Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (615)

Search Parameters:
Keywords = continuous inspection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4682 KiB  
Article
DERIENet: A Deep Ensemble Learning Approach for High-Performance Detection of Jute Leaf Diseases
by Mst. Tanbin Yasmin Tanny, Tangina Sultana, Md. Emran Biswas, Chanchol Kumar Modok, Arjina Akter, Mohammad Shorif Uddin and Md. Delowar Hossain
Information 2025, 16(8), 638; https://doi.org/10.3390/info16080638 - 27 Jul 2025
Viewed by 139
Abstract
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability [...] Read more.
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability across geographically distributed agrarian systems. To transcend these limitations, we propose DERIENet, a robust and scalable classification approach within a deep ensemble learning framework. It is meticulously engineered by integrating three high-performing convolutional neural networks—ResNet50, InceptionV3, and EfficientNetB0—along with regularization, batch normalization, and dropout strategies, to accurately classify jute leaf diseases such as Cercospora Leaf Spot, Golden Mosaic Virus, and healthy leaves. A key methodological contribution is the design of a novel augmentation pipeline, termed Geometric Localized Occlusion and Adaptive Rescaling (GLOAR), which dynamically modulates photometric and geometric distortions based on image entropy and luminance to synthetically upscale a limited dataset (920 images) into a significantly enriched and diverse dataset of 7800 samples, thereby mitigating overfitting and enhancing domain generalizability. Empirical evaluation, utilizing a comprehensive set of performance metrics—accuracy, precision, recall, F1-score, confusion matrices, and ROC curves—demonstrates that DERIENet achieves a state-of-the-art classification accuracy of 99.89%, with macro-averaged and weighted average precision, recall, and F1-score uniformly at 99.89%, and an AUC of 1.0 across all disease categories. The reliability of the model is validated by the confusion matrix, which shows that 899 out of 900 test images were correctly identified and that there was only one misclassification. Comparative evaluations of the various ensemble baselines, such as DenseNet201, MobileNetV2, and VGG16, and individual base learners demonstrate that DERIENet performs noticeably superior to all baseline models. It provides a highly interpretable, deployment-ready, and computationally efficient architecture that is ideal for integrating into edge or mobile platforms to facilitate in situ, real-time disease diagnostics in precision agriculture. Full article
Show Figures

Figure 1

21 pages, 4341 KiB  
Article
Structural Monitoring Without a Budget—Laboratory Results and Field Report on the Use of Low-Cost Acceleration Sensors
by Sven Giermann, Thomas Willemsen and Jörg Blankenbach
Sensors 2025, 25(15), 4543; https://doi.org/10.3390/s25154543 - 22 Jul 2025
Viewed by 261
Abstract
Authorities responsible for critical infrastructure, particularly bridges, face significant challenges. Many bridges, constructed in the 1960s and 1970s, are now approaching or have surpassed their intended service life. A report from the German Federal Ministry for Digital and Transport (BMVI) indicates that about [...] Read more.
Authorities responsible for critical infrastructure, particularly bridges, face significant challenges. Many bridges, constructed in the 1960s and 1970s, are now approaching or have surpassed their intended service life. A report from the German Federal Ministry for Digital and Transport (BMVI) indicates that about 12% of the 40,000 federal trunk road bridges in Germany are in “inadequate or unsatisfactory” condition. Similar issues are observed in other countries worldwide. Economic constraints prevent ad hoc replacements, necessitating continued operation with frequent and costly inspections. This situation creates an urgent need for cost-effective, permanent monitoring solutions. This study explores the potential use of low-cost acceleration sensors for monitoring infrastructure structures. Inclination is calculated from the acceleration data of the sensor, using gravitational acceleration as a reference point. Long-term changes in inclination may indicate a change in the geometry of the structure, thereby triggering alarm thresholds. It is particularly important to consider specific challenges associated with low measurement accuracy and the susceptibility of sensors to environmental influences in a low-cost setting. The results of laboratory tests allow for an estimation of measurement accuracy and an analysis of the various error characteristics of the sensors. The article outlines the methodology for developing low-cost inclination sensor systems, the laboratory tests conducted, and the evaluation of different measures to enhance sensor accuracy. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

