235, 106661. [Google Scholar] [CrossRef]
- Alberto, A.G.; Shira, G.-P.; Shadan, M.; Ninh, M.L.-B. Thirty years from FDA approval of pegylated liposomal doxorubicin (Doxil/Caelyx): An updated analysis and future perspective. BMJ Oncol. 2025, 4, e000573. [Google Scholar]
- Sirks, M.J.; Subhi, Y.; Rosenberg, N.; Hollak, C.E.M.; Boon, C.J.F.; Diederen, R.M.H.; Yzer, S.; Norel, J.; de Jong-Hesse, Y.; Schlingemann, R.O.; et al. Perspectives and update on the global shortage of verteporfin (visudyne®). Ophthalmol. Ther. 2024, 13, 1821–1831. [Google Scholar] [CrossRef]
- Strom, J.B.; Mulvagh, S.L.; Porter, T.R.; Wei, K.; Stout, J.L.; Main, M.L. Contemporary safety of ultrasound enhancing agents in a nationwide analysis. J. Am. Heart Assoc. Logo 2025, 14, e039480. [Google Scholar] [CrossRef]
- Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019, 4, 33. [Google Scholar] [CrossRef]
- Layon, S.A.; Williams, A.D.; Burns, H.R.; Parham, M.J.; Monson, L.A.; Mohammad, S.; Buchanan, E.P. Managing donor site pain after alveolar bone grafting: A comparative analysis of liposomal bupivacaine (exparel), bupivacaine-soaked gelfoam, and ON-Q ropivacaine. J. Craniofacial Surg. 2025, 36, 1291–1296. [Google Scholar] [CrossRef]
- Brown, M.B.; Blair, H.A. Liposomal irinotecan: A review as first-line therapy in metastatic pancreatic adenocarcinoma. Drugs 2025, 85, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.C.; Fu, Z.; Liu, Y.H.; Jiao, Y. Biomaterial-based drug delivery: Evaluating the safety profiles of liposomal Vyxeos. Drug Deliv. 2025, 32, 2494781. [Google Scholar] [CrossRef]
- Curtis, J.R.; Conrad, D.M.; Krueger, W.S.; Gara, A.P.; Winthrop, K.L. Real-world data on the use of the Shingrix vaccine among patients with inflammatory arthritis and risk of cardiovascular events following herpes zoster. Arthritis Res. Ther. 2025, 27, 108. [Google Scholar] [CrossRef] [PubMed]
- Vaikkathillam, P.; Sajeevan, A.; Mohan, S.; Solomon, A.P.; Rajan, P.P.; Manjusree, S.; Kumar, P.; Thomas, S. Genomic analysis of colistin and carbapenem resistant Klebsiella pneumoniae GC29. Microb. Pathog. 2025, 199, 107220. [Google Scholar] [CrossRef] [PubMed]
- Hawley, J.J.; Allen, S.L.; Thompson, D.M.; Schwarz, A.J.; Tranquart, F.J.M. Commercially available ultrasound contrast agents: Factors contributing to favorable outcomes with ultrasound-mediated drug delivery and ultrasound localization microscopy imaging. Investig. Radiol. 2025. [Google Scholar] [CrossRef]
- Stukan, I.; Zuk, A.; Pukacka, K.; Mierzejewska, J.; Pawlowski, J.; Kowalski, B.; Dabkowska, M. Wolf in sheep’s clothing: Taming cancer’s resistance with human serum albumin? Int. J. Nanomed. 2025, 20, 3493–3525. [Google Scholar] [CrossRef]
- Paik, J.; Duggan, S.T.; Keam, S.J. Triamcinolone acetonide extended-release: A review in osteoarthritis pain of the knee. Drugs 2019, 79, 455–462. [Google Scholar] [CrossRef]
- Borges, G.S.M.; Lima, F.A.; Carneiro, G.; Goulart, G.A.C.; Ferreira, L.A.M. All-trans retinoic acid in anticancer therapy: How nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opin. Drug Deliv. 2021, 18, 1335–1354. [Google Scholar] [CrossRef]
- Macdougall, I.C.; Comin-Colet, J.; Breymann, C.; Spahn, D.R.; Koutroubakis, I.E. Iron sucrose: A wealth of experience in treating iron deficiency. Adv. Ther. 2020, 37, 1960–2002. [Google Scholar] [CrossRef]
- Germain, M.; Caputo, F.; Metcalfe, S.; Tosi, G.; Spring, K.; Åslund, A.K.O.; Pottier, A.; Schiffelers, R.; Ceccaldi, A.; Schmid, R. Delivering the power of nanomedicine to patients today. J. Control. Release 2020, 326, 164–171. [Google Scholar] [CrossRef]
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015, 6, 286. [Google Scholar] [CrossRef] [PubMed]
- Inglut, C.T.; Sorrin, A.J.; Kuruppu, T.; Vig, S.; Cicalo, J.; Ahmad, H.; Huang, H.C. Immunological and toxicological considerations for the design of liposomes. Nanomaterials 2020, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Janos, S.; Moghimi, S.M. Liposome triggering of innate immune responses: A perspective on benefits and adverse reactions. J. Liposome Res. 2009, 19, 85–90. [Google Scholar]
- Moraes-Lacerda, T.; de Jesus, M.B. Mechanisms of solid lipid nanoparticles-triggered signaling pathways in eukaryotic cells. Colloids Surf. B Biointerfaces 2022, 220, 112863. [Google Scholar] [CrossRef]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef]
- Hua, S.; Wu, S.Y. The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol. 2013, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, N.; Martins, A.; Reis, R.L.; Neves, N.M. Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface 2014, 11, 20140459. [Google Scholar] [CrossRef]
- Shafiei, M.; Ansari, M.N.M.; Abd Razak, S.I.; Khan, M.U.A. A comprehensive review on the applications of exosomes and liposomes in regenerative medicine and tissue engineering. Polymers 2021, 13, 2529. [Google Scholar] [CrossRef]
- Gomes-da-Silva, L.C.; Fonseca, N.A.; Moura, V.; de Lima, M.C.P.; Simoes, S.; Moreira, J.N. Lipid-based nanoparticles for siRNA delivery in cancer therapy: Paradigms and challenges. Accounts Chem. Res. 2012, 45, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q.Q. Lipid nanoparticles-From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef]
- Cheng, X.W.; Lee, R.J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 2016, 99, 129–137. [Google Scholar] [CrossRef]
- Berraondo, P.; Martini, P.G.V.; Avila, M.A.; Fontanellas, A. Messenger RNA therapy for rare genetic metabolic diseases. Gut 2019, 68, 1323–1330. [Google Scholar] [CrossRef]
- Patel, S.; Ryals, R.C.; Weller, K.K.; Pennesi, M.E.; Sahay, G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J. Control. Release 2019, 303, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Afsharzadeh, M.; Hashemi, M.; Mokhtarzadeh, A.; Abnous, K.; Ramezani, M. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1095–1110. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Nguyen, J.; Steele, T.W.J.; Merkel, O.; Reul, R.; Kissel, T. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J. Control. Release 2008, 132, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.B.; Wang, L.; Jungels, R.R.; Sharma, B. Effects of cartilage-targeting moieties on nanoparticle biodistribution in healthy and osteoarthritic joints. Acta Biomater. 2020, 101, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-x.; Cheng, Y.; Liu, D.-z.; Liu, M.; Cui, H.; Zhang, B.-l.; Mei, Q.-b.; Zhou, S.-y. Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J. Nanobiotechnol. 2019, 17, 18. [Google Scholar] [CrossRef]
- Dong, Y.; Ng, W.K.; Shen, S.; Kim, S.; Tan, R.B.H. Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydr. Polym. 2013, 94, 940–945. [Google Scholar] [CrossRef]
- He, C.B.; Yue, H.M.; Xu, L.; Liu, Y.F.; Song, Y.D.; Tang, C.; Yin, C.H. siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. Acta Biomater. 2020, 103, 213–222. [Google Scholar] [CrossRef]
- Zhang, L.B.; Beatty, A.; Lu, L.; Abdalrahman, A.; Makris, T.M.; Wang, G.R.; Wang, Q. Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 111, 110768. [Google Scholar] [CrossRef] [PubMed]
- Kucuk, I.; Edirisinghe, M. Microfluidic preparation of polymer nanospheres. J. Nanopart. Res. 2014, 16, 2626. [Google Scholar] [CrossRef]
