Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (672)

Search Parameters:
Keywords = controlled rectifier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5177 KB  
Article
Effects of a Multicomponent Periodized Program in Kinematic and Muscle Activity Characteristics Related to Anterior Cruciate Ligament Injury Mechanism in College Football Players—A Controlled Trial
by Loreto Ferrández-Laliena, Lucía Vicente-Pina, Rocío Sánchez-Rodríguez, Graham J. Chapman, Badis Soussi, César Hidalgo-García, María Orosia Lucha-López, José Miguel Tricás-Moreno and Mira Ambrus
J. Funct. Morphol. Kinesiol. 2025, 10(4), 412; https://doi.org/10.3390/jfmk10040412 - 21 Oct 2025
Viewed by 79
Abstract
Background: Given the persistent sex-based disparities in anterior cruciate ligament (ACL) injury prevalence and the heightened susceptibility observed during critical stages of development in female academy-level players, it is necessary to enhance the effectiveness of prevention programs, particularly during change of direction (COD). [...] Read more.
Background: Given the persistent sex-based disparities in anterior cruciate ligament (ACL) injury prevalence and the heightened susceptibility observed during critical stages of development in female academy-level players, it is necessary to enhance the effectiveness of prevention programs, particularly during change of direction (COD). Objectives: This study aims to evaluate whether a multicomponent periodized program modifies three-dimensional knee angular velocity and hamstrings and quadriceps muscle activity during a COD task in under-16 female football players. A secondary objective was to determine whether adaptations differed based on lower limb dominance. Methods: A non-randomized, multicenter controlled trial with a pre–post design was conducted involving 35 players (age: 15.50 ± 1.22), allocated to either an intervention (n = 17) or control (n = 18) group. The intervention group undertook a 12-week multicomponent periodized program within their usual training program whilst the control group undertook their usual training program. The peak and range of thigh and shank angular velocity across three planes, along with the average rectified and peak envelope EMG signals of the Biceps Femoris (BF), Semitendinosus (ST), Vastus Medialis (VM) and Vastus Lateralis (VL), were recorded during the preparation and load phases, using the Change of Direction and Acceleration Test. Three-factor mixed model ANOVAs and non-parametric tests were applied, with statistical significance set at p < 0.05. Results: Post-intervention analysis revealed significant improvements in sagittal and coronal planes shank angular velocities and thigh coronal and transverse plane angular velocities. Muscle activity patterns also improved, particularly in the ST and VM, suggesting enhanced medial stabilization and neuromuscular control. Functional improvements were most evident in the dominant limb. Conclusions: The 12-week multicomponent periodized program effectively modified three-dimensional knee kinematics and muscle activity during a COD task in under-16 female football players. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

17 pages, 164410 KB  
Article
DocCPLNet: Document Image Rectification via Control Point and Illumination Correction
by Hongyin Ni, Jiayu Han, Chiyuan Wang, Shuo Zhang and Ruiqi Li
Sensors 2025, 25(20), 6304; https://doi.org/10.3390/s25206304 - 11 Oct 2025
Viewed by 537
Abstract
With the widespread adoption of mobile devices in daily life, efficiently capturing and digitizing documentation has emerged as a critical research question. The acquisition of documents via mobile devices is often compromised by shadow interference and geometric distortions, which degrade image quality and [...] Read more.
With the widespread adoption of mobile devices in daily life, efficiently capturing and digitizing documentation has emerged as a critical research question. The acquisition of documents via mobile devices is often compromised by shadow interference and geometric distortions, which degrade image quality and adversely affect both OCR accuracy and readability. To address this, we propose a novel method that utilizes control points and illumination prediction to effectively rectify distortions and eliminate shadows in captured document images. Spatial attention is employed to guide the interpolation between control points and reference points, effectively eliminating geometric distortions in the captured document images. Following geometric unwarping, an illumination correction model is applied to remove shadows and enhance surface clarity, improving both human readability and OCR accuracy. Our method demonstrates robust performance in effectively rectifying document distortions across diverse scenarios. Evaluation on the DocUNet benchmark dataset shows that our approach achieves competitive results compared with state-of-the-art techniques. Full article
Show Figures

