Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,461)

Search Parameters:
Keywords = contrast measure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 790 KiB  
Article
How Does the Power Generation Mix Affect the Market Value of US Energy Companies?
by Silvia Bressan
J. Risk Financial Manag. 2025, 18(8), 437; https://doi.org/10.3390/jrfm18080437 (registering DOI) - 6 Aug 2025
Abstract
To remain competitive in the decarbonization process of the economy worldwide, energy companies must preserve their market value to attract new investors and remain resilient throughout the transition to net zero. This article examines the market value of US energy companies during the [...] Read more.
To remain competitive in the decarbonization process of the economy worldwide, energy companies must preserve their market value to attract new investors and remain resilient throughout the transition to net zero. This article examines the market value of US energy companies during the period 2012–2024 in relation to their power generation mix. Panel regression analyses reveal that Tobin’s q and price-to-book ratios increase significantly for solar and wind power, while they experience moderate increases for natural gas power. In contrast, Tobin’s q and price-to-book ratios decline for nuclear and coal power. Furthermore, accounting-based profitability, measured by the return on assets (ROA), does not show significant variation with any type of power generation. The findings suggest that market investors prefer solar, wind, and natural gas power generation, thereby attributing greater value (that is, demanding lower risk compensation) to green companies compared to traditional ones. These insights provide guidance to executives, investors, and policy makers on how the power generation mix can influence strategic decisions in the energy sector. Full article
(This article belongs to the Special Issue Linkage Between Energy and Financial Markets)
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 (registering DOI) - 6 Aug 2025
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

16 pages, 3291 KiB  
Article
A Discrete Element Model for Characterizing Soil-Cotton Seeding Equipment Interactions Using the JKR and Bonding Contact Models
by Xuyang Ran, Long Wang, Jianfei Xing, Lu Shi, Dewei Wang, Wensong Guo and Xufeng Wang
Agriculture 2025, 15(15), 1693; https://doi.org/10.3390/agriculture15151693 (registering DOI) - 5 Aug 2025
Abstract
Due to the increasing demand for agricultural water, the water availability for winter and spring irrigation of cotton fields has decreased. Consequently, dry seeding followed by irrigation (DSSI) has become a widespread cotton cultivation technique in Xinjiang. This study focused on the interaction [...] Read more.
Due to the increasing demand for agricultural water, the water availability for winter and spring irrigation of cotton fields has decreased. Consequently, dry seeding followed by irrigation (DSSI) has become a widespread cotton cultivation technique in Xinjiang. This study focused on the interaction between soil particles and cotton seeding equipment under DSSI in Xinjiang. The discrete element method (DEM) simulation framework was employed to compare the performance of the Johnson-Kendall-Roberts (JKR) model and Bonding model in simulating contact between soil particles. The models’ ability to simulate the angle of repose was investigated, and shear tests were conducted. The simulation results showed that both models had comparable repose angles, with relative errors of 0.59% for the JKR model and 0.36% for the contact model. However, the contact model demonstrated superior predictive accuracy in simulating direct shear test results, predicting an internal friction angle of 35.8°, with a relative error of 5.8% compared to experimental measurements. In contrast, the JKR model exhibited a larger error. The Bonding model provides a more accurate description of soil particle contact. Subsoiler penetration tests showed that the maximum penetration force was 467.2 N, closely matching the simulation result of 485.3 N, which validates the reliability of the model parameters. The proposed soil simulation framework and calibrated parameters accurately represented soil mechanical properties, providing a robust basis for discrete element modeling and structural optimization of soil-tool interactions in cotton field tillage machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