- Palmerston Mendes, L.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017, 22, 1401. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014, 9, 247. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, B.; Biswas, S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release 2021, 332, 127–147. [Google Scholar] [CrossRef]
- Rideau, E.; Dimova, R.; Schwille, P.; Wurm, F.R.; Landfester, K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem. Soc. Rev. 2018, 47, 8572–8610. [Google Scholar] [CrossRef]
- Thambi, T.; Deepagan, V.G.; Ko, H.; Lee, D.S.; Park, J.H. Bioreducible polymersomes for intracellular dual-drug delivery. J. Mater. Chem. 2012, 22, 22028–22036. [Google Scholar] [CrossRef]
- Kim, H.O.; Kim, E.; An, Y.; Choi, J.; Jang, E.; Choi, E.B.; Kukreja, A.; Kim, M.H.; Kang, B.; Kim, D.J.; et al. A biodegradable polymersome containing Bcl-xL siRNA and doxorubicin as a dual delivery vehicle for a synergistic anticancer effect. Macromol. Biosci. 2013, 13, 745–754. [Google Scholar] [CrossRef]
- Huang, Z.H.; Teng, W.; Liu, L.S.; Wang, L.C.; Wang, Q.M.; Dong, Y.G. Efficient cytosolic delivery mediated by polymersomes facilely prepared from a degradable, amphiphilic, and amphoteric copolymer. Nanotechnology 2013, 24, 265104. [Google Scholar] [CrossRef]
- Gouveia, M.G.; Wesseler, J.P.; Ramaekers, J.; Weder, C.; Scholten, P.B.V.; Bruns, N. Polymersome-based protein drug delivery—Quo vadis? Chem. Soc. Rev. 2023, 52, 728–778. [Google Scholar] [CrossRef]
- Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649. [Google Scholar] [CrossRef] [PubMed]
- Nunes, D.; Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Polymeric nanoparticles-loaded hydrogels for biomedical applications: A Systematic review on in vivo findings. Polymers 2022, 14, 1010. [Google Scholar] [CrossRef]
- Sonkar, C.; Ranjan, R.; Mukhopadhyay, S. Inorganic nanoparticle-based nanogels and their biomedical applications. Dalton Trans. 2025, 54, 6346–6360. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.; Park, Y.I.; Lee, N.; Hyeon, T. Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent. Sci. 2018, 4, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wen, W.; Wang, X.; Huang, D.; Cao, J.; Qi, X.; Shen, S. Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs. Part. Fibre Toxicol. 2022, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Bonvalot, S.; Rutkowski, P.L.; Thariat, J.; Carrère, S.; Ducassou, A.; Sunyach, M.-P.; Agoston, P.; Hong, A.; Mervoyer, A.; Rastrelli, M.; et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): A multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019, 20, 1148–1159. [Google Scholar] [CrossRef]
- Yang, W.; Liang, H.; Ma, S.; Wang, D.; Huang, J. Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sustain. Mater. Technol. 2019, 22, e00109. [Google Scholar] [CrossRef]
- Wang, J.X.; Potocny, A.M.; Rosenthal, J.; Day, E.S. Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega 2020, 5, 926–940. [Google Scholar] [CrossRef]
- Falagan-Lotsch, P.; Grzincic, E.M.; Murphy, C.J. One low-dose exposure of gold nanoparticles induces long-term changes in human cells. Proc. Natl. Acad. Sci. USA 2016, 113, 13318–13323. [Google Scholar] [CrossRef]
- Stern, J.M.; Kibanov Solomonov, V.V.; Sazykina, E.; Schwartz, J.A.; Gad, S.C.; Goodrich, G.P. Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int. J. Toxicol. 2016, 35, 38–46. [Google Scholar] [CrossRef]
- Rastinehad, A.R.; Anastos, H.; Wajswol, E.; Winoker, J.S.; Sfakianos, J.P.; Doppalapudi, S.K.; Carrick, M.R.; Knauer, C.J.; Taouli, B.; Lewis, S.C.; et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA 2019, 116, 18590–18596. [Google Scholar] [CrossRef] [PubMed]
- Kumthekar, P.; Ko, C.H.; Paunesku, T.; Dixit, K.; Sonabend, A.M.; Bloch, O.; Tate, M.; Schwartz, M.; Zuckerman, L.; Lezon, R.; et al. A first-in-human phase 0 clinical study of RNA interference–based spherical nucleic acids in patients with recurrent glioblastoma. Sci. Transl. Med. 2021, 13, eabb3945. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Nah, H.; Lee, J.-H.; Moon, S.H.; Kim, M.G.; Cheon, J. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem.-Int. Edit. 2009, 48, 1234–1238. [Google Scholar] [CrossRef]
- Arias, L.S.; Pessan, J.P.; Vieira, A.P.M.; de Lima, T.M.T.; Delbem, A.C.B.; Monteiro, D.R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 2018, 7, 46. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. Do iron oxide nanoparticles have significant antibacterial properties? Antibiotics 2021, 10, 884. [Google Scholar] [CrossRef]
- Kang, M.; Lim, C.-H.; Han, J.-H. Comparison of toxicity and deposition of nano-sized carbon black aerosol prepared with or without dispersing sonication. Toxicol. Res. 2013, 29, 121–127. [Google Scholar] [CrossRef]
- Mirshafiee, V.; Sun, B.B.; Chang, C.H.; Liao, Y.P.; Jiang, W.; Jiang, J.H.; Liu, X.S.; Wang, X.; Xia, T.; Nel, A.E. Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in Kupffer cells and macrophages versus apoptosis in hepatocytes. ACS Nano 2018, 12, 3836–3852. [Google Scholar] [CrossRef] [PubMed]
- Uzhytchak, M.; Smolková, B.; Lunova, M.; Jirsa, M.; Frtús, A.; Kubinová, S.; Dejneka, A.; Lunov, O. Iron oxide nanoparticle-induced autophagic flux is regulated by interplay between p53-mTOR axis and Bcl-2 signaling in hepatic cells. Cells 2020, 9, 1015. [Google Scholar] [CrossRef]
- Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 2018, 13, 44. [Google Scholar] [CrossRef]
- Arvizo, R.; Resham, B.; Mukherjee, P. Gold nanoparticles: Opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv. 2010, 7, 753–763. [Google Scholar] [CrossRef]
- Cui, M.; Wiraja, C.; Qi, L.W.; Ting, S.C.W.; Jana, D.; Zheng, M.; Hu, X.; Xu, C. One-step synthesis of amine-coated ultra-small mesoporous silica nanoparticles. Nano Res. 2020, 13, 1592–1596. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.L.; Sun, B.Y.; Chen, C.Y. Understanding the toxicity of carbon nanotubes. Accounts Chem. Res. 2013, 46, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Carnovale, C.; Bryant, G.; Shukla, R.; Bansal, V. Identifying trends in gold nanoparticle toxicity and uptake: Size, shape, capping ligand, and biological corona. ACS Omega 2019, 4, 242–256. [Google Scholar] [CrossRef]
- Wang, D.; Peng, Y.; Li, Y.; Kpegah, J.K.S.K.; Chen, S. Multifunctional inorganic biomaterials: New weapons targeting osteosarcoma. Front. Mol. Biosci. 2023, 9, 1105540. [Google Scholar] [CrossRef]
- Della Camera, G.; Liu, T.; Yang, W.; Li, Y.; Puntes, V.F.; Gioria, S.; Italiani, P.; Boraschi, D. Induction of innate memory in human monocytes exposed to mixtures of bacterial agents and nanoparticles. Int. J. Mol. Sci. 2022, 23, 14655. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, A.; Sharma, V. Toxicity assessment of nanomaterials: Methods and challenges. Anal. Bioanal. Chem. 2010, 398, 589–605. [Google Scholar] [CrossRef]
- Öztürk, K.; Kaplan, M.; Çalis, S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int. J. Pharm. 2024, 666, 124799. [Google Scholar] [CrossRef] [PubMed]
- Awashra, M.; Mlynarz, P. The toxicity of nanoparticles and their interaction with cells: An in vitro metabolomic perspective. Nanoscale Adv. 2023, 5, 2674–2723. [Google Scholar] [CrossRef]