Figure 1

13 pages, 3661 KB  
Article
An Energy Storage Unit Design for a Piezoelectric Wind Energy Harvester with a High Total Harmonic Distortion
by Davut Özhan and Erol Kurt
Processes 2025, 13(10), 3217; https://doi.org/10.3390/pr13103217 - 9 Oct 2025
Viewed by 382
Abstract
A new energy storage unit, which is fed by a piezoelectric wind energy harvester, is explored. The outputs of a three-phase piezoelectric wind energy device have been initially recorded from the laboratory experiments. Following the records of voltage outputs, the power ranges of [...] Read more.
A new energy storage unit, which is fed by a piezoelectric wind energy harvester, is explored. The outputs of a three-phase piezoelectric wind energy device have been initially recorded from the laboratory experiments. Following the records of voltage outputs, the power ranges of the device were measured at several hundred microwatts. The main issue of piezoelectric voltage generation is that voltage waveforms of piezoelectric materials have high total harmonic distortion (THD) with incredibly high subharmonics and superharmonics. Therefore, such a material reply causes a certain power loss at the output of the wind energy generator. In order to fix this problem, we propose a combination of a rectifier and a storage system, where they can operate compatibly under high THD rates (i.e., 125%). Due to high THD values, current–voltage characteristics are not linear-dependent; indeed, because of capacitive effect of the piezoelectric (i.e., lead zirconium titanite) material, harvested power from the material is reduced by nearly a factor of 20% in the output. That also negatively affects the storage on the Li-based battery. In order to compensate, the output waveform of the device, the waveforms, which are received from the energy-harvester device, are first rectified by a full-wave rectifier that has a maximum power point tracking (MPPT) unit. The SOC values prove that almost 40% of the charge is stored in 1.2 s under moderate wind speeds, such as 6.1 m/s. To conclude, a better harvesting performance has been obtained by storing the energy into the Li-ion battery under a current–voltage-controlled boost converter technique. Full article
Show Figures

Figure 1

25 pages, 5718 KB  
Article
Research on Fractional-Order Sliding Mode Control of Fractional-Order Permanent Magnet Direct-Drive Wind Power System
by Junhua Xu, Yue Lan, Chunwei Wang, Bin Liu, Yingheng Li and Yongzeng Xie
Machines 2025, 13(10), 928; https://doi.org/10.3390/machines13100928 - 8 Oct 2025
Viewed by 314
Abstract
A large number of practical systems show pronounced fractional-order features. In comparison with integer-order calculus, fractional-order calculus has been demonstrated to possess enhanced precision in the description of the dynamic behavior of complex systems. The increase in control accuracy and flexibility results from [...] Read more.
A large number of practical systems show pronounced fractional-order features. In comparison with integer-order calculus, fractional-order calculus has been demonstrated to possess enhanced precision in the description of the dynamic behavior of complex systems. The increase in control accuracy and flexibility results from this improvement. This study explores a direct-drive wind power generation system featuring permanent magnets, which incorporates fractional-order direct current bus (DC-bus) capacitor and fractional-order inductor–capacitor–inductor (FOLCL) grid-connected filter. For the machine-side rectifier, a fractional-order sliding mode (FOSM) speed outer-loop control and a fractional-order proportional–integral (FOPI) current inner-loop control were designed. A voltage outer-loop control using FOSM and a current inner-loop control using FOPI were developed for the grid-side inverter. Through simulation analyses under various wind speeds and grid fault conditions, it is demonstrated that compared to a control strategy using FOPI controllers in both inner and outer loops, the proposed control scheme which employs a FOSM outer-loop and reduces the overshoot of DC-bus voltage and grid-connected current by 21.51% and 32.49%, respectively, under sudden wind speed changes. Furthermore, during grid voltage sag faults, the maximum drop in DC-bus voltage and grid-connected active power are reduced by 65.38% and 33.38%, respectively. These results highlight the proposed method’s superior dynamic and static performance, as well as enhanced resistance to disturbances. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