12 pages, 884 KiB  
Article
Anatomical Risk Patterns for Patellofemoral Instability in Skeletally Immature Patients: A Sex-Stratified MRI Study
by René Schroedter, Amir Koutp, Bernhard Guggenberger, Martin Svehlik, Sebastian Tschauner and Tanja Kraus
J. Clin. Med. 2025, 14(15), 5519; https://doi.org/10.3390/jcm14155519 - 5 Aug 2025
Abstract
Background/Objectives: Lateral patellar dislocation (LPD) is a common pathology of the adolescent knee and a major predisposing factor for patellofemoral instability (PFI). The pathogenesis of PFI involves a combination of anatomical and biomechanical contributors, with increasing evidence pointing to sex-specific differences in knee [...] Read more.
Background/Objectives: Lateral patellar dislocation (LPD) is a common pathology of the adolescent knee and a major predisposing factor for patellofemoral instability (PFI). The pathogenesis of PFI involves a combination of anatomical and biomechanical contributors, with increasing evidence pointing to sex-specific differences in knee morphology. Despite this, the developmental course of these parameters and their variation between sexes remain insufficiently characterized. This study aims to investigate sex-related differences in patellofemoral joint geometry among skeletally immature patients with a history of PFI, focusing on how these anatomical variations evolve with increasing knee size, as represented by femoral condylar width. Methods: A total of 315 knee MRIs from patients under 18 years with documented PFI were retrospectively analyzed. Trochlear morphology, patellar tilt, axial positioning, and sagittal alignment were assessed using established MRI-based parameters. All measurements were normalized to bicondylar width to account for individual knee size. Sex-specific comparisons were performed using independent t-tests and linear regression analysis. Results: Females exhibited significantly smaller femoral widths, shallower trochlear depth (TD), shorter tibial tubercle–posterior cruciate ligament (TTPCL) distances, and lower patellar trochlear index (PTI) values compared to males (p < 0.05). In males, increasing femoral width was associated with progressive normalization of patellar tilt and sagittal alignment parameters. In contrast, these alignment parameters in females remained largely unchanged or worsened across different femoral sizes. Additionally, patellar inclination angle and PTI were significantly influenced by knee size in males (p < 0.05), whereas no such relationship was identified in females. Conclusions: Sex-specific morphological differences in patellofemoral geometry are evident early in development and evolve distinctly with growth. These differences may contribute to the higher prevalence of PFI in females and underscore the importance of considering sex and knee size in anatomical assessments. Full article
(This article belongs to the Special Issue Recent Research Progress in Pediatric Orthopedic Surgery)
Show Figures

Figure 1

35 pages, 6795 KiB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Graphical abstract

20 pages, 1090 KiB  
Article
Reforming Water Governance: Nordic Lessons for Southern Europe
by Eleonora Santos
Sustainability 2025, 17(15), 7079; https://doi.org/10.3390/su17157079 - 5 Aug 2025
Abstract
Water governance in Europe faces mounting challenges from climate change, demographic pressures, and aging infrastructure—especially in Southern regions increasingly affected by drought and institutional fragmentation. In contrast, Nordic countries such as Denmark and Sweden exhibit coherent, integrated governance systems with strong regulatory oversight. [...] Read more.
Water governance in Europe faces mounting challenges from climate change, demographic pressures, and aging infrastructure—especially in Southern regions increasingly affected by drought and institutional fragmentation. In contrast, Nordic countries such as Denmark and Sweden exhibit coherent, integrated governance systems with strong regulatory oversight. This study introduces the Water Governance Maturity Index (WGMI), a document-based assessment tool designed to evaluate national water governance across five dimensions: institutional capacity, operational effectiveness, environmental ambition, equity, and climate adaptation. Applying the WGMI to eight EU countries—four Nordic and four Southern—reveals a persistent North–South divide in governance maturity. Nordic countries consistently score in the “advanced” or “model” range, while Southern countries face systemic gaps in implementation, climate integration, and territorial inclusion. Based on these findings, the study offers actionable policy recommendations, including the establishment of independent regulators, strengthening of river basin coordination, mainstreaming of climate-water strategies, and expansion of affordability and participation mechanisms. By translating complex governance principles into measurable indicators, the WGMI provides a practical tool for benchmarking reform progress and supporting the EU’s broader agenda for just resilience and climate adaptation. Unlike broader frameworks like SDG 6.5.1, the WGMI’s document-based, dimension-specific approach provides granular, actionable insights for governance reform, enhancing its utility for EU and global policymakers. Full article
(This article belongs to the Special Issue Sustainability in Urban Water Resource Management)
Show Figures