- He, C.B.; Hu, Y.P.; Yin, L.C.; Tang, C.; Yin, C.H. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657–3666. [Google Scholar] [CrossRef]
- Bai, X.; Liu, F.; Liu, Y.; Li, C.; Wang, S.Q.; Zhou, H.Y.; Wang, W.Y.; Zhu, H.; Winkler, D.A.; Yan, B. Toward a systematic exploration of nano-bio interactions. Toxicol. Appl. Pharmacol. 2017, 323, 66–73. [Google Scholar] [CrossRef]
- Cheng, L.-C.; Jiang, X.; Wang, J.; Chen, C.; Liu, R.-S. Nano–bio effects: Interaction of nanomaterials with cells. Nanoscale 2013, 5, 3547–3569. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.D.; Jin, S.B.; Ma, X.W.; Xue, X.D.; Yang, K.N.; Kumar, A.; Wang, P.C.; Zhang, J.C.; Hu, Z.B.; Liang, X.J. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 2014, 8, 5852–5862. [Google Scholar] [CrossRef] [PubMed]
- Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018, 13, 339. [Google Scholar] [CrossRef]
- Rennick, J.J.; Johnston, A.P.R.; Parton, R.G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 2021, 16, 266–276. [Google Scholar] [CrossRef]
- Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 2019, 143, 68–96. [Google Scholar] [CrossRef]
- Zhu, M.T.; Nie, G.J.; Meng, H.; Xia, T.; Nel, A.; Zhao, Y.L. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res. 2013, 46, 622–631. [Google Scholar] [CrossRef]
- Jiang, W.; Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, D.; Goudeli, E. Design of engineered nanoparticles for biomedical applications by computational modeling. Nanoscale 2025, 17, 9705–9737. [Google Scholar] [CrossRef]
- Dolai, J.; Mandal, K.; Jana, N.R. Nanoparticle size effects in biomedical applications. ACS Appl. Nano Mater. 2021, 4, 6471–6496. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Poon, W.; Tavares, A.J.; McGilvray, I.D.; Chan, W.C.W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348. [Google Scholar] [CrossRef]
- Renwick, L.C.; Donaldson, K.; Clouter, A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol. Appl. Pharmacol. 2001, 172, 119–127. [Google Scholar] [CrossRef]
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef] [PubMed]
- Bakhshi, S.; Shoari, A.; Alibolandi, P.; Ganji, M.; Ghazy, E.; Rahdar, A.; Fathi-karkan, S.; Pandey, S. Emerging innovations in vincristine-encapsulated nanoparticles: Pioneering a new era in oncological therapeutics. J. Drug Deliv. Sci. Technol. 2024, 91, 105270. [Google Scholar] [CrossRef]
- Kim, I.-Y.; Joachim, E.; Choi, H.; Kim, K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1407–1416. [Google Scholar] [CrossRef]
- Chen, L.Q.; Fang, L.; Ling, J.; Ding, C.Z.; Kang, B.; Huang, C.Z. Nanotoxicity of silver nanoparticles to red blood cells: Size dependent adsorption, uptake, and hemolytic activity. Chem. Res. Toxicol. 2015, 28, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.L.; Li, L.L.; Liu, T.L.; Hao, N.J.; Liu, H.Y.; Chen, D.; Tang, F.Q. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility. ACS Nano 2011, 5, 5390–5399. [Google Scholar] [CrossRef]
- Gratton, S.E.A.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 11613–11618. [Google Scholar] [CrossRef]
- Kus-Liskiewicz, M.; Fickers, P.; Ben Tahar, I. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations. Int. J. Mol. Sci. 2021, 22, 10952. [Google Scholar] [CrossRef]
- Li, L.L.; Liu, T.L.; Fu, C.H.; Tan, L.F.; Meng, X.W.; Liu, H.Y. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1915–1924. [Google Scholar] [CrossRef]
- Li, Y.; Kröger, M.; Liu, W.K. Shape effect in cellular uptake of PEGylated nanoparticles: Comparison between sphere, rod, cube and disk. Nanoscale 2015, 7, 16631–16646. [Google Scholar] [CrossRef]
- Sharifi, S.; Behzadi, S.; Laurent, S.; Laird Forrest, M.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhao, F.; Wang, J.; Zu, Y.; Gu, Z.; Zhao, Y. A safe-by-design strategy towards safer nanomaterials in nanomedicines. Adv. Mater. 2019, 31, 1805391. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Shan, W.; Zhang, Z.R.; Huang, Y. Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Adv. Drug Deliv. Rev. 2018, 124, 150–163. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.; Hou, Y.; Wang, X.; Xue, C.; Li, W.; Cai, K.; Zhao, Y.; Luo, Z. State-of-the-art iron-based nanozymes for biocatalytic tumor therapy. Nanoscale Horiz. 2020, 5, 202–217. [Google Scholar] [CrossRef]
- Kiaie, S.H.; Zolbanin, N.M.; Ahmadi, A.; Bagherifar, R.; Valizadeh, H.; Kashanchi, F.; Jafari, R. Recent advances in mRNA-LNP therapeutics: Immunological and pharmacological aspects. J. Nanobiotechnol. 2022, 20, 276. [Google Scholar] [CrossRef]
- Cai, R.; Ren, J.Y.; Ji, Y.L.; Wang, Y.L.; Liu, Y.; Chen, Z.G.; Sabet, Z.F.; Wu, X.C.; Lynch, I.; Chen, C.Y. Corona of thorns: The surface chemistry-mediated protein corona perturbs the recognition and immune response of macrophages. ACS Appl. Mater. Interfaces 2020, 12, 1997–2008. [Google Scholar] [CrossRef]
- Augustine, R.; Hasan, A.; Primavera, R.; Wilson, R.J.; Thakor, A.S.; Kevadiya, B.D. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 2020, 25, 101692. [Google Scholar] [CrossRef]
- Jerzykiewicz, J.; Czogalla, A. Polyethyleneimine-based lipopolyplexes as carriers in anticancer gene therapies. Materials 2022, 15, 179. [Google Scholar] [CrossRef] [PubMed]
- Manshian, B.B.; Pokhrel, S.; Mädler, L.; Soenen, S.J. The impact of nanoparticle-driven lysosomal alkalinization on cellular functionality. J. Nanobiotechnol. 2018, 16, 85. [Google Scholar] [CrossRef]
- Vukovic, B.; Milic, M.; Dobrosevic, B.; Milic, M.; Ilic, K.; Pavicic, I.; Seric, V.; Vrcek, I.V. Surface stabilization affects toxicity of silver nanoparticles in human peripheral blood mononuclear cells. Nanomaterials 2020, 10, 1390. [Google Scholar] [CrossRef]
- Mihalache, R.; Verbeek, J.; Graczyk, H.; Murashov, V.; van Broekhuizen, P. Occupational exposure limits for manufactured nanomaterials, a systematic review. Nanotoxicology 2017, 11, 7–19. [Google Scholar] [CrossRef]
- Kuhlbusch, T.A.J.; Asbach, C.; Fissan, H.; Göhler, D.; Stintz, M. Nanoparticle exposure at nanotechnology workplaces: A review. Part. Fibre Toxicol. 2011, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Missaoui, W.N.; Arnold, R.D.; Cummings, B.S. Toxicological status of nanoparticles: What we know and what we don’t know. Chem.-Biol. Interact. 2018, 295, 1–12. [Google Scholar] [CrossRef]
- Murugadoss, S.; Godderis, L.; Ghosh, M.; Hoet, P.H. Assessing the toxicological relevance of nanomaterial agglomerates and aggregates using realistic exposure in vitro. Nanomaterials 2021, 11, 1793. [Google Scholar] [CrossRef] [PubMed]
- Bruinink, A.; Wang, J.; Wick, P. Effect of particle agglomeration in nanotoxicology. Arch. Toxicol. 2015, 89, 659–675. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, K.; Inbaraj, B.S.; Chen, B.H. Recent advances on nanoparticle based strategies for improving carotenoid stability and biological activity. Antioxidants 2021, 10, 713. [Google Scholar] [CrossRef]
- Biola-Clier, M.; Beal, D.; Caillat, S.; Libert, S.; Armand, L.; Herlin-Boime, N.; Sauvaigo, S.; Douki, T.; Carriere, M. Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis 2017, 32, 161–172. [Google Scholar] [CrossRef]
- Ke, P.C.; Lin, S.; Parak, W.J.; Davis, T.P.; Caruso, F. A decade of the protein corona. ACS Nano 2017, 11, 11773–11776. [Google Scholar] [CrossRef]