36 pages, 7426 KiB  
Article
PowerLine-MTYOLO: A Multitask YOLO Model for Simultaneous Cable Segmentation and Broken Strand Detection
by Badr-Eddine Benelmostafa and Hicham Medromi
Drones 2025, 9(7), 505; https://doi.org/10.3390/drones9070505 - 18 Jul 2025
Viewed by 495
Abstract
Power transmission infrastructure requires continuous inspection to prevent failures and ensure grid stability. UAV-based systems, enhanced with deep learning, have emerged as an efficient alternative to traditional, labor-intensive inspection methods. However, most existing approaches rely on separate models for cable segmentation and anomaly [...] Read more.
Power transmission infrastructure requires continuous inspection to prevent failures and ensure grid stability. UAV-based systems, enhanced with deep learning, have emerged as an efficient alternative to traditional, labor-intensive inspection methods. However, most existing approaches rely on separate models for cable segmentation and anomaly detection, leading to increased computational overhead and reduced reliability in real-time applications. To address these limitations, we propose PowerLine-MTYOLO, a lightweight, one-stage, multitask model designed for simultaneous power cable segmentation and broken strand detection from UAV imagery. Built upon the A-YOLOM architecture, and leveraging the YOLOv8 foundation, our model introduces four novel specialized modules—SDPM, HAD, EFR, and the Shape-Aware Wise IoU loss—that improve geometric understanding, structural consistency, and bounding-box precision. We also present the Merged Public Power Cable Dataset (MPCD), a diverse, open-source dataset tailored for multitask training and evaluation. The experimental results show that our model achieves up to +10.68% mAP@50 and +1.7% IoU compared to A-YOLOM, while also outperforming recent YOLO-based detectors in both accuracy and efficiency. These gains are achieved with a smaller model memory footprint and a similar inference speed compared to A-YOLOM. By unifying detection and segmentation into a single framework, PowerLine-MTYOLO offers a promising solution for autonomous aerial inspection and lays the groundwork for future advances in fine-structure monitoring tasks. Full article
Show Figures

Figure 1

35 pages, 12716 KiB  
Article
Bridging the Gap Between Active Faulting and Deformation Across Normal-Fault Systems in the Central–Southern Apennines (Italy): Multi-Scale and Multi-Source Data Analysis
by Marco Battistelli, Federica Ferrarini, Francesco Bucci, Michele Santangelo, Mauro Cardinali, John P. Merryman Boncori, Daniele Cirillo, Michele M. C. Carafa and Francesco Brozzetti
Remote Sens. 2025, 17(14), 2491; https://doi.org/10.3390/rs17142491 - 17 Jul 2025
Viewed by 393
Abstract
We inspected a sector of the Apennines (central–southern Italy) in geographic and structural continuity with the Quaternary-active extensional belt but where clear geomorphic and seismological signatures of normal faulting are unexpectedly missing. The evidence of active tectonics in this area, between Abruzzo and [...] Read more.
We inspected a sector of the Apennines (central–southern Italy) in geographic and structural continuity with the Quaternary-active extensional belt but where clear geomorphic and seismological signatures of normal faulting are unexpectedly missing. The evidence of active tectonics in this area, between Abruzzo and Molise, does not align with geodetic deformation data and the seismotectonic setting of the central Apennines. To investigate the apparent disconnection between active deformation and the absence of surface faulting in a sector where high lithologic erodibility and landslide susceptibility may hide its structural evidence, we combined multi-scale and multi-source data analyses encompassing morphometric analysis and remote sensing techniques. We utilised high-resolution topographic data to analyse the topographic pattern and investigate potential imbalances between tectonics and erosion. Additionally, we employed aerial-photo interpretation to examine the spatial distribution of morphological features and slope instabilities which are often linked to active faulting. To discern potential biases arising from non-tectonic (slope-related) signals, we analysed InSAR data in key sectors across the study area, including carbonate ridges and foredeep-derived Molise Units for comparison. The topographic analysis highlighted topographic disequilibrium conditions across the study area, and aerial-image interpretation revealed morphologic features offset by structural lineaments. The interferometric analysis confirmed a significant role of gravitational movements in denudating some fault planes while highlighting a clustered spatial pattern of hillslope instabilities. In this context, these instabilities can be considered a proxy for the control exerted by tectonic structures. All findings converge on the identification of an ~20 km long corridor, the Castel di Sangro–Rionero Sannitico alignment (CaS-RS), which exhibits varied evidence of deformation attributable to active normal faulting. The latter manifests through subtle and diffuse deformation controlled by a thick tectonic nappe made up of poorly cohesive lithologies. Overall, our findings suggest that the CaS-RS bridges the structural gap between the Mt Porrara–Mt Pizzalto–Mt Rotella and North Matese fault systems, potentially accounting for some of the deformation recorded in the sector. Our approach contributes to bridging the information gap in this complex sector of the Apennines, offering original insights for future investigations and seismic hazard assessment in the region. Full article
Show Figures

