KMO Inhibition Improves Seizures and Depressive-like Behaviors Without Aggravating Cognitive Impairment in Epileptic Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Establishment of Epilepsy Model Mice
2.3. Drug Preparation and Intervention
3. Observational Indicators
3.1. Video Monitoring of Seizure Frequency and Severity
3.2. Body Weight Tracking
3.3. Depression-like Behavioral Experiments
3.4. Cognitive Function Assessment
3.5. Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS) for the Quantification of KYN, KYNA, 3-HK, and 3-HANA Metabolites
3.6. Statistical Analysis
4. Results
4.1. KMO Inhibition Reduces Seizure Frequency and Severity in Epileptic Mice
4.2. Body Weight Dynamics
4.3. KMO Inhibition Improves Depression-like Behaviors in Epileptic Mice
4.4. KMO Inhibition Does Not Exacerbate Cognitive Impairment in Epileptic Mice
4.5. KMO Inhibition Increased KYNA Levels and the KYNA/KYN Ratio, While Decreasing the 3-HK/KYN Ratio and 3-HANA Levels
5. Discussion
5.1. Main Findings
5.2. Similarities and Differences with Previous Studies
5.3. Main Mechanisms
5.4. Significance of the Study
5.5. Shortcomings of the Study
5.6. Directions for Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pujar, S.; Scott, R.C. Long-term outcomes after childhood convulsive status epilepticus. Curr. Opin. Pediatr. 2019, 31, 763–768. [Google Scholar] [CrossRef]
- Keezer, M.R. Epilepsy Comorbidities. Continuum 2025, 31, 232–246. [Google Scholar] [CrossRef]
- Yang, W.; Jia, Y.H.; Jiang, H.Y.; Li, A.J. Antidepressant use and the risk of seizure: A meta-analysis of observational studies. Eur. J. Clin. Pharmacol. 2024, 80, 175–183. [Google Scholar] [CrossRef]
- Zaccara, G.; Franco, V. Pharmacokinetic Interactions Between Antiseizure and Psychiatric Medications. Curr. Neuropharmacol. 2023, 21, 1666–1690. [Google Scholar] [CrossRef]
- Mula, M.; Brodie, M.J.; de Toffol, B.; Guekht, A.; Hecimovic, H.; Kanemoto, K.; Kanner, A.M.; Teixeira, A.L.; Wilson, S.J. ILAE clinical practice recommendations for the medical treatment of depression in adults with epilepsy. Epilepsia 2022, 63, 316–334. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Xiao, Z. Effects of perceived stigma, unemployment and depression on suicidal risk in people with epilepsy. Seizure 2021, 91, 34–39. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Liu, L. Risk factors of suicide-related events in patients with epilepsy: A systematic review and meta-analysis. Seizure 2024, 120, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Zunszain, P.A.; Anacker, C.; Cattaneo, A.; Choudhury, S.; Musaelyan, K.; Myint, A.M.; Thuret, S.; Price, J.; Pariante, C.M. Interleukin-1β: A new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology 2012, 37, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Hu, J.; Hong, Y.; Ding, Y.; Xiong, Y.; Wu, Z.; Xie, W. Indoleamine-2,3-Dioxygenase 1 Deficiency Suppresses Seizures in Epilepsy. Front. Cell. Neurosci. 2021, 15, 638854. [Google Scholar] [CrossRef]
- Lu, Y.; Shao, M.; Wu, T. Kynurenine-3-monooxygenase: A new direction for the treatment in different diseases. Food Sci. Nutr. 2020, 8, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Sarkisova, K.Y.; Kulikov, M.A.; Midzyanovskaya, I.S.; Folomkina, A.A. Dopamine-dependent nature of depression-like behavior in WAG/Rij rats with genetic absence epilepsy. Neurosci. Behav. Physiol. 2008, 38, 119–128. [Google Scholar] [CrossRef]