- Barz, M.; Parak, W.J.; Zentel, R. Concepts and approaches to reduce or avoid protein corona formation on nanoparticles: Challenges and opportunities. Adv. Sci. 2024, 11, e2402935. [Google Scholar] [CrossRef]
- Wheeler, K.E.; Chetwynd, A.J.; Fahy, K.M.; Hong, B.S.; Tochihuitl, J.A.; Foster, L.A.; Lynch, I. Environmental dimensions of the protein corona. Nat. Nanotechnol. 2021, 16, 617–629. [Google Scholar] [CrossRef]
- Baimanov, D.; Cai, R.; Chen, C.Y. Understanding the chemical nature of nanoparticle-protein interactions. Bioconjug. Chem. 2019, 30, 1923–1937. [Google Scholar] [CrossRef]
- Stepien, G.; Moros, M.; Pérez-Hernández, M.; Monge, M.; Gutiérrez, L.; Fratila, R.M.; Heras, M.D.; Guillén, S.M.; Lanzarote, J.J.P.; Solans, C.; et al. Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in vivo. ACS Appl. Mater. Interfaces 2018, 10, 4548–4560. [Google Scholar] [CrossRef] [PubMed]
- Smolková, B.; MacCulloch, T.; Rockwood, T.F.; Liu, M.H.; Henry, S.J.W.; Frtús, A.; Uzhytchak, M.; Lunova, M.; Hof, M.; Jurkiewicz, P.; et al. Protein corona inhibits endosomal escape of functionalized DNA nanostructures in living cells. ACS Appl. Mater. Interfaces 2021, 13, 46375–46390. [Google Scholar] [CrossRef] [PubMed]
- Lesniak, A.; Salvati, A.; Santos-Martinez, M.J.; Radomski, M.W.; Dawson, K.A.; Åberg, C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 2013, 135, 1438–1444. [Google Scholar] [CrossRef]
- Wang, L.; Hartel, N.; Ren, K.X.; Graham, N.A.; Malmstadt, N. Effect of protein corona on nanoparticle-plasma membrane and nanoparticle-biomimetic membrane interactions. Environ. Sci. Nano 2020, 7, 963–974. [Google Scholar] [CrossRef]
- Persaud, I.; Shannahan, J.H.; Raghavendra, A.J.; Alsaleh, N.B.; Podila, R.; Brown, J.M. Biocorona formation contributes to silver nanoparticle induced endoplasmic reticulum stress. Ecotoxicol. Environ. Saf. 2019, 170, 77–86. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, L.; Wang, W.; Zhou, Y.; Zhang, X.; Huang, Y.; Pan, X.; Wu, C. Unraveling the pulmonary drug delivery carriers in inhalable nanostructures. J. Nanopart. Res. 2022, 24, 10. [Google Scholar] [CrossRef]
- Tan, Y.; Zhu, X.Y.; Wu, D.; Song, E.Q.; Song, Y. Compromised autophagic effect of polystyrene nanoplastics mediated by protein corona was recovered after lysosomal degradation of corona. Environ. Sci. Technol. 2020, 54, 11485–11493. [Google Scholar] [CrossRef]
- Adhipandito, C.F.; Cheung, S.H.; Lin, Y.H.; Wu, S.H. Atypical renal clearance of nanoparticles larger than the kidney filtration threshold. Int. J. Mol. Sci. 2021, 22, 11182. [Google Scholar] [CrossRef]
- Sohal, I.S.; Cho, Y.K.; O’Fallon, K.S.; Gaines, P.; Demokritou, P.; Bello, D. Dissolution behavior and biodurability of ingested engineered nanomaterials in the gastrointestinal environment. ACS Nano 2018, 12, 8115–8128. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [PubMed]
- Egbuna, C.; Parmar, V.K.; Jeevanandam, J.; Ezzat, S.M.; Patrick-Iwuanyanwu, K.C.; Adetunji, C.O.; Khan, J.; Onyeike, E.N.; Uche, C.Z.; Akram, M.; et al. Toxicity of nanoparticles in biomedical application: Nanotoxicology. J. Toxicol. 2021, 2021, 954443. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.M.; Zhang, T.L.; Li, P.Y.; Huang, W.X.; Tang, J.L.; Wang, P.Y.; Liu, J.; Yuan, Q.X.; Bai, R.; Li, B.; et al. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano 2015, 9, 6532–6547. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 2013, 87, 1181–1200. [Google Scholar] [CrossRef]
- Khanna, P.; Ong, C.; Bay, B.H.; Baeg, G.H. Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials 2015, 5, 1163–1180. [Google Scholar] [CrossRef]
- Won, Y.Y.; Sharma, R.; Konieczny, S.F. Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes. J. Control. Release 2009, 139, 88–93. [Google Scholar] [CrossRef]
- Liu, N.; Tang, M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J. Appl.Toxicol. 2020, 40, 16–36. [Google Scholar] [CrossRef]
- Lee, E.; Lee, M.; Kwon, S.; Kim, J.; Kwon, Y. Systematic and mechanistic analysis of AuNP-induced nanotoxicity for risk assessment of nanomedicine. Nano Converg. 2022, 9, 27. [Google Scholar] [CrossRef]
- Chen, M.; Wu, T.S. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. Sci. Total Environ. 2024, 912, 168739. [Google Scholar] [CrossRef]
- Nowak-Jary, J.; Machnicka, B. Comprehensive analysis of the potential toxicity of magnetic iron oxide nanoparticles for medical applications: Cellular mechanisms and systemic effects. Int. J. Mol. Sci. 2024, 25, 12013. [Google Scholar] [CrossRef]
- Xu, B.; Wu, S.; Wang, Y.; Ji, Y.; Liang, S.; Wang, C.; Tian, X. Paradoxical roles of carbon nanotubes in cancer therapy and carcinogenesis. J. Nanotheranostics 2024, 5, 84–98. [Google Scholar] [CrossRef]
- Aula, S.; Lakkireddy, S.; Jamil, K.; Kapley, A.; Swamy, A.V.N.; Lakkireddy, H.R. Biophysical, biopharmaceutical and toxicological significance of biomedical nanoparticles. RSC Adv. 2015, 5, 47830–47859. [Google Scholar] [CrossRef]
- Winnik, F.M.; Maysinger, D. Quantum dot cytotoxicity and ways to reduce it. Acc. Chem. Res. 2013, 46, 672–680. [Google Scholar] [CrossRef]
- Liang, M.M.; Fan, K.L.; Zhou, M.; Duan, D.M.; Zheng, J.Y.; Yang, D.L.; Feng, J.; Yan, X.Y. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl. Acad. Sci. USA 2014, 111, 14900–14905. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chakraborty, A.; Mukherjee, B.; Besra, S.E.; Dewanjee, S.; Mukherjee, A.; Sen, R.; Ojha, P.K.; Kumar, V.; Shaw, T.K.; et al. Assessment of superiority of HSP70-targeting aptamer-functionalized drug-nanocarrier over non-targeted commercially available counterpart in HCC therapy: In vitro and in vivo investigations and molecular modeling. Life Sci. 2023, 317, 121467. [Google Scholar] [CrossRef] [PubMed]
- Kurzatkowska, K.; Pazos, M.A.; Herschkowitz, J.I.; Hepel, M. Cancer-targeted controlled delivery of chemotherapeutic anthracycline derivatives using apoferritin nanocage carriers. Int. J. Mol. Sci. 2021, 22, 1362. [Google Scholar] [CrossRef] [PubMed]
- Scomparin, A.; Salmaso, S.; Eldar-Boock, A.; Ben-Shushan, D.; Ferber, S.; Tiram, G.; Shmeeda, H.; Landa-Rouben, N.; Leor, J.; Caliceti, P.; et al. A comparative study of folate receptor-targeted doxorubicin delivery systems: Dosing regimens and therapeutic index. J. Control. Release 2015, 208, 106–120. [Google Scholar] [CrossRef]
- Maksimenko, A.; Dosio, F.; Mougin, J.; Ferrero, A.; Wack, S.; Reddy, L.H.; Weyn, A.A.; Lepeltier, E.; Bourgaux, C.; Stella, B.; et al. A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity. Proc. Natl. Acad. Sci. USA 2014, 111, E217–E226. [Google Scholar] [CrossRef]
- Man, F.; Lammers, T.; de Rosales, R.T.M. Imaging nanomedicine-based drug delivery: A review of clinical studies. Mol. Imaging. Biol. 2018, 20, 683–695. [Google Scholar] [CrossRef]
- Prabhakar, U.; Maeda, H.; Jain, R.K.; Sevick-Muraca, E.M.; Zamboni, W.; Farokhzad, O.C.; Barry, S.T.; Gabizon, A.; Grodzinski, P.; Blakey, D.C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013, 73, 2412–2417. [Google Scholar] [CrossRef]