17 pages, 2301 KB  
Article
Alogliptin Mitigates Methotrexate-Induced Nephrotoxicity in a Rat Model: Antagonizing Oxidative Stress, Inflammation and Apoptosis
by Marwa M. Fahmy, Heba A. Habib, Esraa M. Zeidan, Yousef A. Bin Jardan and Gehan H. Heeba
Int. J. Mol. Sci. 2025, 26(19), 9608; https://doi.org/10.3390/ijms26199608 - 1 Oct 2025
Viewed by 611
Abstract
Although methotrexate (MTX) is a magnificent cure for cancerous neoplasms and inflammatory disorders, its usage is bound due to associated hazards, especially nephrotoxicity. The present study investigated the possible therapeutic impact of alogliptin (ALO), prescribed for managing type 2 diabetes, on renal injury [...] Read more.
Although methotrexate (MTX) is a magnificent cure for cancerous neoplasms and inflammatory disorders, its usage is bound due to associated hazards, especially nephrotoxicity. The present study investigated the possible therapeutic impact of alogliptin (ALO), prescribed for managing type 2 diabetes, on renal injury caused by MTX and explored the mechanisms that could illustrate this suggested protective effect. Four rat groups were involved: control, ALO (20 mg/kg/d, intragastrically (I.G.)) for ten days, MTX, and MTX + ALO groups. The latter two groups were given MTX (20 mg/kg, I.P.) on the 7th day, while the MTX + ALO group was administered ten days of 20 mg/kg of ALO. A significant impairment in renal function, catalase activity, reduced glutathione content, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) expressions, coupled with an increase in kidney injury molecule-1 (KIM-1), malondialdehyde, tumor necrosis factor-alpha (TNF-α), and cleaved caspase-3 (c-caspase-3) expressions, was observed in MTX-intoxicated rats, evidenced by remarkable deterioration in renal construction. Conversely, ALO improved renal function and architecture. Moreover, ALO retrieved the oxidative balance, the attenuated Nrf2/HO-1 expression, and the elevated KIM-1, TNF-α, and c-caspase-3 expression. In conclusion, ALO might abrogate MTX-elicited kidney damage by rectifying the deviation in oxidative status, apoptotic and inflammatory pathways, paving the way for managing MTX-induced nephrotoxicity. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 3134 KB  
Article
Crinis Carbonisatus-Derived Carbon Dot Suspension Alleviates Temporal Lobe Epilepsy
by Yan Huang, Menghan Li, Liyang Dong, Chenxin He, Peng Zou, Minlong Xia, Bilin Jin, Siqi Wang, Zixuan Lu, Huihua Qu, Yue Zhang and Hui Kong
Pharmaceuticals 2025, 18(10), 1481; https://doi.org/10.3390/ph18101481 - 1 Oct 2025
Viewed by 364
Abstract
Background: Temporal lobe epilepsy (TLE), a prevalent refractory focal epilepsy frequently complicated by comorbid anxiety and depression, poses significant therapeutic challenges due to the inadequate efficacy of current antiepileptic drugs in seizure control. Carbon dots (CDs) demonstrate notable biological activities and represent a [...] Read more.
Background: Temporal lobe epilepsy (TLE), a prevalent refractory focal epilepsy frequently complicated by comorbid anxiety and depression, poses significant therapeutic challenges due to the inadequate efficacy of current antiepileptic drugs in seizure control. Carbon dots (CDs) demonstrate notable biological activities and represent a promising class of nanomedicines for TLE intervention. Methods: This study established an eco-friendly calcination protocol to synthesize a novel suspension of Crinis Carbonisatus-derived carbon dots (CC-CDs) as a candidate therapeutic for TLE. Results: In a TLE mouse model, the CC-CDs suspension significantly inhibited phosphorylation of the MAPK pathway (p-JNK, p-ERK, p-p38; p < 0.01, p < 0.05), leading to reduced levels of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α; p < 0.01, p < 0.05), upregulation of TGF-β1 (p < 0.01, p < 0.05), and restoration of antioxidant enzyme activities (SOD, GSH, CAT; p < 0.01, p < 0.05). These modifications subsequently regulated the Glu/GABA balance, alleviating excitotoxicity (p < 0.05), attenuating neuronal damage and Nissl body loss in hippocampal CA1/CA3 regions, and improving cognitive function alongside reducing anxiety-like behaviors (p < 0.01, p < 0.05). In vitro, the CC-CDs suspension suppressed LPS-induced apoptosis in BV2 cells. Conclusions: The CC-CDs suspension ameliorates TLE by inhibiting MAPK signaling, thereby reducing neuroinflammation and oxidative stress, rectifying Glu/GABA imbalance, attenuating excitotoxicity, and ultimately improving behavioral deficits. These findings underscore the therapeutic potential of CC-CDs suspension for TLE treatment. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