- Sarkisova, K.Y.; Kulikov, M.A.; Kudrin, V.S.; Midzyanovskaya, I.S.; Birioukova, L.M. Age-related changes in behavior, in monoamines and their metabolites content, and in density of D1 and D2 dopamine receptors in the brain structures of WAG/Rij rats with depression-like pathology. Zhurnal Vyss. Nervn. Deiatelnosti Im. I P Pavlov. 2014, 64, 668–685. [Google Scholar]
- Wei, L.P.; Qin, M.F.; He, Q.C.; Zhang, Y.Q.; Liang, J.P.; Chen, W.J.; Cai, L. The Effect of Chaihu Shugan Decoction on HPA Axis and Raphe-Hippocampus Serotoninergic Transmission in Epileptic Rats with Depressive-like Behavior Resistant to Fluoxetine. Tradit. Chin. Drug Res. Clin. Pharmacol. 2019, 30, 771–778. [Google Scholar]
- Kapur, S.; Seeman, P. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D2 and serotonin 5-HT2 receptors-implications for models of schizophrenia. Mol. Psychiatry 2002, 7, 837–844. [Google Scholar] [CrossRef]
- Hamon, M.; Blier, P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2013, 45, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Lehrmann, E.; Guidetti, P.; Löve, A.; Williamson, J.; Bertram, E.H.; Schwarcz, R. Glial activation precedes seizures and hippocampal neurodegeneration in measles virus-infected mice. Epilepsia 2008, 49 (Suppl. S2), 13–23. [Google Scholar] [CrossRef] [PubMed]
- Parrott, J.M.; Redus, L.; Santana-Coelho, D.; Morales, J.; Gao, X.; O’Connor, J.C. Neurotoxic kynurenine metabolism is increased in the dorsal hippocampus and drives distinct depressive behaviors during inflammation. Transl. Psychiatry 2016, 6, e918. [Google Scholar] [CrossRef]
- Murrough, J.W.; Abdallah, C.G.; Mathew, S.J. Targeting glutamate signalling in depression: Progress and prospects. Nat. Rev. Drug Discov. 2017, 16, 472–486. [Google Scholar] [CrossRef]
- Kessler, M.; Terramani, T.; Lynch, G.; Baudry, M. A glycine site associated with N-methyl-D-aspartic acid receptors: Characterization and identification of a new class of antagonists. J. Neurochem. 1989, 52, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Wonodi, I.; Schwarcz, R. Cortical kynurenine pathway metabolism: A novel target for cognitive enhancement in Schizophrenia. Schizophr. Bull. 2010, 36, 211–218. [Google Scholar] [CrossRef]
- Wu, H.-Q.; Okuyama, M.; Kajii, Y.; Pocivavsek, A.; Bruno, J.P.; Schwarcz, R. Targeting kynurenine aminotransferase II in psychiatric diseases: Promising effects of an orally active enzyme inhibitor. Schizophr. Bull. 2014, 40 (Suppl. S2), S152–S158. [Google Scholar] [CrossRef]
- Sathyasaikumar, K.V.; Notarangelo, F.M.; Kelly, D.L.; Rowland, L.M.; Hare, S.M.; Chen, S.; Mo, C.; Buchanan, R.W.; Schwarcz, R. Tryptophan Challenge in Healthy Controls and People with Schizophrenia: Acute Effects on Plasma Levels of Kynurenine, Kynurenic Acid and 5-Hydroxyindoleacetic Acid. Pharmaceuticals 2022, 15, 1003. [Google Scholar] [CrossRef]
- Sapienza, J.; Agostoni, G.; Repaci, F.; Spangaro, M.; Comai, S.; Bosia, M. Metabolic Syndrome and Schizophrenia: Adding a Piece to the Interplay Between the Kynurenine Pathway and Inflammation. Metabolites 2025, 15, 176. [Google Scholar] [CrossRef]
- Cho, C.H. New mechanism for glutamate hypothesis in epilepsy. Front. Cell. Neurosci. 2013, 7, 127. [Google Scholar] [CrossRef]