Figure 1

21 pages, 9749 KiB  
Article
Enhanced Pose Estimation for Badminton Players via Improved YOLOv8-Pose with Efficient Local Attention
by Yijian Wu, Zewen Chen, Hongxing Zhang, Yulin Yang and Weichao Yi
Sensors 2025, 25(14), 4446; https://doi.org/10.3390/s25144446 - 17 Jul 2025
Viewed by 370
Abstract
With the rapid development of sports analytics and artificial intelligence, accurate human pose estimation in badminton is becoming increasingly important. However, challenges such as the lack of domain-specific datasets and the complexity of athletes’ movements continue to hinder progress in this area. To [...] Read more.
With the rapid development of sports analytics and artificial intelligence, accurate human pose estimation in badminton is becoming increasingly important. However, challenges such as the lack of domain-specific datasets and the complexity of athletes’ movements continue to hinder progress in this area. To address these issues, we propose an enhanced pose estimation framework tailored to badminton players, built upon an improved YOLOv8-Pose architecture. In particular, we introduce an efficient local attention (ELA) mechanism that effectively captures fine-grained spatial dependencies and contextual information, thereby significantly improving the keypoint localization accuracy and overall pose estimation performance. To support this study, we construct a dedicated badminton pose dataset comprising 4000 manually annotated samples, captured using a Microsoft Kinect v2 camera. The raw data undergo careful processing and refinement through a combination of depth-assisted annotation and visual inspection to ensure high-quality ground truth keypoints. Furthermore, we conduct an in-depth comparative analysis of multiple attention modules and their integration strategies within the network, offering generalizable insights to enhance pose estimation models in other sports domains. The experimental results show that the proposed ELA-enhanced YOLOv8-Pose model consistently achieves superior accuracy across multiple evaluation metrics, including the mean squared error (MSE), object keypoint similarity (OKS), and percentage of correct keypoints (PCK), highlighting its effectiveness and potential for broader applications in sports vision tasks. Full article
(This article belongs to the Special Issue Computer Vision-Based Human Activity Recognition)
Show Figures