32 pages, 642 KB  
Article
Analyzing Action Interference of Administrative Obligations for SMT-Based Verification
by Vladislav Dubrovenski, Leo Chen and Dianxiang Xu
J. Cybersecur. Priv. 2025, 5(3), 66; https://doi.org/10.3390/jcp5030066 - 4 Sep 2025
Viewed by 568
Abstract
Obligations in the Next-Generation Access Control (NGAC) standard enable the development of security-intensive workflow systems where access privileges evolve over time. However, specifying obligations for dynamic access requirements poses challenges, with errors having the potential to cause significant harm to the authorization state [...] Read more.
Obligations in the Next-Generation Access Control (NGAC) standard enable the development of security-intensive workflow systems where access privileges evolve over time. However, specifying obligations for dynamic access requirements poses challenges, with errors having the potential to cause significant harm to the authorization state in NGAC applications. To identify and rectify such errors, our work aims to verify obligations by translating NGAC policies into logical formulas in SMTs (Satisfiability Modulo Theories). A primary challenge lies in the formalization of procedural obligations into declarative SMT formulas, given the potential for interference among administrative actions within an obligation. To address this issue, this paper analyzes all conflicts among obligation actions and formalizes them as logical formulas for the correct SMT-based verification of obligations in NGAC policies. We implemented the approach using the cvc5 solver and applied it to real-world systems. The results illustrate the successful formalization and verification of access control requirements. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

24 pages, 1435 KB  
Article
Robust Sliding Mode Motion Control for an Integrated Hydromechatronic Actuator
by Dom Wilson, Andrew Plummer and Ioannis Georgilas
Actuators 2025, 14(9), 435; https://doi.org/10.3390/act14090435 - 3 Sep 2025
Viewed by 368
Abstract
Electro-hydraulic servoactuators have great potential in mobile robotics due to their robustness, high bandwidth and power density, but compared with electromechanical actuators, they can be inefficient and more difficult to integrate into systems. The Integrated Smart Actuator (ISA) developed by Moog Controls Ltd. [...] Read more.
Electro-hydraulic servoactuators have great potential in mobile robotics due to their robustness, high bandwidth and power density, but compared with electromechanical actuators, they can be inefficient and more difficult to integrate into systems. The Integrated Smart Actuator (ISA) developed by Moog Controls Ltd. is a hydromechatronic device that aims to address these issues by combining a novel efficient servovalve, cylinder, sensors and control electronics into a single component. The aim of this work was to develop a robust motion control algorithm that can make integration of the ISA into a robotic system straightforward by requiring minimal controller set-up despite variations in the load characteristics. The proposed controller is a sliding mode controller with a varying boundary layer that contains two robustness parameters and a single bandwidth parameter that defines the response. The controller outperforms a conventional high-performance linear controller in terms of tracking performance and its robustness to variations in the load mass and fluid bulk modulus. The response when the system was subject to some unachievable demand trajectories, such as large step demands, was found to be poor, and an online velocity, acceleration and jerk limited trajectory filter was demonstrated to rectify this issue. The successful implementation of a robust motion controller enables this highly novel integrated actuator to live up to its ‘smart’ epithet. Full article
Show Figures