- Forrest, C.M.; Kennedy, P.G.E.; Rodgers, J.; Dalton, R.N.; Turner, C.; Darlington, L.G.; Cobb, S.R.; Stone, T.W. Kynurenine pathway metabolism following prenatal KMO inhibition and in Mecp2+/− mice, using liquid chromatography-tandem mass spectrometry. Neurochem. Int. 2016, 100, 110–119. [Google Scholar] [CrossRef]
- Pisar, M.; Forrest, C.M.; Khalil, O.S.; McNair, K.; Vincenten, M.C.J.; Qasem, S.; Darlington, L.G.; Stone, T.W. Modified neocortical and cerebellar protein expression and morphology in adult rats following prenatal inhibition of the kynurenine pathway. Brain Res. 2014, 1576, 1–17. [Google Scholar] [CrossRef]
- Röver, S.; Cesura, A.M.; Huguenin, P.; Kettler, R.; Szente, A. Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl) benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J. Med. Chem. 1997, 40, 4378–4385. [Google Scholar] [CrossRef] [PubMed]
- Racine, R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 1972, 32, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Gómez, P.; Pérez-Hernández, M.; Gutiérrez-López, M.D.; Vidal, R.; Abuin-Martínez, C.; O’Shea, E.; Colado, M.I. Increasing kynurenine brain levels reduces ethanol consumption in mice by inhibiting dopamine release in nucleus accumbens. Neuropharmacology 2018, 135, 581–591. [Google Scholar] [CrossRef]
- Clark, C.J.; Mackay, G.M.; Smythe, G.A.; Bustamante, S.; Stone, T.W.; Phillips, R.S. Prolonged survival of a murine model of cerebral malaria by kynurenine pathway inhibition. Infect. Immun. 2005, 73, 5249–5251. [Google Scholar] [CrossRef] [PubMed]
- Vengeliene, V.; Cannella, N.; Takahashi, T.; Spanagel, R. Metabolic shift of the kynurenine pathway impairs alcohol and cocaine seeking and relapse. Psychopharmacology 2016, 233, 3449–3459. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.T.; Yin, H.; Hu, C.; Zeng, J.; Zhang, S.; Chen, S.; Zheng, W.; Li, M.; Jin, L.; Liu, Y.; et al. Tilapia Skin Peptides Ameliorate Cyclophosphamide-Induced Anxiety- and Depression-Like Behavior via Improving Oxidative Stress, Neuroinflammation, Neuron Apoptosis, and Neurogenesis in Mice. Front. Nutr. 2022, 9, 882175. [Google Scholar] [CrossRef] [PubMed]
- Primo, M.J.; Fonseca-Rodrigues, D.; Almeida, A.; Teixeira, P.M.; Pinto-Ribeiro, F. Sucrose preference test: A systematic review of protocols for the assessment of anhedonia in rodents. Eur. Neuropsychopharmacol. 2023, 77, 80–92. [Google Scholar] [CrossRef]
- Lin, J.; Song, Z.; Chen, X.; Zhao, R.; Chen, J.; Chen, H.; Yang, X.; Wu, Z. Trans-cinnamaldehyde shows anti-depression effect in the forced swimming test and possible involvement of the endocannabinoid system. Biochem. Biophys. Res. Commun. 2019, 518, 351–356. [Google Scholar] [CrossRef] [PubMed]
- West, A.P. Neurobehavioral studies of forced swimming: The role of learning and memory in the forced swim test. Prog. Neuro Psychopharmacol. Biol. Psychiatry 1990, 14, 863–877. [Google Scholar] [CrossRef]
- Wu, Q.; Zierath, D.; Knox, K.M.; Steve White, H.; Barker-Haliski, M. Acute dose-related effect of antiseizure medications on open field exploration of male rats with established epilepsy. Epilepsy Behav. 2025, 171, 110583. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, Z.; Cao, X.; Hu, D.; Sheng, L.; Guo, X.; Yan, D.; Ding, C.; Li, C.; Xiao, J.; et al. Chaihu-Shugan-San alleviates post-stroke depression in mice: Mechanistic insights into exosome-mediated neuroprotection. J. Ethnopharmacol. 2025, 347, 119700. [Google Scholar] [CrossRef]