Figure 1

22 pages, 3768 KiB  
Article
A Collaborative Navigation Model Based on Multi-Sensor Fusion of Beidou and Binocular Vision for Complex Environments
by Yongxiang Yang and Zhilong Yu
Appl. Sci. 2025, 15(14), 7912; https://doi.org/10.3390/app15147912 - 16 Jul 2025
Viewed by 328
Abstract
This paper addresses the issues of Beidou navigation signal interference and blockage in complex substation environments by proposing an intelligent collaborative navigation model based on Beidou high-precision navigation and binocular vision recognition. The model is designed with Beidou navigation providing global positioning references [...] Read more.
This paper addresses the issues of Beidou navigation signal interference and blockage in complex substation environments by proposing an intelligent collaborative navigation model based on Beidou high-precision navigation and binocular vision recognition. The model is designed with Beidou navigation providing global positioning references and binocular vision enabling local environmental perception through a collaborative fusion strategy. The Unscented Kalman Filter (UKF) is used to integrate data from multiple sensors to ensure high-precision positioning and dynamic obstacle avoidance capabilities for robots in complex environments. Simulation results show that the Beidou–Binocular Cooperative Navigation (BBCN) model achieves a global positioning error of less than 5 cm in non-interference scenarios, and an error of only 6.2 cm under high-intensity electromagnetic interference, significantly outperforming the single Beidou model’s error of 40.2 cm. The path planning efficiency is close to optimal (with an efficiency factor within 1.05), and the obstacle avoidance success rate reaches 95%, while the system delay remains within 80 ms, meeting the real-time requirements of industrial scenarios. The innovative fusion approach enables unprecedented reliability for autonomous robot inspection in high-voltage environments, offering significant practical value in reducing human risk exposure, lowering maintenance costs, and improving inspection efficiency in power industry applications. This technology enables continuous monitoring of critical power infrastructure that was previously difficult to automate due to navigation challenges in electromagnetically complex environments. Full article
(This article belongs to the Special Issue Advanced Robotics, Mechatronics, and Automation)
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 270
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 5486 KiB  
Article
SE-TransUNet-Based Semantic Segmentation for Water Leakage Detection in Tunnel Secondary Linings Amid Complex Visual Backgrounds
by Renjie Song, Yimin Wu, Li Wan, Shuai Shao and Haiping Wu
Appl. Sci. 2025, 15(14), 7872; https://doi.org/10.3390/app15147872 - 14 Jul 2025
Viewed by 243
Abstract
Traditional manual inspection methods for tunnel lining leakage are subjective and inefficient, while existing models lack sufficient recognition accuracy in complex scenarios. An intelligent leakage identification model adaptable to complex backgrounds is therefore needed. To address these issues, a Vision Transformer (ViT) was [...] Read more.
Traditional manual inspection methods for tunnel lining leakage are subjective and inefficient, while existing models lack sufficient recognition accuracy in complex scenarios. An intelligent leakage identification model adaptable to complex backgrounds is therefore needed. To address these issues, a Vision Transformer (ViT) was integrated into the UNet architecture, forming an SE-TransUNet model by incorporating SE-Block modules at skip connections between the encoder-decoder and the ViT output. Using a hybrid leakage dataset partitioned by k-fold cross-validation, the roles of SE-Block and ViT modules were examined through ablation experiments, and the model’s attention mechanism for leakage features was analyzed via Score-CAM heatmaps. Results indicate: (1) SE-TransUNet achieved mean values of 0.8318 (IoU), 0.8304 (Dice), 0.9394 (Recall), 0.8480 (Precision), 0.9733 (AUC), 0.8562 (MCC), 0.9218 (F1-score), and 6.53 (FPS) on the hybrid dataset, demonstrating robust generalization in scenarios with dent shadows, stain interference, and faint leakage traces. (2) Ablation experiments confirmed both modules’ necessity: The baseline model’s IoU exceeded the variant without the SE module by 4.50% and the variant without both the SE and ViT modules by 7.04%. (3) Score-CAM heatmaps showed the SE module broadened the model’s attention coverage of leakage areas, enhanced feature continuity, and improved anti-interference capability in complex environments. This research may provide a reference for related fields. Full article
Show Figures

Figure 1

72 pages, 22031 KiB  
Article
AI-Enabled Sustainable Manufacturing: Intelligent Package Integrity Monitoring for Waste Reduction in Supply Chains
by Mohammad Shahin, Ali Hosseinzadeh and F. Frank Chen
Electronics 2025, 14(14), 2824; https://doi.org/10.3390/electronics14142824 - 14 Jul 2025
Viewed by 327
Abstract
Despite advances in automation, the global manufacturing sector continues to rely heavily on manual package inspection, creating bottlenecks in production and increasing labor demands. Although disruptive technologies such as big data analytics, smart sensors, and machine learning have revolutionized industrial connectivity and strategic [...] Read more.
Despite advances in automation, the global manufacturing sector continues to rely heavily on manual package inspection, creating bottlenecks in production and increasing labor demands. Although disruptive technologies such as big data analytics, smart sensors, and machine learning have revolutionized industrial connectivity and strategic decision-making, real-time quality control (QC) on conveyor lines remains predominantly analog. This study proposes an intelligent package integrity monitoring system that integrates waste reduction strategies with both narrow and Generative AI approaches. Narrow AI models were deployed to detect package damage at full line speed, aiming to minimize manual intervention and reduce waste. Using a synthetically generated dataset of 200 paired top-and-side package images, we developed and evaluated 10 distinct detection pipelines combining various algorithms, image enhancements, model architectures, and data processing strategies. Several pipeline variants demonstrated high accuracy, precision, and recall, particularly those utilizing a YOLO v8 segmentation model. Notably, targeted preprocessing increased top-view MobileNetV2 accuracy from chance to 67.5%, advanced feature extractors with full enhancements achieved 77.5%, and a segmentation-based ensemble with feature extraction and binary classification reached 92.5% accuracy. These results underscore the feasibility of deploying AI-driven, real-time QC systems for sustainable and efficient manufacturing operations. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Intelligent Manufacturing)
Show Figures