Figure 1

16 pages, 2932 KB  
Article
KMO Inhibition Improves Seizures and Depressive-like Behaviors Without Aggravating Cognitive Impairment in Epileptic Mice
by Jingwen Xu, Yifen Huang, Liping Wei, Ziting Kong, Junling Fu and Lun Cai
Curr. Issues Mol. Biol. 2025, 47(9), 705; https://doi.org/10.3390/cimb47090705 - 1 Sep 2025
Viewed by 631
Abstract
The objective of this study is to investigate the effects of kynurenine-3-monooxygenase (KMO) inhibition on seizures, depressive-like behaviors, and cognitive functions in epileptic mice, and to elucidate its impact on the kynurenine metabolic pathway. Male Kunming (KM) mice were randomized into four groups: [...] Read more.
The objective of this study is to investigate the effects of kynurenine-3-monooxygenase (KMO) inhibition on seizures, depressive-like behaviors, and cognitive functions in epileptic mice, and to elucidate its impact on the kynurenine metabolic pathway. Male Kunming (KM) mice were randomized into four groups: the epileptic model (EM), epileptic model treated with Ro 61-8048 (RM), healthy control (HC), and healthy control treated with Ro 61-8048 (RC). Chronic epilepsy was induced in the EM and RM groups via an intraperitoneal pilocarpine injection (225 mg/kg). The RM and RC groups received Ro 61-8048 (42 mg/kg). The seizure frequency was monitored continuously using a 24 h video recording. Depressive-like behaviors were assessed with the sucrose preference test (SPT) and forced swim test (FST); cognitive function was evaluated with the Y-maze test and open field test (OFT). The concentrations of kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HANA) were determined by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Compared to the EM group, the RM group exhibited a reduced seizure frequency and severity (p < 0.05), ameliorated depressive-like behaviors (increased sucrose preference in SPT, and decreased immobility time in FST, p < 0.05), and enhanced cognitive performance (elevated spontaneous alternation and reduced non-sequential alternation in a Y-maze, and increased time and distance in a central open field area, p < 0.05). Mechanistically, compared to the RC group, the RM group showed an increased KYNA/KYN ratio, and a decreased 3-HK/KYN ratio (p < 0.05) KMO inhibition rectifies the neurotoxic–neuroprotective imbalance in the kynurenine pathway (downregulating the 3-HK/3-HANA ratio and upregulating the KYNA/KYN ratio), thereby decreasing seizures, depressive-like behaviors, and cognitive deficits. These findings suggest KMO inhibition is a potential therapeutic strategy for epilepsy-associated depression. A further investigation of its mechanisms and clinical applicability is warranted. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 1947 KB  
Article
Real-Time Correction and Long-Term Drift Compensation in MOS Gas Sensor Arrays Using Iterative Random Forests and Incremental Domain-Adversarial Networks
by Xiaorui Dong and Shijing Han
Micromachines 2025, 16(9), 991; https://doi.org/10.3390/mi16090991 - 29 Aug 2025
Viewed by 959
Abstract
Sensor arrays serve a crucial role in various fields such as environmental monitoring, industrial process control, and medical diagnostics, yet their reliability remains challenged by sensor drift and noise contamination. This study presents a novel framework for real-time data error correction and long-term [...] Read more.
Sensor arrays serve a crucial role in various fields such as environmental monitoring, industrial process control, and medical diagnostics, yet their reliability remains challenged by sensor drift and noise contamination. This study presents a novel framework for real-time data error correction and long-term drift compensation utilizing an iterative random forest-based error correction algorithm paired with an Incremental Domain-Adversarial Network (IDAN). The iterative random forest algorithm leverages the collective data from multiple sensor channels to identify and rectify abnormal sensor responses in real time. The IDAN integrates domain-adversarial learning principles with an incremental adaptation mechanism to effectively manage temporal variations in sensor data. Experiments utilizing the metal oxide semiconductor gas sensor array drift dataset demonstrate that the combination of these approaches significantly enhances data integrity and operational efficiency, achieving a robust and good accuracy even in the presence of severe drift. This study underscores the efficacy of integrating advanced artificial intelligence techniques for the ongoing evolution of sensor array technology, paving the way for enhanced monitoring systems capable of sustaining high levels of performance over extended time periods. Full article
(This article belongs to the Special Issue AI-Driven Design and Optimization of Microsystems)
Show Figures