- Imbeault, S.; Gubert Olivé, M.; Jungholm, O.; Erhardt, S.; Wigström, H.; Engberg, G.; Jardemark, K. Blockade of KAT II Facilitates LTP in Kynurenine 3-Monooxygenase Depleted Mice. Int. J. Tryptophan Res. 2021, 14, 11786469211041368. [Google Scholar] [CrossRef]
- Milosavljevic, S.; Piroli, M.V.; Sandago, E.J.; Piroli, G.G.; Smith, H.H.; Beggiato, S.; Frizzell, N.; Pocivavsek, A. Parental kynurenine 3-monooxygenase genotype in mice directs sex-specific behavioral outcomes in offspring. Biol. Sex Differ. 2025, 16, 22. [Google Scholar] [CrossRef]
- Dumont, K.D.; Jannig, P.R.; Porsmyr-Palmertz, M.; Ruas, J.L. Constitutive loss of kynurenine-3-monooxygenase changes circulating kynurenine metabolites without affecting systemic energy metabolism. Am. J. Physiol. Endocrinol. Metab. 2025, 328, E274–E285. [Google Scholar] [CrossRef]
- Ohnishi, M.; Banshoya, K.; Machida, A.; Kai, T.; Shimizu, Y.; Yano, Y.; Urabe, Y.; Tasaka, S.; Furutaguchi, M.; Shigemasa, T.; et al. Thrombin-induced kynurenine 3-monooxygenase causes variations in the kynurenine pathway, leading to neurological deficits in a murine intracerebral hemorrhage model. J. Pharmacol. Sci. 2025, 157, 65–74. [Google Scholar] [CrossRef]
- Richter, A.; Hamann, M. The kynurenine 3-hydroxylase inhibitor Ro 61-8048 improves dystonia in a genetic model of paroxysmal dyskinesia. Eur. J. Pharmacol. 2003, 478, 47–52. [Google Scholar] [CrossRef]
- Parrott, J.M.; O’Connor, J.C. Kynurenine 3-Monooxygenase: An Influential Mediator of Neuropathology. Front. Psychiatry 2015, 6, 116. [Google Scholar] [CrossRef]
- Davis, I.; Liu, A. What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert. Rev. Neurother. 2015, 15, 719–721. [Google Scholar] [CrossRef]
- Zakhary, G.; Sherchan, P.; Li, Q.; Tang, J.; Zhang, J.H. Modification of kynurenine pathway via inhibition of kynurenine hydroxylase attenuates surgical brain injury complications in a male rat model. J Neurosci Res 2020, 98, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Hilgier, W.; Kocki, T.; Obara-Michlewska, M.; Turski, W.A.; Oja, S.S.; Saransaari, P.; Albrecht, J. Modulation by kynurenine of extracellular kynurenate and glutamate in cerebral cortex of rats with acute liver failure. Pharmacol. Rep. 2014, 66, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J.; Zielińska, M. Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy. Neurochem. Res. 2017, 42, 1724–1734. [Google Scholar] [CrossRef]
- Huang, X.; Ding, W.; Wu, F.; Zhou, S.; Deng, S.; Ning, Y. Increased Plasma Kynurenic Acid Levels are Associated with Impaired Attention/Vigilance and Social Cognition in Patients with Schizophrenia. Neuropsychiatr Dis Treat 2020, 16, 263–271. [Google Scholar] [CrossRef]
- Hasegawa, M.; Niijima, M.; Kunisawa, K.; Teshigawara, T.; Kubota, H.; Fujigaki, S.; Fujigaki, H.; Yamamoto, Y.; Kim, H.C.; Saito, K.; et al. Maternal immune activation induces neurodevelopmental impairments of adult offspring through alterations in tryptophane-kynurenine pathway in the placenta. Biochem. Biophys. Res. Commun. 2024, 737, 150922. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Sun, D.; Savastano, A.; Varga, S.J.; Cima-Omori, M.S.; Becker, S.; Honigmann, A.; Zweckstetter, M. Multivalent Tau/PSD-95 interactions arrest in vitro condensates and clusters mimicking the postsynaptic density. Nat. Commun. 2023, 14, 6839. [Google Scholar] [CrossRef]