Figure 1

28 pages, 1536 KiB  
Review
Remote Non-Destructive Testing of Port Cranes: A Review of Vibration and Acoustic Sensors with IoT Integration
by Jan Lean Tai, Mohamed Thariq Hameed Sultan, Rafał Grzejda and Farah Syazwani Shahar
J. Mar. Sci. Eng. 2025, 13(7), 1338; https://doi.org/10.3390/jmse13071338 - 13 Jul 2025
Viewed by 553
Abstract
Safe and efficient operation of port cranes is vital for maintaining the efficiency of global maritime logistics. However, traditional non-destructive testing methods face significant limitations in harsh port environments, such as periodic inspection intervals, restricted access to structural components, and a lack of [...] Read more.
Safe and efficient operation of port cranes is vital for maintaining the efficiency of global maritime logistics. However, traditional non-destructive testing methods face significant limitations in harsh port environments, such as periodic inspection intervals, restricted access to structural components, and a lack of real-time monitoring. This review explores the emerging paradigm of remote non-destructive testing through the integration of vibration and acoustic emission sensors with Internet of Things platforms. By enabling continuous, real-time monitoring, these sensor systems can detect early indicators of mechanical degradation, structural fatigue, and corrosion. This study synthesizes findings from over 100 peer-reviewed sources and identifies a significant gap in the application of these technologies to port cranes. Although vibration and acoustic emission sensors have been widely studied in various fields, their application to port cranes remains underexplored, presenting a novel and promising avenue for future research and practical applications. The unique operational demands and structural complexities of port cranes, coupled with their critical role in global trade logistics, make them ideal for leveraging these sensors in tandem with Internet of Things solutions. This integration not only overcomes the limitations of traditional non-destructive testing methods, but also offers substantial benefits, including enhanced safety, reduced inspection costs, and improved operational efficiency. This review concludes by proposing future research directions to enhance sensor performance, data analytics, and Internet of Things integration, paving the way for predictive maintenance strategies that increase operational uptime and improve safety in port crane operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 5918 KiB  
Article
Development of a Real-Time Online Automatic Measurement System for Propeller Manufacturing Quality Control
by Yuan-Ming Cheng and Kuan-Yu Hsu
Appl. Sci. 2025, 15(14), 7750; https://doi.org/10.3390/app15147750 - 10 Jul 2025
Viewed by 234
Abstract
The quality of machined marine propellers plays a critical role in underwater propulsion performance. Precision casting is the predominant manufacturing technique; however, deformation of wax models and rough blanks during manufacturing frequently cause deviations in the dimensions of final products and, thus, affect [...] Read more.
The quality of machined marine propellers plays a critical role in underwater propulsion performance. Precision casting is the predominant manufacturing technique; however, deformation of wax models and rough blanks during manufacturing frequently cause deviations in the dimensions of final products and, thus, affect propellers’ performance and service life. Current inspection methods primarily involve using coordinate measuring machines and sampling. This approach is time-consuming, has high labor costs, and cannot monitor manufacturing quality in real-time. This study developed a real-time online automated measurement system containing a high-resolution CITIZEN displacement sensor, a four-degree-of-freedom measurement platform, and programmable logic controller-based motion control technology to enable rapid, automated measurement of blade deformation across the wax model, rough blank, and final product processing stages. The measurement data are transmitted in real time to a cloud database. Tests conducted on a standardized platform and real propeller blades confirmed that the system consistently achieved measurement accuracy to the second decimal place under the continual measurement mode. The system also demonstrated excellent repeatability and stability. Furthermore, the continuous measurement mode outperformed the single-point measurement mode. Overall, the developed system effectively reduces labor requirements, shortens measurement times, and enables real-time monitoring of process variation. These capabilities underscore its strong potential for application in the smart manufacturing and quality control of marine propellers. Full article
Show Figures