Figure 1

12 pages, 677 KiB  
Review
Prognostic Utility of Arterial Spin Labeling in Traumatic Brain Injury: From Pathophysiology to Precision Imaging
by Silvia De Rosa, Flavia Carton, Alessandro Grecucci and Paola Feraco
NeuroSci 2025, 6(3), 73; https://doi.org/10.3390/neurosci6030073 - 4 Aug 2025
Viewed by 106
Abstract
Background: Traumatic brain injury (TBI) remains a significant contributor to global mortality and long-term neurological disability. Accurate prognostic biomarkers are crucial for enhancing prognostic accuracy and guiding personalized clinical management. Objective: This review assesses the prognostic value of arterial spin labeling (ASL), a [...] Read more.
Background: Traumatic brain injury (TBI) remains a significant contributor to global mortality and long-term neurological disability. Accurate prognostic biomarkers are crucial for enhancing prognostic accuracy and guiding personalized clinical management. Objective: This review assesses the prognostic value of arterial spin labeling (ASL), a non-invasive MRI technique, in adult and pediatric TBI, with a focus on quantitative cerebral blood flow (CBF) and arterial transit time (ATT) measures. A comprehensive literature search was conducted across PubMed, Embase, Scopus, and IEEE databases, including observational studies and clinical trials that applied ASL techniques (pCASL, PASL, VSASL, multi-PLD) in TBI patients with functional or cognitive outcomes, with outcome assessments conducted at least 3 months post-injury. Results: ASL-derived CBF and ATT parameters demonstrate potential as prognostic indicators across both acute and chronic stages of TBI. Hypoperfusion patterns correlate with worse neurocognitive outcomes, while region-specific perfusion alterations are associated with affective symptoms. Multi-delay and velocity-selective ASL sequences enhance diagnostic sensitivity in TBI with heterogeneous perfusion dynamics. Compared to conventional perfusion imaging, ASL provides absolute quantification without contrast agents, making it suitable for repeated monitoring in vulnerable populations. ASL emerges as a promising prognostic biomarker for clinical use in TBI. Conclusion: Integrating ASL into multiparametric models may improve risk stratification and guide individualized therapeutic strategies. Full article
(This article belongs to the Topic Neurological Updates in Neurocritical Care)
Show Figures

Figure 1

10 pages, 1425 KiB  
Article
Reconstructing the Gait Pattern of a Korean Cadaver with Bilateral Lower Limb Asymmetry Using a Virtual Humanoid Modeling Program
by Min Woo Seo, Changmin Lee and Hyun Jin Park
Diagnostics 2025, 15(15), 1943; https://doi.org/10.3390/diagnostics15151943 - 2 Aug 2025
Viewed by 200
Abstract
Background and Objective: This study presents a combined osteometric and biomechanical analysis of a Korean female cadaver exhibiting bilateral lower limb bone asymmetry with abnormal curvature and callus formation on the left femoral midshaft. Methods: To investigate bilateral bone length differences, [...] Read more.
Background and Objective: This study presents a combined osteometric and biomechanical analysis of a Korean female cadaver exhibiting bilateral lower limb bone asymmetry with abnormal curvature and callus formation on the left femoral midshaft. Methods: To investigate bilateral bone length differences, osteometric measurements were conducted at standardized landmarks. Additionally, we developed three gait models using Meta Motivo, an open-source reinforcement learning platform, to analyze how skeletal asymmetry influences stride dynamics and directional control. Results: Detailed measurements revealed that the left lower limb bones were consistently shorter and narrower than their right counterparts. The calculated lower limb lengths showed a bilateral discrepancy ranging from 39 mm to 42 mm—specifically a 6 mm difference in the femur, 33 mm in the tibia, and 36 mm in the fibula. In the gait pattern analysis, the normal model exhibited a straight-line gait without lateral deviation. In contrast, the unbalanced, non-learned model demonstrated compensatory overuse and increased stride length of the left lower limb and a tendency to veer leftward. The unbalanced, learned model showed partial gait normalization, characterized by reduced limb dominance and improved right stride, although directional control remained compromised. Conclusions: This integrative approach highlights the biomechanical consequences of lower limb bone discrepancy and demonstrates the utility of virtual agent-based modeling in elucidating compensatory gait adaptations. Full article
(This article belongs to the Special Issue Clinical Anatomy and Diagnosis in 2025)
Show Figures