- Obol, J.H.; Arony, D.A.; Wanyama, R.; Moi, K.L.; Bodo, B.; Odong, P.O.; Odida, M. Reduced plasma concentrations of vitamin B6 and increased plasma concentrations of the neurotoxin 3-hydroxykynurenine are associated with nodding syndrome: A case control study in Gulu and Amuru districts, Northern Uganda. Pan Afr. Med. J. 2016, 24, 123. [Google Scholar] [CrossRef]
- Alhashimi, R.; Thoota, S.; Ashok, T.; Palyam, V.; Azam, A.T.; Odeyinka, O.; Sange, I. Comorbidity of Epilepsy and Depression: Associated Pathophysiology and Management. Cureus 2022, 14, e21527. [Google Scholar] [CrossRef]
- Kodi, T.; Sankhe, R.; Gopinathan, A.; Nandakumar, K.; Kishore, A. New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. J. Neuroimmune Pharmacol. 2024, 19, 7. [Google Scholar] [CrossRef]
- Pierozan, P.; Biasibetti, H.; Schmitz, F.; Ávila, H.; Parisi, M.M.; Barbe-Tuana, F.; Wyse, A.T.; Pessoa-Pureur, R. Quinolinic acid neurotoxicity: Differential roles of astrocytes and microglia via FGF-2-mediated signaling in redox-linked cytoskeletal changes. Biochim. Biophys. Acta 2016, 1863, 3001–3014. [Google Scholar] [CrossRef]
- Wang, X.C.; Ji, A.G. NF-κB signaling pathway and inflammatory response. Prog. Physiol. Sci. 2014, 45, 68–71. [Google Scholar]
- Schwarcz, R.; Speciale, C.; French, E.D. Hippocampal kynurenines as etiological factors in seizure disorders. Pol. J. Pharmacol. Pharm. 1987, 39, 485–494. [Google Scholar] [PubMed]
- Wu, H.Q.; Rassoulpour, A.; Goodman, J.H.; Scharfman, H.E.; Bertram, E.H.; Schwarcz, R. Kynurenate and 7-chlorokynurenate formation in chronically epileptic rats. Epilepsia 2005, 46, 1010–1016. [Google Scholar] [CrossRef]
- Heilman, P.L.; Wang, E.W.; Lewis, M.M.; Krzyzanowski, S.; Capan, C.D.; Burmeister, A.R.; Du, G.; Escobar Galvis, M.L.; Brundin, P.; Huang, X.; et al. Tryptophan Metabolites Are Associated With Symptoms and Nigral Pathology in Parkinson’s Disease. Mov. Disord. 2020, 35, 2028–2037. [Google Scholar] [CrossRef]
- Tanaka, M.; Bohár, Z.; Martos, D.; Telegdy, G.; Vécsei, L. Antidepressant-like effects of kynurenic acid in a modified forced swim test. Pharmacol. Rep. 2020, 72, 449–455. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Huang, Y.; Wei, L.; Kong, Z.; Fu, J.; Cai, L. KMO Inhibition Improves Seizures and Depressive-like Behaviors Without Aggravating Cognitive Impairment in Epileptic Mice. Curr. Issues Mol. Biol. 2025, 47, 705. https://doi.org/10.3390/cimb47090705
Xu J, Huang Y, Wei L, Kong Z, Fu J, Cai L. KMO Inhibition Improves Seizures and Depressive-like Behaviors Without Aggravating Cognitive Impairment in Epileptic Mice. Current Issues in Molecular Biology. 2025; 47(9):705. https://doi.org/10.3390/cimb47090705
Chicago/Turabian StyleXu, Jingwen, Yifen Huang, Liping Wei, Ziting Kong, Junling Fu, and Lun Cai. 2025. "KMO Inhibition Improves Seizures and Depressive-like Behaviors Without Aggravating Cognitive Impairment in Epileptic Mice" Current Issues in Molecular Biology 47, no. 9: 705. https://doi.org/10.3390/cimb47090705
APA StyleXu, J., Huang, Y., Wei, L., Kong, Z., Fu, J., & Cai, L. (2025). KMO Inhibition Improves Seizures and Depressive-like Behaviors Without Aggravating Cognitive Impairment in Epileptic Mice. Current Issues in Molecular Biology, 47(9), 705. https://doi.org/10.3390/cimb47090705