- Perry, J.L.; Reuter, K.G.; Luft, J.C.; Pecot, C.V.; Zamboni, W.; DeSimone, J.M. Mediating passive tumor accumulation through particle size, tumor type, and location. Nano Lett. 2017, 17, 2879–2886. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, B.; Poon, W.; Zhang, Y.N.; Lin, Z.P.; Kingston, B.R.; Tavares, A.J.; Zhang, Y.W.; Chen, J.; Valic, M.S.; Syed, A.M.; et al. The dose threshold for nanoparticle tumour delivery. Nat. Mater. 2020, 19, 1362–1371. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.M.; Lin, Z.P.; Sindhwani, S.; MacMillan, P.; Mladjenovic, S.M.; Stordy, B.; Ngo, W.; Chan, W.C.W. The exit of nanoparticles from solid tumours. Nat. Mater. 2023, 22, 1261–1272. [Google Scholar] [CrossRef]
- Petty, H.R. Could nanoparticles that mimic the NADPH oxidase be used to kill tumor cells? Nanomedicine 2016, 11, 1631–1634. [Google Scholar] [CrossRef] [PubMed]
- Klaper, R.; Arndt, D.; Bozich, J.; Dominguez, G. Molecular interactions of nanomaterials and organisms: Defining biomarkers for toxicity and high-throughput screening using traditional and next-generation sequencing approaches. Analyst 2014, 139, 882–895. [Google Scholar] [CrossRef]
- Gupta, G.; Kaur, J.; Bhattacharya, K.; Chambers, B.J.; Gazzi, A.; Furesi, G.; Rauner, M.; Fuoco, C.; Orecchioni, M.; Delogu, L.G.; et al. Exploiting mass spectrometry to unlock the mechanism of nanoparticle-induced inflammasome activation. ACS Nano 2023, 17, 17451–17467. [Google Scholar] [CrossRef]
- Lunov, O.; Syrovets, T.; Loos, C.; Nienhaus, G.U.; Mailänder, V.; Landfester, K.; Rouis, M.; Simmet, T. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 2011, 5, 9648–9657. [Google Scholar] [CrossRef]
- Baron, L.; Gombault, A.; Fanny, M.; Villeret, B.; Savigny, F.; Guillou, N.; Panek, C.; Le Bert, M.; Lagente, V.; Rassendren, F.; et al. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine. Cell Death Dis. 2015, 6, e1629. [Google Scholar] [CrossRef]
- Aschner, M.; Skalny, A.V.; Martins, A.C.; Tizabi, Y.; Zaitseva, I.P.; Santamaria, A.; Lu, R.Z.; Gluhcheva, Y.Y.; Tinkov, A.A. The role of NLRP3 inflammasome activation in proinflammatory and cytotoxic effects of metal nanoparticles. Arch. Toxicol. 2025, 99, 1287–1314. [Google Scholar] [CrossRef]
- Yazdi, A.S.; Guarda, G.; Riteau, N.; Drexler, S.K.; Tardivel, A.; Couillin, I.; Tschopp, J. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc. Natl. Acad. Sci. USA 2010, 107, 19449–19454. [Google Scholar] [CrossRef]
- Senapati, V.A.; Kumar, A.; Gupta, G.S.; Pandey, A.K.; Dhawan, A. ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: A mechanistic approach. Food Chem. Toxicol. 2015, 85, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Rangasami, V.K.; Samanta, S.; Parihar, V.S.; Asawa, K.; Zhu, K.Y.; Varghese, O.P.; Teramura, Y.; Nilsson, B.; Hilborn, J.; Harris, R.A.; et al. Harnessing hyaluronic acid-based nanoparticles for combination therapy: A novel approach for suppressing systemic inflammation and to promote antitumor macrophage polarization. Carbohydr. Polym. 2021, 254, 117291. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, M.; Roa, W.; Bou-Chacra, N.; Löbenberg, R. Inflammation caused by nanosized delivery systems: Is there a benefit? Mol. Pharm. 2016, 13, 3270–3278. [Google Scholar] [CrossRef]
- Xu, H.; Ren, D. Lysosomal physiology. Annu. Rev. Physiol. 2015, 77, 57–80. [Google Scholar] [CrossRef]
- Levada, K.; Pshenichnikov, S.; Omelyanchik, A.; Rodionova, V.; Nikitin, A.; Savchenko, A.; Schetinin, I.; Zhukov, D.; Abakumov, M.; Majouga, A.; et al. Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. Nano Converg. 2020, 7, 17. [Google Scholar] [CrossRef]
- Yang, K.X.; Lu, Y.; Xie, F.Y.; Zou, H.; Fan, X.Y.; Li, B.H.; Li, W.; Zhang, W.; Mei, L.; Feng, S.; et al. Cationic liposomes induce cell necrosis through lysosomal dysfunction and late-stage autophagic flux inhibition. Nanomedicine 2016, 11, 3117–3137. [Google Scholar] [CrossRef]
- He, G.; Ma, Y.; Zhu, Y.; Yong, L.; Liu, X.; Wang, P.; Liang, C.; Yang, C.; Zhao, Z.; Hai, B.; et al. Cross talk between autophagy and apoptosis contributes to ZnO nanoparticle-induced human osteosarcoma cell death. Adv. Healthc. Mater. 2018, 7, 1800332. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, H.; He, X.; Zhao, P.; Wu, T.; Xiahou, J.; Wu, Y.; Liu, Y.; Chen, Y.; Jiang, X.; et al. Blocking spatiotemporal crosstalk between subcellular organelles for enhancing anticancer therapy with nanointercepters. Adv. Mater. 2023, 35, 2211597. [Google Scholar] [CrossRef]
- Li, J.J.; Zou, L.; Hartono, D.; Ong, C.N.; Bay, B.H.; Yung, L.Y.L. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv. Mater. 2008, 20, 138–142. [Google Scholar] [CrossRef]
- Avalos, A.; Haza, A.I.; Mateo, D.; Morales, P. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J. Appl. Toxicol. 2014, 34, 413–423. [Google Scholar] [CrossRef]
- Ahamed, M.; Posgai, R.; Gorey, T.J.; Nielsen, M.; Hussain, S.M.; Rowe, J.J. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharm. 2010, 242, 263–269. [Google Scholar] [CrossRef]
- Guo, D.W.; Zhu, L.Y.; Huang, Z.H.; Zhou, H.X.; Ge, Y.; Ma, W.J.; Wu, J.; Zhang, X.Y.; Zhou, X.F.; Zhang, Y.; et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 2013, 34, 7884–7894. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.L.; Chen, R.; Zhao, L.; Shi, X.F.; Bai, R.; Long, D.X.; Chen, F.; Zhao, Y.L.; Chang, Y.Z.; Chen, C.Y. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials 2015, 61, 307–315. [Google Scholar] [CrossRef]
- Choi, A.O.; Brown, S.E.; Szyf, M.; Maysinger, D. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J. Mol. Med.-JMM 2008, 86, 291–302. [Google Scholar] [CrossRef]
- Lam, C.W.; James, J.T.; McCluskey, R.; Hunter, R.L. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004, 77, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, Y.; Horie, M.; Kobayashi, N.; Shinohara, N.; Shimada, M. Inhalation toxicity assessment of carbon-based nanoparticles. Acc. Chem. Res. 2013, 46, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.X.; Tian, F.R.; Ozkan, C.S.; Wang, M.; Gao, H.J. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 2005, 155, 73–85. [Google Scholar] [CrossRef]
- Alazzam, A.; Mfoumou, E.; Stiharu, I.; Kassab, A.; Darnel, A.; Yasmeen, A.; Sivakumar, N.; Bhat, R.; Al Moustafa, A.E. Identification of deregulated genes by single wall carbon-nanotubes in human normal bronchial epithelial cells. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 563–569. [Google Scholar] [CrossRef]
- Wang, J.Y.; Sun, P.P.; Bao, Y.M.; Liu, J.W.; An, L.J. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol. Vitro 2011, 25, 242–250. [Google Scholar] [CrossRef]
- Pacurari, M.; Yin, X.J.; Zhao, J.S.; Ding, M.; Leonard, S.S.; Schwegier-Berry, D.; Ducatman, B.S.; Sbarra, D.; Hoover, M.D.; Castranova, V.; et al. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-κB, and Akt in normal and malignant human mesothelial cells. Environ. Health Perspect. 2008, 116, 1211–1217. [Google Scholar] [CrossRef]
- Sarkar, A.; Sil, P.C. Iron oxide nanoparticles mediated cytotoxicity via PI3K/AKT pathway: Role of quercetin. Food Chem. Toxicol. 2014, 71, 106–115. [Google Scholar] [CrossRef]
- Shukla, S.; Jadaun, A.; Arora, V.; Sinha, R.K.; Biyani, N.; Jain, V.K. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicol. Rep. 2015, 2, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Park, K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Rep. 2009, 184, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sun, J.A. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-κB pathways. Biomaterials 2010, 31, 8198–8209. [Google Scholar] [CrossRef]