Figure 1

18 pages, 4458 KiB  
Article
Intelligent Hybrid SHM-NDT Approach for Structural Assessment of Metal Components
by Romaine Byfield, Ahmed Shabaka, Milton Molina Vargas and Ibrahim Tansel
Infrastructures 2025, 10(7), 174; https://doi.org/10.3390/infrastructures10070174 - 6 Jul 2025
Viewed by 351
Abstract
Structural health monitoring (SHM) plays a pivotal role in ensuring the integrity and safety of critical infrastructure and mechanical components. While traditional non-destructive testing (NDT) methods offer high-resolution data, they typically require periodic access and disassembly of equipment to conduct inspections. In contrast, [...] Read more.
Structural health monitoring (SHM) plays a pivotal role in ensuring the integrity and safety of critical infrastructure and mechanical components. While traditional non-destructive testing (NDT) methods offer high-resolution data, they typically require periodic access and disassembly of equipment to conduct inspections. In contrast, SHM employs permanently installed, cost-effective sensors to enable continuous monitoring, though often with reduced detail. This study presents an integrated hybrid SHM-NDT methodology enhanced by deep learning to enable the real-time monitoring and classification of mechanical stresses in structural components. As a case study, a 6-foot-long parallel flange I-beam, representing bridge truss elements, was subjected to variable bending loads to simulate operational conditions. The hybrid system utilized an ultrasonic transducer (NDT) for excitation and piezoelectric sensors (SHM) for signal acquisition. Signal data were analyzed using 1D and 2D convolutional neural networks (CNNs), long short-term memory (LSTM) models, and random forest classifiers to detect and classify load magnitudes. The AI-enhanced approach achieved 100% accuracy in 47 out of 48 tests and 94% in the remaining tests. These results demonstrate that the hybrid SHM-NDT framework, combined with machine learning, offers a powerful and adaptable solution for continuous monitoring and precise damage assessment of structural systems, significantly advancing maintenance practices and safety assurance. Full article
Show Figures

Figure 1

16 pages, 3059 KiB  
Article
OFF-The-Hook: A Tool to Detect Zero-Font and Traditional Phishing Attacks in Real Time
by Nazar Abbas Saqib, Zahrah Ali AlMuraihel, Reema Zaki AlMustafa, Farah Amer AlRuwaili, Jana Mohammed AlQahtani, Amal Aodah Alahmadi, Deemah Alqahtani, Saad Abdulrahman Alharthi, Sghaier Chabani and Duaa Ali AL Kubaisy
Appl. Syst. Innov. 2025, 8(4), 93; https://doi.org/10.3390/asi8040093 - 30 Jun 2025
Viewed by 488
Abstract
Phishing attacks continue to pose serious challenges to cybersecurity, with attackers constantly refining their methods to bypass detection systems. One particularly evasive technique is Zero-Font phishing, which involves the insertion of invisible or zero-sized characters into email content to deceive both users and [...] Read more.
Phishing attacks continue to pose serious challenges to cybersecurity, with attackers constantly refining their methods to bypass detection systems. One particularly evasive technique is Zero-Font phishing, which involves the insertion of invisible or zero-sized characters into email content to deceive both users and traditional email filters. Because these characters are not visible to human readers but still processed by email systems, they can be used to evade detection by traditional email filters, obscuring malicious intent in ways that bypass basic content inspection. This study introduces a proactive phishing detection tool capable of identifying both traditional and Zero-Font phishing attempts. The proposed tool leverages a multi-layered security framework, combining structural inspection and machine learning-based classification to detect both traditional and Zero-Font phishing attempts. At its core, the system incorporates an advanced machine learning model trained on a well-established dataset comprising both phishing and legitimate emails. The model alone achieves an accuracy rate of up to 98.8%, contributing significantly to the overall effectiveness of the tool. This hybrid approach enhances the system’s robustness and detection accuracy across diverse phishing scenarios. The findings underscore the importance of multi-faceted detection mechanisms and contribute to the development of more resilient defenses in the ever-evolving landscape of cybersecurity threats. Full article
(This article belongs to the Special Issue The Intrusion Detection and Intrusion Prevention Systems)
Show Figures