Figure 1

25 pages, 15569 KiB  
Article
Studies on the Chemical Etching and Corrosion Resistance of Ultrathin Laminated Alumina/Titania Coatings
by Ivan Netšipailo, Lauri Aarik, Jekaterina Kozlova, Aivar Tarre, Maido Merisalu, Kaisa Aab, Hugo Mändar, Peeter Ritslaid and Väino Sammelselg
Corros. Mater. Degrad. 2025, 6(3), 36; https://doi.org/10.3390/cmd6030036 - 2 Aug 2025
Viewed by 226
Abstract
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic [...] Read more.
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic layer deposition. The coatings were chemically etched and subjected to corrosion, ultrasound, and thermal shock tests. The coating etching resistance efficiency (Re) was determined by measuring via XRF the change in the coating sublayer mass thickness after etching in hot 80% H2SO4. The maximum Re values of ≥98% for both alumina and titania sublayers were obtained for the laminates deposited at 250–400 °C on both substrates. In these coatings, the titania sublayers were crystalline. The lowest Re values of 15% and 50% for the alumina and titania sublayers, respectively, were measured for laminate grown at 80 °C on silicon. The coatings deposited at 160–200 °C demonstrated a delay in the increase of Re values, attributed to the changes in the titania sublayers before full crystallization. Coatings grown at higher temperatures were also more resistant to ultrasound and liquid nitrogen treatments. In contrast, coatings deposited at 125 °C on SS had better corrosion protection, as demonstrated via electrochemical impedance spectroscopy and a standard immersion test in FeCl3 solution. Full article
Show Figures

Graphical abstract

24 pages, 2584 KiB  
Article
Precise and Continuous Biomass Measurement for Plant Growth Using a Low-Cost Sensor Setup
by Lukas Munser, Kiran Kumar Sathyanarayanan, Jonathan Raecke, Mohamed Mokhtar Mansour, Morgan Emily Uland and Stefan Streif
Sensors 2025, 25(15), 4770; https://doi.org/10.3390/s25154770 - 2 Aug 2025
Viewed by 223
Abstract
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent [...] Read more.
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent cultivation. Traditional biomass measurement methods, such as destructive sampling, are time-consuming and unsuitable for high-frequency monitoring. In contrast, image-based estimation using computer vision and deep learning requires frequent retraining and is sensitive to changes in lighting or plant morphology. This work introduces a low-cost, load-cell-based biomass monitoring system tailored for vertical farming applications. The system operates at the level of individual growing trays, offering a valuable middle ground between impractical plant-level sensing and overly coarse rack-level measurements. Tray-level data allow localized control actions, such as adjusting light spectrum and intensity per tray, thereby enhancing the utility of controllable LED systems. This granularity supports layer-specific optimization and anomaly detection, which are not feasible with rack-level feedback. The biomass sensor is easily scalable and can be retrofitted, addressing common challenges such as mechanical noise and thermal drift. It offers a practical and robust solution for biomass monitoring in dynamic, growing environments, enabling finer control and smarter decision making in both commercial and research-oriented vertical farming systems. The developed sensor was tested and validated against manual harvest data, demonstrating high agreement with actual plant biomass and confirming its suitability for integration into vertical farming systems. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

26 pages, 1514 KiB  
Article
Measuring the Digital Economy in Kazakhstan: From Global Indices to a Contextual Composite Index (IDED)
by Oxana Denissova, Zhadyra Konurbayeva, Monika Kulisz, Madina Yussubaliyeva and Saltanat Suieubayeva
Economies 2025, 13(8), 225; https://doi.org/10.3390/economies13080225 - 2 Aug 2025
Viewed by 171
Abstract
This study examines the development of the digital economy and society in the Republic of Kazakhstan by combining international benchmarking with a context-specific national framework. It highlights the limitations of existing global indices such as DESI, NRI, and EGDI in capturing the structural [...] Read more.
This study examines the development of the digital economy and society in the Republic of Kazakhstan by combining international benchmarking with a context-specific national framework. It highlights the limitations of existing global indices such as DESI, NRI, and EGDI in capturing the structural and institutional dimensions of digital transformation in emerging economies. To address this gap, the study introduces a novel composite metric, the Index of Digital Economy Development (IDED), which integrates five sub-indices: infrastructure, usage, human capital, economic digitization, and transformation effectiveness. The methodology involves comparative index analysis, the construction of the IDED, and statistical validation through a public opinion survey and regression modeling. Key findings indicate that cybersecurity is a critical yet under-represented component of digital development, showing strong empirical correlations with DESI scores in benchmark countries. The results also highlight Kazakhstan’s strengths in digital public services and internet access, contrasted with weaknesses in business digitization and innovation. The proposed IDED offers a more comprehensive and policy-relevant tool for assessing digital progress in transitional economies. This study contributes to the literature by proposing a replicable index structure and providing empirical evidence for the inclusion of cybersecurity in national digital economy assessments. The aim of the study is to assess Kazakhstan’s digital economy development by addressing limitations in global measurement frameworks. Methodologically, it combines comparative index analysis, the construction of a national composite index (IDED), and statistical validation using a regional survey and regression analysis. The findings reveal both strengths and gaps in Kazakhstan’s digital landscape, particularly in cybersecurity and SME digitalization. The IDED introduces an innovative, context-sensitive framework that enhances the measurement of digital transformation in transitional economies. Full article
Show Figures