- Duan, J.C.; Yu, Y.B.; Yu, Y.; Wang, J.; Geng, W.J.; Jiang, L.Z.; Li, Q.L.; Zhou, X.Q.; Sun, Z.W. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int. J. Nanomed. 2014, 9, 5131–5141. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, R.; Raza, S.; Yadav, A.; Kushwaha, P.; Flora, S.J.S. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem. Toxicol. 2014, 37, 336–347. [Google Scholar] [CrossRef]
- Park, E.J.; Yi, J.; Chung, Y.H.; Ryu, D.Y.; Choi, J.; Park, K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett. 2008, 180, 222–229. [Google Scholar] [CrossRef]
- González-Esquivel, A.E.; Charles-Niño, C.L.; Pacheco-Moisés, F.P.; Ortiz, G.G.; Jaramillo-Juárez, F.; Rincón-Sánchez, A.R. Beneficial effects of quercetin on oxidative stress in liver and kidney induced by titanium dioxide (TiO) nanoparticles in rats. Toxicol. Mech. Methods 2015, 25, 166–175. [Google Scholar] [CrossRef]
- Roy, R.; Parashar, V.; Chauhan, L.K.S.; Shanker, R.; Das, M.; Tripathi, A.; Dwivedi, P.D. Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling. Toxicol. Vitr. 2014, 28, 457–467. [Google Scholar] [CrossRef]
- Fukui, H.; Horie, M.; Endoh, S.; Kato, H.; Fujita, K.; Nishio, K.; Komaba, L.K.; Maru, J.; Miyauhi, A.; Nakamura, A.; et al. Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem.-Biol. Interact. 2012, 198, 29–37. [Google Scholar] [CrossRef]
- Wu, W.D.; Samet, J.M.; Peden, D.B.; Bromberg, P.A. Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells. Environ. Health Perspect. 2010, 118, 982–987. [Google Scholar] [CrossRef] [PubMed]
- Elblová, P.; Lunova, M.; Dejneka, A.; Jirsa, M.; Lunov, O. Impact of mechanical cues on key cell functions and cell-nanoparticle interactions. Discov. Nano 2024, 19, 106. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Gliga, A.R.; Calléja, F.M.G.R.; Gonçalves, C.S.A.G.; Wallinder, I.O.; Vrieling, H.; Fadeel, B.; Hendriks, G. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines. Part. Fibre Toxicol. 2014, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Gliga, A.R.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, J.; Zhu, M.T.; Yang, Y.; Shen, J.L.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.J.; Chen, C.Y.; Shen, H.F.; et al. Safety of nanoparticles in medicine. Curr. Drug Targets 2015, 16, 1671–1681. [Google Scholar] [CrossRef]
- Chen, Y.C.; Su, Y.C.; Roffler, S.R. Polyethylene glycol immunogenicity in nanomedicine. Nat. Rev. Bioeng. 2025, 1–19. [Google Scholar] [CrossRef]
- Fröhlich, E. Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. Curr. Drug Metab. 2013, 14, 976–988. [Google Scholar] [CrossRef]
- Kozenkova, E.; Levada, K.; Efremova, M.V.; Omelyanchik, A.; Nalench, Y.A.; Garanina, A.S.; Pshenichnikov, S.; Zhukov, D.G.; Lunov, O.; Lunova, M.; et al. Multifunctional Fe3O4-Au nanoparticles for the MRI diagnosis and potential treatment of liver cancer. Nanomaterials 2020, 10, 1646. [Google Scholar] [CrossRef]
- Awasthi, S.; Srivastava, A.; Kumar, D.; Pandey, S.K.; Mubarak, N.M.; Dehghani, M.H.; Ansari, K. An insight into the toxicological impacts of carbon nanotubes (CNTs) on human health: A review. Environ. Adv. 2024, 18, 100601. [Google Scholar] [CrossRef]
- Bhattacharya, K.; Andón, F.T.; El-Sayed, R.; Fadeel, B. Mechanisms of carbon nanotube-induced toxicity: Focus on pulmonary inflammation. Adv. Drug Deliv. Rev. 2013, 65, 2087–2097. [Google Scholar] [CrossRef]
- Seabra, A.B.; Durán, N. Nanotoxicology of metal oxide nanoparticles. Metals 2015, 5, 934–975. [Google Scholar] [CrossRef]
- Andón, F.T.; Fadeel, B. Programmed cell death: Molecular mechanisms and implications for safety assessment of nanomaterials. Acc. Chem. Res. 2013, 46, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Witika, B.A.; Makoni, P.A.; Matafwali, S.K.; Chabalenge, B.; Mwila, C.; Kalungia, A.C.; Nkanga, C.I.; Bapolisi, A.M.; Walker, R.B. Biocompatibility of biomaterials for nanoencapsulation: Current approaches. Nanomaterials 2020, 10, 1649. [Google Scholar] [CrossRef] [PubMed]
- Setyawati, M.I.; Tay, C.Y.; Leong, D.T. The gap between endothelial cells: Key to the quick escape of nanomaterials? Nanomedicine 2014, 9, 1591–1594. [Google Scholar] [CrossRef]
- Faria, M.; Björnmalm, M.; Thurecht, K.J.; Kent, S.J.; Parton, R.G.; Kavallaris, M.; Johnston, A.P.R.; Gooding, J.J.; Corrie, S.R.; Boyd, B.J.; et al. Minimum information reporting in bio-nano experimental literature. Nat. Nanotechnol. 2018, 13, 777–785. [Google Scholar] [CrossRef]
- Islas, P.; Platnich, C.M.; Gidi, Y.; Karimi, R.; Ginot, L.; Saliba, D.; Luo, X.; Cosa, G.; Sleiman, H.F. Automated synthesis of DNA nanostructures. Adv. Mater. 2024, 36, 2403477. [Google Scholar] [CrossRef]
- Luo, X.; Saliba, D.; Yang, T.X.; Gentile, S.; Mori, K.; Islas, P.; Das, T.; Bagheri, N.; Porchetta, A.; Guarne, A.; et al. Minimalist design of wireframe DNA nanotubes: Tunable geometry, size, chirality, and dynamics. Angew. Chem.-Int. Edit. 2023, 62, e202309869. [Google Scholar] [CrossRef]
- Wang, J.; Xie, M.; Ouyang, L.; Li, J.; Wang, L.; Fan, C.; Chao, J. Artificial molecular communication network based on DNA nanostructures recognition. Nat. Commun. 2025, 16, 244. [Google Scholar] [CrossRef]
- Liu, X.; Shi, B.; Gao, Y.; Zhu, S.T.; Yan, Q.L.; Liu, X.G.; Shi, J.Y.; Li, Q.; Wang, L.H.; Li, J.; et al. Ultrabright near-infrared fluorescent DNA frameworks for near-single-cell cancer imaging. Nat. Photonics 2024, 19, 79–88. [Google Scholar] [CrossRef]
- Knappe, G.A.; Wamhoff, E.C.; Bathe, M. Functionalizing DNA origami to investigate and interact with biological systems. Nat. Rev. Mater. 2023, 8, 123–138. [Google Scholar] [CrossRef]
- Stephanopoulos, N. Hybrid nanostructures from the self-assembly of proteins and DNA. Chem 2020, 6, 364–405. [Google Scholar] [CrossRef]
- Elblová, P.; Andelová, H.; Lunova, M.; Anthi, J.; Henry, S.J.W.; Tu, X.Y.; Dejneka, A.; Jirsa, M.; Stephanopoulos, N.; Lunov, O. Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake. J. Mater. Chem. B 2025, 13, 2335–2351. [Google Scholar] [CrossRef]
- Frtus, A.; Smolkova, B.; Uzhytchak, M.; Lunova, M.; Jirsa, M.; Henry, S.J.W.; Dejneka, A.; Stephanopoulos, N.; Lunov, O. The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomater. 2022, 146, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, A.; Sleiman, H.F. DNA nanostructures: Current challenges and opportunities for cellular delivery. ACS Nano 2021, 15, 3631–3645. [Google Scholar] [CrossRef] [PubMed]
- Elblová, P.; Lunova, M.; Henry, S.J.W.; Tu, X.Y.; Calé, A.; Dejneka, A.; Havelková, J.; Petrenko, Y.; Jirsa, M.; Stephanopoulos, N.; et al. Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells. Chem. Eng. J. 2024, 498, 155633. [Google Scholar] [CrossRef] [PubMed]
- Veneziano, R.; Moyer, T.J.; Stone, M.B.; Wamhoff, E.C.; Read, B.J.; Mukherjee, S.; Shepherd, T.R.; Das, J.; Schief, W.R.; Irvine, D.J.; et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat. Nanotechnol. 2020, 15, 716–723. [Google Scholar] [CrossRef]
- Hellmeier, J.; Platzer, R.; Eklund, A.S.; Schlichthaerle, T.; Karner, A.; Motsch, V.; Schneider, M.C.; Kurz, E.; Bamieh, V.; Brameshuber, M.; et al. DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens. Proc. Natl. Acad. Sci. USA 2021, 118, e2016857118. [Google Scholar] [CrossRef]