Figure 1

25 pages, 5702 KiB  
Article
YOLOv9-GDV: A Power Pylon Detection Model for Remote Sensing Images
by Ke Zhang, Ningxuan Zhang, Chaojun Shi, Qiaochu Lu, Xian Zheng, Yujie Cao, Xiaoyun Zhang and Jiyuan Yang
Remote Sens. 2025, 17(13), 2229; https://doi.org/10.3390/rs17132229 - 29 Jun 2025
Viewed by 314
Abstract
Under the background of continuous breakthroughs in the spatial resolution of satellite remote sensing technology, high-resolution remote sensing images have become a frontier data source for intelligent inspection research of power infrastructure. To address existing issues in remote sensing image application algorithms such [...] Read more.
Under the background of continuous breakthroughs in the spatial resolution of satellite remote sensing technology, high-resolution remote sensing images have become a frontier data source for intelligent inspection research of power infrastructure. To address existing issues in remote sensing image application algorithms such as difficulties in power target feature extraction, low detection accuracy, and false positives/missed detections, this paper proposes the YOLOv9-GDV power tower detection algorithm specifically for power tower detection in high-resolution satellite remote sensing images. Firstly, under high-resolution imaging conditions where transmission tower features are prominent, a Global Pyramid Attention (GPA) mechanism is proposed. This mechanism enhances global representation capabilities, enabling the model to better understand object–background relationships and effectively integrate multi-scale spatial information, thereby improving detection accuracy and robustness. Secondly, a Diverse Branch Block (DBB) is embedded in the feature extraction–fusion module, which enriches the feature space by enhancing the representation capability of single-convolution operations, thereby improving model feature extraction performance without increasing inference time costs. Finally, the Variable Minimum Point Distance Intersection over Union (VMPDIoU) loss is proposed to optimize the model’s loss function. This method employs variable input parameters to directly calculate key point distances between predicted and ground-truth boxes, more accurately reflecting positional differences between detection results and reference targets, thus effectively improving the model’s mean Average Precision (mAP). On the Satellite Remote Sensing Power Tower Dataset (SRSPTD), the YOLOv9-GDV algorithm achieves an mAP of 80.2%, representing a 4.7% improvement over the baseline algorithm. On the multi-scene high-resolution power transmission tower dataset (GFTD), the algorithm obtains an mAP of 94.6%, showing a 2.3% improvement over the original model. The significant mAP improvements on both datasets validate the effectiveness and feasibility of the proposed method. Full article
Show Figures

Figure 1

35 pages, 4924 KiB  
Review
A State-of-the-Art Review of Wind Turbine Blades: Principles, Flow-Induced Vibrations, Failure, Maintenance, and Vibration Suppression Techniques
by Tahir Muhammad Naqash and Md. Mahbub Alam
Energies 2025, 18(13), 3319; https://doi.org/10.3390/en18133319 - 24 Jun 2025
Viewed by 1592
Abstract
The growing demand for renewable energy has underscored the importance of wind power, with wind turbines playing a pivotal role in sustainable electricity generation. However, wind turbine blades are exposed to various challenges, particularly flow-induced vibrations (FIVs), including vortex-induced vibrations, flutter, and galloping, [...] Read more.
The growing demand for renewable energy has underscored the importance of wind power, with wind turbines playing a pivotal role in sustainable electricity generation. However, wind turbine blades are exposed to various challenges, particularly flow-induced vibrations (FIVs), including vortex-induced vibrations, flutter, and galloping, which significantly impact the performance, efficiency, reliability, and lifespan of turbines. This review presents an in-depth analysis of wind turbine blade technology, covering the fundamental principles of operation, aerodynamic characteristics, material selection, and failure mechanisms. It examines the effects of these vibrations on blade integrity and turbine performance, highlighting the need for effective vibration suppression techniques. The paper also discusses current advancements in maintenance strategies, including active and passive vibration control methods, sensor networks, and drone-based inspections, aimed at improving turbine reliability and reducing operational costs. Furthermore, emerging technologies, such as artificial intelligence (AI)-driven prognostic assessments and novel materials for vibration damping, are explored as potential solutions to enhance turbine performance. The review emphasizes the importance of continued research in addressing the challenges posed by FIVs, particularly for offshore turbines operating in harsh environments. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

Back to TopTop