Figure 1

15 pages, 1516 KB  
Proceeding Paper
Modeling and Control of Permanent Magnet Generators with Fractional-Slot Concentrated Windings Working with Active Converters for Wind Power
by Hung Vu Xuan
Eng. Proc. 2025, 104(1), 26; https://doi.org/10.3390/engproc2025104026 - 26 Aug 2025
Viewed by 812
Abstract
This paper presents modeling for an external rotor permanent magnet generator (PMG) with fractional-slot concentrated windings working with a power electronic converter in the rotor magnetic field coordinate—the model is also called the DQ model. The model is needed to synthesize controllers of [...] Read more.
This paper presents modeling for an external rotor permanent magnet generator (PMG) with fractional-slot concentrated windings working with a power electronic converter in the rotor magnetic field coordinate—the model is also called the DQ model. The model is needed to synthesize controllers of the PMG. Additionally, modeling for an active rectifier of the PMG is also investigated. The models of PMG and the active rectifier with two closed loops, namely the current loop and dc voltage loop, are verified by simulation in Matlab/Simulink. By modeling PMG in the rotor magnetic field coordinate, vector current can be decomposed in two independent currents, namely active current and reactive current. By controlling the active current, active power or electromagnetic torque or DC bus voltage can be controlled. By setting a relevant reactive current, the power factor or reactive power or rotor magnetic flux of PMG can be controlled. Simulation results of control PMG working with an active converter, such as pulse width modulation voltage, current, DC voltage, or power, are reported. The simulation helps to synthesize controllers and improve performances of the PMG working with the converter in wind applications. Full article
Show Figures

Figure 1

16 pages, 5152 KB  
Article
Simulation-Based Design of an Electrically Tunable Beam-Steering Metasurface Driven by a Triboelectric Nanogenerator
by Penghui Luo, Longlong Zhang, Shuaixing Wang and Zhiyuan Zhu
Micromachines 2025, 16(8), 948; https://doi.org/10.3390/mi16080948 - 19 Aug 2025
Viewed by 714
Abstract
This study presents a simulation-based feasibility analysis of a beam steering metasurface, theoretically driven by mechanical energy harvested from human motion via a triboelectric nanogenerator (TENG). In the proposed model, the TENG converts biomechanical motion into alternating current (AC), which is rectified into [...] Read more.
This study presents a simulation-based feasibility analysis of a beam steering metasurface, theoretically driven by mechanical energy harvested from human motion via a triboelectric nanogenerator (TENG). In the proposed model, the TENG converts biomechanical motion into alternating current (AC), which is rectified into direct current (DC) to bias varactor diodes integrated into each metasurface unit cell. These bias voltages are numerically applied to dynamically modulate the local reflection phase, enabling beam steering without external power. Full-wave electromagnetic simulations were conducted to confirm the feasibility of beam manipulation under TENG-generated voltage levels. The proposed simulation-driven design offers a promising framework for battery-free, adaptive electromagnetic control with potential applications in wearable electronics, intelligent sensing, and energy-autonomous radar systems. Full article
(This article belongs to the Special Issue Micro-Energy Harvesting Technologies and Self-Powered Sensing Systems)
Show Figures

Figure 1

27 pages, 5922 KB  
Article
Integrated I-ADALINE Neural Network and Selective Filtering Techniques for Improved Power Quality in Distorted Electrical Networks
by Yap Hoon, Kuew Wai Chew and Mohd Amran Mohd Radzi
Symmetry 2025, 17(8), 1337; https://doi.org/10.3390/sym17081337 - 16 Aug 2025
Viewed by 447
Abstract
Adaptive Linear Neuron (ADALINE) is a well-known neural network method that has been utilized for generating a reference current intended to regulate the operation of shunt-typed active harmonic filters (SAHFs). These filters are essential for improving power quality by mitigating harmonic disturbances and [...] Read more.
Adaptive Linear Neuron (ADALINE) is a well-known neural network method that has been utilized for generating a reference current intended to regulate the operation of shunt-typed active harmonic filters (SAHFs). These filters are essential for improving power quality by mitigating harmonic disturbances and restoring current waveform symmetry in power systems. While the latest variant, Simplified ADALINE, offers notable advantages over its predecessors, such as a reduced complexity and faster learning speed, its performance has primarily been evaluated under stable grid conditions, leaving its performance under distorted environments largely unexplored. To address this gap, this work introduces two key modifications to the Simplified ADALINE framework: (1) the integration of a new phase-tracking algorithm based on the concept of orthogonality and selective filtering, and (2) transitioning from the direct current control (DCC) to an indirect current control (ICC) mechanism. Test environments featuring distorted grids and nonlinear rectifier loads are simulated in MATLAB/Simulink software to evaluate the performance of the proposed method against the existing Simplified ADALINE method. The key findings demonstrate that the proposed method effectively handled harmonic distortion and noise disturbance. As a result, the associated SAHF achieved an additional reduction in %THD (by 10.77–13.78%), a decrease in reactive power (by 58.3 VAR–67 VAR), and improved grid synchronization with a smaller phase shift (by 0.9–1.2°), while also maintaining proper waveform symmetry even in challenging grid conditions. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry Studies in Modern Power Systems)
Show Figures