- Fang, T.; Alvelid, J.; Spratt, J.; Ambrosetti, E.; Testa, I.; Teixeira, A. Spatial regulation of T-Cell signaling by programmed death-ligand 1 on wireframe DNA origami flat sheets. ACS Nano 2021, 15, 3441–3452. [Google Scholar] [CrossRef]
- Dong, R.; Aksel, T.; Chan, W.; Germain, R.N.; Vale, R.D.; Douglas, S.M. DNA origami patterning of synthetic T cell receptors reveals spatial control of the sensitivity and kinetics of signal activation. Proc. Natl. Acad. Sci. USA 2021, 118, e2109057118. [Google Scholar] [CrossRef]
- Rosier, B.J.H.M.; Markvoort, A.J.; Audenis, B.G.; Roodhuizen, J.A.L.; den Hamer, A.; Brunsveld, L.; de Greef, T.F.A. Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome. Nat. Catal. 2020, 3, 295–306. [Google Scholar] [CrossRef]
- Klein, W.P.; Thomsen, R.P.; Turner, K.B.; Walper, S.A.; Vranish, J.; Kjems, J.; Ancona, M.G.; Medintz, I.L. Enhanced catalysis from multienzyme cascades assembled on a DNA origami triangle. ACS Nano 2019, 13, 13677–13689. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.; Hoffecker, I.T.; Smyrlaki, I.; Rosa, J.; Grevys, A.; Bratlie, D.; Sandlie, I.; Michaelsen, T.E.; Andersen, J.T.; Högberg, B. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol. 2019, 14, 184–190. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.J.; Dong, Y.H.; Chu, Y.W.; Song, N.C.; Yang, D.Y. Dynamic assembly of DNA nanostructures in living cells for mitochondrial interference. J. Am. Chem. Soc. 2022, 144, 4667–4677. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.H.; Li, F.; Lv, Z.Y.; Li, S.; Yuan, M.H.; Song, N.C.; Liu, J.Q.; Yang, D.Y. Lysosome interference enabled by proton-driven dynamic assembly of DNA nanoframeworks inside cells. Angew. Chem.-Int. Edit. 2022, 61, e202207770. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Cheng, Y.; Liu, M.X.; Tang, J.P.; Li, S.Q.; Huang, Y.; Kou, X.H.; Yao, C.; Yang, D.Y. Sequential assembly of DNA nanoparticles inside cells enables lysosome interference and cell behavior regulation. Nano Today 2024, 56, 102224. [Google Scholar] [CrossRef]
- Yuan, M.H.; Dong, Y.H.; Lv, Z.Y.; Liu, J.Q.; Liu, M.X.; Xu, M.D.; Guo, X.C.; Yao, C.; Yang, D.Y. Controlled sequential assembly of DNA nanoparticles inside cells enabling mitochondrial interference. Adv. Funct. Mater. 2024, 34, 2312880. [Google Scholar] [CrossRef]
- Elblová, P.; Anthi, J.; Liu, M.H.; Lunova, M.; Jirsa, M.; Stephanopoulos, N.; Lunov, O. DNA nanostructures for rational regulation of cellular organelles. JACS Au 2025, 5, 1591–1616. [Google Scholar] [CrossRef]
Trade Name | API | Nanocarrier | Year of Approval | Applications | Company | Ref. |
---|---|---|---|---|---|---|
Lipid-Based NPs | ||||||
Diprivan | Propofol | Nanoemulsion | FDA 1989 | Sedation or anesthesia | Fresenius Kabi | [9,48] |
Doxil | Doxorubicin | PEGylated liposome | FDA 1995 | Metastatic ovarian cancer HIV-associated Kaposi’s sarcoma Multiple myeloma | Janssen Pharmaceuticals | [9] |
Abelcet | Amphotericin B | Lipid complex | FDA 1995 | Invasive severe fungal infection | Leadiant Biosciences Inc. | [49] |
Caelyx | Doxorubicin | PEGylated liposome | EMA 1996 | Metastatic breast cancer Ovarian cancer AIDS-associated Kaposi’s sarcoma Multiple myeloma | Eagle Pharmaceuticals | [50] |
AmBisome | Amphotericin B | Unilamellar liposome | FDA 1997 | Fungal and/or protozoal infection Anti-leishmanial | Gilead Sciences, Inc. | [9] |
Myocet | Doxorubicin | Liposome | EMA 2000 | Metastatic breast cancer | CHEPLAPHARM Arzneimittel GmbH | [9,10] |
Visudyne | Verteporfin | Unilamellar liposome | FDA 2000 EMA 2000 | Decreased vision Macular degeneration Pathologic myopia | Bausch + Lomb | [51] |
Definity | Perflutren | Phospholipid-stabilized microbubble | FDA 2001 | Ultrasound contrast agent | Lantheus Medical Imaging | [52] |
Mepact | Mifamurtide | Liposome | EMA 2009 | Non-metastatic osteosarcoma and myosarcoma | Takeda Pharmaceuticals | [53] |
Exparel | Bupivacaine | Liposome | FDA 2011 EMA 2020 | Pain management | Pacira Biosciences | [54] |
Onivyde | Irinotecan | Liposome | FDA 2015 EMA 2016 | Metastatic breast cancer | Ipsen | [55] |
Vyxeos | Daunorubicin and cytarabine (1:5 ratio) | Liposome | FDA 2017 EMA 2018 | Acute myeloid leukemia AML-MRC t-AML | Jazz Pharmaceuticals | [56] |
Onpattro | Patisiran sodium | Lipid nanoparticle | FDA 2018 EMA 2018 | Hereditary transthyretin-mediated amyloidosis | Alnylam Pharmaceuticals, Inc. | [9,10] |
Shingrix | Recombinant VZV glycoprotein E | Liposome | EMA 2018 | Prevention of shingles and post-herpetic neuralgia | GlaxoSmithKline | [57] |
Arikayce | Amikacin | Liposome | FDA 2018 EMA 2020 | NTM lung disease caused by MAC | Insmed Incorporated | [58] |
Comirnaty (BNT162b2) | mRNA encoding SARS-CoV-2 spike | PEGylated lipid nanoparticle | FDA 2021 EMA 2022 | Prevention of coronavirus 2 infection (SARS-CoV-2 vaccine) | Pfizer, Inc. | [9] |
Spikevax (mRNA-1273) | mRNA encoding SARS-CoV-2 spike | PEGylated lipid nanoparticle | FDA 2022 EMA 2022 | Prevention of coronavirus 2 infection (SARS-CoV-2 vaccine) | Moderna, Inc. | [9] |
Polymer-based NPs | ||||||
Optison | Perflutren | Albumin-stabilized microbubble | FDA 1997 EMA 1998 | Ultrasound contrast agent | GE Healthcare | [59] |
Abraxane | Paclitaxel | Albumin-bound nanoparticle | FDA 2005, 2012, 2013 EMA 2008 | Metastatic breast cancer Lung cancer Metastatic pancreatic adenocarcinoma | Eli Lilly Company | [60] |
Zilretta | Triamcinolone acetonide | PLGA microsphere | FDA 2017 | Knee osteoarthritis | Pacira Biosciences | [61] |
Apealea | Paclitaxel | Micelle | FDA 2018 | Ovarian cancer Peritoneal cancer Fallopian tube cancer | Oasmia Pharmaceutical | [62] |
Inorganic NPs | ||||||
Venofer | Iron sucrose | Colloidal iron sucrose | FDA 2000 | Iron deficiency in CKD | American Regent | [63] |
Feraheme | Ferumoxytol | Dextran-based nanoparticle | FDA 2009 | Iron deficiency in CKD | Covis Group S.a.r.l | [26] |
Injectafer | Ferric carbocymaltose | Colloidal formulation | FDA 2013 | Iron deficiency in anemia | Vifor Pharma | [26] |
Hensify | Hafnium oxide | Inorganic nanoparticle | EMA 2019 | Squamous cell carcinoma | Nanobiotix | [64] |
Molecular Pathway | Affected Cell Components | Key Mediators | Clinical Implications | Ref. |
---|---|---|---|---|
Oxidative stress | Mitochondria, DNA, proteins, lipids | ROS, antioxidant enzymes | Potential for widespread cellular damage, mutagenesis | [179] |
Inflammatory response | Cell membrane, cytokine signaling pathways | NF-κB, TNF-α, IL-6, IL-8 | Chronic inflammation, tissue damage | [179] |
Lysosomal dysfunction | Lysosomes, autophagy machinery | Cathepsins, autophagy-related proteins | Disruption of cellular waste management, potential trigger for cell death | [10,180,181] |
Membrane disruption | Plasma membrane, organelle membranes | Membrane lipids, membrane proteins | Altered cellular permeability, potential for cell lysis | [182] |
Mitochondrial dysfunction | Mitochondria | Electron transport chain components, ATP synthase | Energy metabolism disruption, potential trigger for apoptosis | [181] |
DNA damage | Nucleus, mitochondrial DNA | DNA repair enzymes, p53 | Mutagenesis, potential carcinogenesis | [179] |