Figure 1

13 pages, 1700 KiB  
Article
Comparison of Cup Position and Perioperative Characteristics in Total Hip Arthroplasty Following Three Types of Pelvic Osteotomy
by Ryuichi Kanabuchi, Yu Mori, Kazuyoshi Baba, Hidetatsu Tanaka, Hiroaki Kurishima, Yasuaki Kuriyama, Hideki Fukuchi, Hiroki Kawamata and Toshimi Aizawa
Medicina 2025, 61(8), 1407; https://doi.org/10.3390/medicina61081407 - 2 Aug 2025
Viewed by 158
Abstract
Background and Objectives: Total hip arthroplasty (THA) following pelvic osteotomy for developmental dysplasia of the hip (DDH) is technically challenging due to altered acetabular morphology. This study aimed to compare radiographic cup position and perioperative characteristics of THA after three common pelvic [...] Read more.
Background and Objectives: Total hip arthroplasty (THA) following pelvic osteotomy for developmental dysplasia of the hip (DDH) is technically challenging due to altered acetabular morphology. This study aimed to compare radiographic cup position and perioperative characteristics of THA after three common pelvic osteotomies—periacetabular osteotomy (PAO), shelf procedure, and Chiari osteotomy—with primary THA in Crowe type I DDH. Methods: A retrospective review identified 25 hips that underwent conversion THA after pelvic osteotomy (PAO = 12, shelf = 8, Chiari = 5) and 25 primary THAs without prior osteotomy. One-to-one matching was performed based on sex (exact match), age (within 5 years), and BMI (within 2 kg/m2) without the use of propensity scores. Cup inclination, radiographic anteversion, center-edge (CE) angle, and cup height were measured on standardized anteroposterior radiographs (ICC = 0.91). Operative time, estimated blood loss, and use of bulk bone grafts or reinforcement rings were reviewed. One-way ANOVA with Dunnett’s post hoc test and chi-square test were used for statistical comparison. Results: Cup inclination, anteversion, and CE angle did not differ significantly among groups. Cup height was significantly greater in the PAO group than in controls (29.0 mm vs. 21.8 mm; p = 0.0075), indicating a more proximal hip center. The Chiari and shelf groups showed upward trends, though not significant. Mean operative time tended to be longer after PAO (123 min vs. 93 min; p = 0.078). Bulk bone grafts and reinforcement rings were more frequently required in the PAO group (17%; p = 0.036 vs. control), and occasionally in Chiari cases, but not in shelf or control groups. Conclusions: THA after PAO is associated with higher cup placement and greater need for reconstructive devices, indicating increased technical complexity. In contrast, shelf and Chiari conversions more closely resemble primary THA. Preoperative planning should consider hip center translation and bone-stock restoration in post-osteotomy THA. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

14 pages, 654 KiB  
Article
A Conceptual Framework for User Trust in AI Biosensors: Integrating Cognition, Context, and Contrast
by Andrew Prahl
Sensors 2025, 25(15), 4766; https://doi.org/10.3390/s25154766 - 2 Aug 2025
Viewed by 205
Abstract
Artificial intelligence (AI) techniques have propelled biomedical sensors beyond measuring physiological markers to interpreting subjective states like stress, pain, or emotions. Despite these technological advances, user trust is not guaranteed and is inadequately addressed in extant research. This review proposes the Cognition–Context–Contrast (CCC) [...] Read more.
Artificial intelligence (AI) techniques have propelled biomedical sensors beyond measuring physiological markers to interpreting subjective states like stress, pain, or emotions. Despite these technological advances, user trust is not guaranteed and is inadequately addressed in extant research. This review proposes the Cognition–Context–Contrast (CCC) conceptual framework to explain the trust and acceptance of AI-enabled sensors. First, we map cognition, comprising the expectations and stereotypes that humans have about machines. Second, we integrate task context by situating sensor applications along an intellective-to-judgmental continuum and showing how demonstrability predicts tolerance for sensor uncertainty and/or errors. Third, we analyze contrast effects that arise when automated sensing displaces familiar human routines, heightening scrutiny and accelerating rejection if roll-out is abrupt. We then derive practical implications such as enhancing interpretability, tailoring data presentations to task demonstrability, and implementing transitional introduction phases. The framework offers researchers, engineers, and clinicians a structured conceptual framework for designing and implementing the next generation of AI biosensors. Full article
(This article belongs to the Special Issue AI in Sensor-Based E-Health, Wearables and Assisted Technologies)
Show Figures