Figure 1

9 pages, 3634 KB  
Article
Van Der Waals Mask-Assisted Strategy for Deterministic Fabrication of Two-Dimensional Organic−Inorganic Hybrid Perovskites Lateral Heterostructures
by Bin Han, Mengke Lin, Yanren Tang, Xingyu Liu, Bingtao Lian, Qi Qiu, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(8), 266; https://doi.org/10.3390/inorganics13080266 - 14 Aug 2025
Viewed by 558
Abstract
Two-dimensional (2D) organic−inorganic hybrid perovskites (OIHPs) have emerged as promising candidates for next-generation optoelectronic applications. While vertical heterostructures of 2D OIHPs have been explored through mechanical stacking, the controlled fabrication of lateral heterostructures remains a significant challenge. Here, we present a lithography-free, van [...] Read more.
Two-dimensional (2D) organic−inorganic hybrid perovskites (OIHPs) have emerged as promising candidates for next-generation optoelectronic applications. While vertical heterostructures of 2D OIHPs have been explored through mechanical stacking, the controlled fabrication of lateral heterostructures remains a significant challenge. Here, we present a lithography-free, van der Waals mask-assisted strategy for the deterministic fabrication of 2D OIHP lateral heterostructures. Mechanically exfoliated 2D materials such as graphene serve as removable masks that enable selective conversion of unmasked perovskite regions via ion exchange reaction. This technique enables the fabrication of various lateral heterostructures, such as BA2MA2Pb3I10/MAPbI3, PEAPbI4/MAPbI3, as well as BA2MAPb2I7/MAPbBr3. Furthermore, complex multiheterostructures and superlattices can be constructed through sequential masking and conversion processes. Moreover, to investigate the electronic properties and demonstrate potential device applications of the lateral heterostructures, we have fabricated an electrical diode based on a BA2MA2Pb3I10/MAPbI3 lateral heterostructure. Stable electrical rectifying behavior with a rectification ratio of around 10 was observed. This general and flexible approach provides a robust platform for constructing 2D OIHPs lateral heterostructures and opens new pathways for their integration into high-performance optoelectronic devices. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

29 pages, 7987 KB  
Article
Digital Control of a Bidirectional Resonant Converter for Electric Vehicle Applications with Enhanced Transient Response
by Ming-Hung Chen and Chi-Duong Ngo
Electronics 2025, 14(16), 3202; https://doi.org/10.3390/electronics14163202 - 12 Aug 2025
Viewed by 647
Abstract
This paper presents the design and implementation of a bidirectional resonant converter with enhanced dynamic response to electric vehicles (EV). The proposed system comprises an assembly of four switches, a capacitor, and an inductor on both the primary and secondary sides of the [...] Read more.
This paper presents the design and implementation of a bidirectional resonant converter with enhanced dynamic response to electric vehicles (EV). The proposed system comprises an assembly of four switches, a capacitor, and an inductor on both the primary and secondary sides of the transformer. The value of C-L-L-C was calculated using the first harmonic approximation method. Moreover, the small-signal analysis method was used to design the control system and analyze the dynamic performance of the system. Closed-loop control algorithms for voltage and current loops with synchronous rectifiers (SRs) were designed and implemented on a 32-bit microcontroller (STM32G474RET6). A 70 kHz, 400 W prototype is built with a peak conversion efficiency of 95.05% using SR in the forward mode. Without SR, the peak conversion efficiency was 93.57% in the forward mode and 93.04% in the reverse mode. In the forward mode, the proposed algorithm reduced the settling time to 15 ms, in contrast to the 40 ms associated with the conventional algorithm; in the reverse mode, the proposed algorithm reduced the settling time to 10 ms, in contrast to the 15 ms associated with the conventional algorithm. Full article
(This article belongs to the Special Issue Advanced Technologies in Power Electronics)
Show Figures

Figure 1

Back to TopTop