Apoptosis | Whole cell | Caspases, Bcl-2 family proteins | Programmed cell death, potential for tissue damage | [181,182] |
Autophagy | Autophagosomes, lysosomes | LC3, p62, Beclin-1 | Altered cellular homeostasis, potential protective or destructive effects | [10,181] |
Ferroptosis | Cell membrane, mitochondria | Iron, lipid peroxides | Iron-dependent cell death, potential for tissue-specific effects | [183] |
ER Stress | ER | Unfolded protein response proteins | Protein folding disruption, potential trigger for apoptosis | [181] |
Cytoskeleton disruption | Actin filaments, microtubules | Actin, tubulin | Altered cell morphology and motility | [184] |
Cell cycle regulation | Nucleus, cytoplasm | Cyclins, CDKs | Altered cell proliferation, potential for carcinogenesis | [184,185] |
Immune modulation | Immune cells, cytokine signaling pathways | Toll-like receptors, complement proteins | Altered immune responses, potential for immunotoxicity | [186] |
Epigenetic changes | Nucleus, chromatin | Histone modifying enzymes, DNA | Long-term alterations in gene expression | [187] |
Nanoparticle Type | Molecular Pathways | Cell Model | Ref. |
---|---|---|---|
Gold nanoparticles | Oxidative stress Membrane disruption DNA damage ER stress Cell cycle regulation | Embryonic lung fibroblasts * Human neuroblastoma cells * Human monocytes * Human neutrophils * Human endothelial cells * | [181,182,183,213] |
Silver nanoparticles | Oxidative stress Lysosomal dysfunction Mitochondrial dysfunction DNA damage Apoptosis Autophagy ER stress | Human leukemia cells * Human HCC * D. melanogaster ** AML cell lines * Embryonic lung fibroblasts * Human hepatoblastoma cells * AML patient samples ** Human bronchial epithelial cells * Mouse (lung, liver, kidney) ** Rat ** Human neuroblastoma cells * | [181,213,214,215,216,217] |
Quantum dots | Oxidative stress Mitochondrial dysfunction Apoptosis ER stress Epigenetic changes | Human breast carcinoma * Endometrial cancer cells * Rat neuronal cells * Mouse ** Rat neuronal cells * | [181,182,187,218] |
Carbon nanotubes | Oxidative stress Inflammatory responses Lysosomal dysfunction Mitochondrial dysfunction DNA damage Apoptosis | Rat embryonic lung fibroblasts * Normal and malignant mesothelial cells * Mouse and rat lungs ** Mouse hepatoblastoma cells * Lung epithelial cells * Human embryonic kidney cells * Bronchial epithelial cells * | [181,219,220,221,222,223,224] |
Iron oxide nanoparticles | Oxidative stress Mitochondrial dysfunction DNA damage Apoptosis Cytoskeleton dysregulation Cell cycle regulation | Human breast carcinoma * Human cervical carcinoma * Human lung adenocarcinoma * Human embryonic kidney cells * Human neuroblastoma cells * Mouse hepatocytes * Breast cells (cancerous and non-cancerous) * Healthy lung cells * Liver cancer cells * Mouse ** Umbilical vein endothelial cells * | [99,183,184,225,226] |
Silica nanoparticles | Oxidative stress Inflammatory responses Mitochondrial dysfunction Apoptosis Autophagy | Mouse macrophage-like cells * HUVEC * Mice (peritoneal macrophages) **, Mouse macrophage-like cells * Human endothelial cells * Human hepatic cell line * Human HCC * | [181,227,228,229] |
Titanium dioxide nanoparticles | Oxidative stress Inflammatory responses Mitochondrial dysfunction Apoptosis Autophagy ER stress | Mouse erythrocytes, brain, liver ** Bronchial epithelial cells * Rat liver and kidney ** Rat ** Human monocytes * Human neuroblastoma cells * Mouse ** | [181,183,230,231,232] |
Zinc oxide nanoparticles | Oxidative stress Inflammatory responses Apoptosis Autophagy Ferroptosis | Mouse erythrocytes, brain, liver ** Rat lung **, Human lung adenocarcinoma * Human neuroblastoma cells * Mouse macrophages * Bronchial epithelial cells * Zebrafish embryos ** Embryonic lung fibroblasts * Mouse ** | [181,182,183,230,233,234,235] |
Aluminum oxide nanoparticles | Oxidative stress Autophagy Ferroptosis | Mouse erythrocytes, brain, liver ** Mouse ** Rat ** | [181,183,230] |
Nanodrug Category | Cytotoxic Trigger | Ref. | ||||
---|---|---|---|---|---|---|
Oxidative Stress | Lysosomal Dysfunction | Membrane Disruption | Inflammatory Response | Mitochondrial Dysfunction | ||
Liposomes | ++ | + | +++ | ++ | + | [186] |
Metal NPs (Au, Ag) | +++ | ++ | +++ | ++ | ++ | [182] |
Quantum dots | +++ | ++ | + | ++ | +++ | [187] |
Carbon nanotubes | ++ | + | ++ | +++ | ++ | [116] |
Polymeric NPs | + | +++ | ++ | + | + | [180] |
Iron oxide NPs | +++ | + | ++ | ++ | ++ | [184] |
Silica NPs | ++ | ++ | +++ | + | + | [138] |
Nanodrug Category | Safety Concerns | Molecular Basis | Mitigation Approaches | Ref. |
---|---|---|---|---|
Metal nanoparticles (e.g., gold, silver) | Size-dependent toxicity, ROS generation | Oxidative stress, membrane disruption | Size optimization, surface coating (e.g., PEGylation) | [182,245] |
Quantum dots | Heavy metal toxicity, long-term accumulation | Cadmium-induced cellular damage, ROS generation | Use of cadmium-free QDs, surface passivation | [187] |
Carbon nanotubes | Asbestos-like effects, inflammatory response | Membrane damage, ROS generation, NF-κB activation | Functionalization, length control, use of biodegradable CNTs | [179,246] |
Polymeric nanoparticles | Potential immunogenicity, complement activation | Protein corona formation, inflammatory response | Stealth coatings, immunomodulatory strategies | [180,186] |
Liposomes | Complement activation, potential cardiotoxicity | Lipid peroxidation, membrane fusion | PEGylation, use of non-toxic lipids, size optimization | [186] |
Iron oxide nanoparticles | ROS generation, potential for iron overload | Fenton reaction, disruption of iron homeostasis | Surface coating, controlled biodegradation | [184,186,241] |
Silica nanoparticles | Hemolysis, liver toxicity | Membrane interactions, ROS generation | Surface modification, size control | [247] |
Dendrimers | Cationic toxicity, hemolysis | Membrane disruption, mitochondrial dysfunction | Surface modification, use of biodegradable cores | [4,6,142] |
Titanium dioxide nanoparticles | Pulmonary inflammation, potential carcinogenicity | ROS generation, DNA damage | Surface coating, shape control | [241,248] |
Zinc oxide nanoparticles | Dissolution-related toxicity, ROS generation | Zn2+ release, oxidative stress | Surface passivation, controlled dissolution | [6,181] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calé, A.; Elblová, P.; Andělová, H.; Lunova, M.; Lunov, O. Analyzing Molecular Determinants of Nanodrugs’ Cytotoxic Effects. Int. J. Mol. Sci. 2025, 26, 6687. https://doi.org/10.3390/ijms26146687
Calé A, Elblová P, Andělová H, Lunova M, Lunov O. Analyzing Molecular Determinants of Nanodrugs’ Cytotoxic Effects. International Journal of Molecular Sciences. 2025; 26(14):6687. https://doi.org/10.3390/ijms26146687
Chicago/Turabian StyleCalé, Alicia, Petra Elblová, Hana Andělová, Mariia Lunova, and Oleg Lunov. 2025. "Analyzing Molecular Determinants of Nanodrugs’ Cytotoxic Effects" International Journal of Molecular Sciences 26, no. 14: 6687. https://doi.org/10.3390/ijms26146687
APA StyleCalé, A., Elblová, P., Andělová, H., Lunova, M., & Lunov, O. (2025). Analyzing Molecular Determinants of Nanodrugs’ Cytotoxic Effects. International Journal of Molecular Sciences, 26(14), 6687. https://doi.org/10.3390/ijms26146687