Figure 1

22 pages, 4300 KiB  
Article
Optimised DNN-Based Agricultural Land Mapping Using Sentinel-2 and Landsat-8 with Google Earth Engine
by Nisha Sharma, Sartajvir Singh and Kawaljit Kaur
Land 2025, 14(8), 1578; https://doi.org/10.3390/land14081578 - 1 Aug 2025
Viewed by 280
Abstract
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of [...] Read more.
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of agricultural lands through thematic mapping, which is critical for crop monitoring, land management, and sustainable development. Here, a Hyper-tuned Deep Neural Network (Hy-DNN) model was created and used for land use and land cover (LULC) classification into four classes: agricultural land, vegetation, water bodies, and built-up areas. The technique made use of multispectral data from Sentinel-2 and Landsat-8, processed on the Google Earth Engine (GEE) platform. To measure classification performance, Hy-DNN was contrasted with traditional classifiers—Convolutional Neural Network (CNN), Random Forest (RF), Classification and Regression Tree (CART), Minimum Distance Classifier (MDC), and Naive Bayes (NB)—using performance metrics including producer’s and consumer’s accuracy, Kappa coefficient, and overall accuracy. Hy-DNN performed the best, with overall accuracy being 97.60% using Sentinel-2 and 91.10% using Landsat-8, outperforming all base models. These results further highlight the superiority of the optimised Hy-DNN in agricultural land mapping and its potential use in crop health monitoring, disease diagnosis, and strategic agricultural planning. Full article
Show Figures

Figure 1

31 pages, 5203 KiB  
Article
Projecting Extinction Risk and Assessing Conservation Effectiveness for Three Threatened Relict Ferns in the Western Mediterranean Basin
by Ángel Enrique Salvo-Tierra, Jaime Francisco Pereña-Ortiz and Ángel Ruiz-Valero
Plants 2025, 14(15), 2380; https://doi.org/10.3390/plants14152380 - 1 Aug 2025
Viewed by 502
Abstract
Relict fern species, confined to microhabitats with stable historical conditions, are especially vulnerable to climate change. The Alboran Arc hosts a unique relict fern flora, including Culcita macrocarpa, Diplazium caudatum, and Pteris incompleta, and functions as a major Pleistocene refuge. [...] Read more.
Relict fern species, confined to microhabitats with stable historical conditions, are especially vulnerable to climate change. The Alboran Arc hosts a unique relict fern flora, including Culcita macrocarpa, Diplazium caudatum, and Pteris incompleta, and functions as a major Pleistocene refuge. This study assesses the population trends and climate sensitivity of these species in Los Alcornocales Natural Park using annual abundance time series for a decade, empirical survival projections, and principal component analysis to identify key climatic drivers. Results reveal distinct climate response clusters among populations, though intra-specific variation highlights the importance of local conditions. Climate change is already impacting population viability, especially for P. incompleta, which shows high sensitivity to rising maximum temperatures and prolonged heatwaves. Climate-driven models forecast more severe declines than empirical ones, particularly for C. macrocarpa and P. incompleta, with the latter showing a projected collapse by the mid-century. In contrast, D. caudatum exhibits moderate vulnerability. Crucially, the divergence between models underscores the impact of conservation efforts: without reinforcement and reintroduction actions, projected declines would likely be more severe. These results project a decline in the populations of the studied ferns, highlighting the urgent need to continue implementing both in situ and ex situ conservation measures. Full article
(This article belongs to the Special Issue Plant Conservation Science and Practice)
Show Figures

Figure 1

Back to TopTop