Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (516)

Search Parameters:
Keywords = contact fatigue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4217 KiB  
Article
Contact Load Measurement and Validation for Tapered Rollers in Wind Turbine Main Bearing
by Zhenggang Guo, Jingqi Yu, Wanxiu Hao and Yuming Niu
Sensors 2025, 25(15), 4726; https://doi.org/10.3390/s25154726 - 31 Jul 2025
Viewed by 229
Abstract
Addressing the need for contact load detection in wind turbine main bearings during service, a roller contact load measurement method is proposed. An analytical model characterizes the contact load-to-inner bore strain mapping relationship. To overcome the inherent low sensitivity of direct bore strain [...] Read more.
Addressing the need for contact load detection in wind turbine main bearings during service, a roller contact load measurement method is proposed. An analytical model characterizes the contact load-to-inner bore strain mapping relationship. To overcome the inherent low sensitivity of direct bore strain measurement, bore-to-measurement-point sensitivity analysis was optimized. Multiple structurally optimized sensor brackets were designed to enhance strain measurement sensitivity, and their performance was comparatively evaluated via simulation. To mitigate sensitivity fluctuations caused by roller rotation phase variations, a strain–phase–load calculation method incorporating real-time phase compensation was developed and verified through simulation analysis. A dedicated roller contact load testing system was constructed and experimental validation was conducted. Results demonstrate 95% accuracy in contact load acquisition. This method accurately obtains roller contact loads in wind turbine main bearings, proving crucial for studying bearing mechanical behavior, predicting fatigue life, optimizing structural design, and enhancing reliability. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

19 pages, 3130 KiB  
Article
Deep Learning-Based Instance Segmentation of Galloping High-Speed Railway Overhead Contact System Conductors in Video Images
by Xiaotong Yao, Huayu Yuan, Shanpeng Zhao, Wei Tian, Dongzhao Han, Xiaoping Li, Feng Wang and Sihua Wang
Sensors 2025, 25(15), 4714; https://doi.org/10.3390/s25154714 - 30 Jul 2025
Viewed by 224
Abstract
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping [...] Read more.
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping status of conductors is crucial, and instance segmentation techniques, by delineating the pixel-level contours of each conductor, can significantly aid in the identification and study of galloping phenomena. This work expands upon the YOLO11-seg model and introduces an instance segmentation approach for galloping video and image sensor data of OCS conductors. The algorithm, designed for the stripe-like distribution of OCS conductors in the data, employs four-direction Sobel filters to extract edge features in horizontal, vertical, and diagonal orientations. These features are subsequently integrated with the original convolutional branch to form the FDSE (Four Direction Sobel Enhancement) module. It integrates the ECA (Efficient Channel Attention) mechanism for the adaptive augmentation of conductor characteristics and utilizes the FL (Focal Loss) function to mitigate the class-imbalance issue between positive and negative samples, hence enhancing the model’s sensitivity to conductors. Consequently, segmentation outcomes from neighboring frames are utilized, and mask-difference analysis is performed to autonomously detect conductor galloping locations, emphasizing their contours for the clear depiction of galloping characteristics. Experimental results demonstrate that the enhanced YOLO11-seg model achieves 85.38% precision, 77.30% recall, 84.25% AP@0.5, 81.14% F1-score, and a real-time processing speed of 44.78 FPS. When combined with the galloping visualization module, it can issue real-time alerts of conductor galloping anomalies, providing robust technical support for railway OCS safety monitoring. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

19 pages, 6026 KiB  
Article
Microstructure and Mechanical Properties of High-Speed Train Wheels: A Study of the Rim and Web
by Chun Gao, Yuanyuan Zhang, Tao Fan, Jia Wang, Huajian Song and Hang Su
Crystals 2025, 15(8), 677; https://doi.org/10.3390/cryst15080677 - 25 Jul 2025
Viewed by 302
Abstract
High-speed trains have revolutionized modern transportation with their exceptional speeds, yet the essence of this technological breakthrough resides in the train’s wheels. These components are engineered to endure extreme mechanical stresses while ensuring high safety and reliability. In this paper, we selected the [...] Read more.
High-speed trains have revolutionized modern transportation with their exceptional speeds, yet the essence of this technological breakthrough resides in the train’s wheels. These components are engineered to endure extreme mechanical stresses while ensuring high safety and reliability. In this paper, we selected the rim and web as representative components of the wheel and conducted a comprehensive and systematic study on their microstructure and mechanical properties. The wheels are typically produced through integral forging. To improve the mechanical performance of the wheel/rail contact surface (i.e., the tread), the rim is subjected to surface quenching or other heat treatments. This endows the rim with strength and hardness second only to the tread and lowers its ductility. This results in a more isotropic structure with improved fatigue resistance in low-cycle and high-cycle regimes under rotating bending. The web connects the wheel axle to the rim and retains the microstructure formed during the forging process. Its strength is lower than that of the rim, while its ductility is slightly better. The web satisfies current property standards, although the microstructure suggests further optimization may be achievable through heat treatment refinement. Full article
(This article belongs to the Special Issue Fatigue and Fracture of Crystalline Metal Structures)
Show Figures

Figure 1

17 pages, 7181 KiB  
Article
Piezoelectric Effect of k-Carrageenan as a Tool for Force Sensor
by Vytautas Bučinskas, Uldis Žaimis, Dainius Udris, Jūratė Jolanta Petronienė and Andrius Dzedzickis
Sensors 2025, 25(15), 4594; https://doi.org/10.3390/s25154594 - 24 Jul 2025
Viewed by 211
Abstract
Natural polymers, polysaccharides, demonstrate piezoelectric behavior suitable for force sensor manufacturing. Carrageenan hydrogel film with α-iron oxide particles can act as a piezoelectric polysaccharide-based force sensor. The mechanical impact on the hydrogel caused by a falling ball shows the impact response time, which [...] Read more.
Natural polymers, polysaccharides, demonstrate piezoelectric behavior suitable for force sensor manufacturing. Carrageenan hydrogel film with α-iron oxide particles can act as a piezoelectric polysaccharide-based force sensor. The mechanical impact on the hydrogel caused by a falling ball shows the impact response time, which is measured in milliseconds. Repeating several experiments in a row shows the dynamics of fatigue, which does not reduce the speed of response to impact. Through the practical experiments, we sought to demonstrate how theoretical knowledge describes the hydrogel we elaborated, which works as a piezoelectric material. In addition to the theoretical basis, which includes the operation of the metal and metal oxide contact junction, the interaction between the metal oxide and the hydrogel surfaces, the paper presents the practical application of this knowledge to the complex hydrogel film. The simple calculations presented in this paper are intended to predict the hydrogel film’s characteristics and explain the results obtained during practical experiments. Carrageenan, as a low-cost and already widely used polysaccharide in various industries, is suitable for the production of low-cost force sensors in combination with iron oxide. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

15 pages, 1307 KiB  
Article
Shear Bond Strength and Finite Element Stress Analysis of Composite Repair Using Various Adhesive Strategies With and Without Silane Application
by Elif Ercan Devrimci, Hande Kemaloglu, Cem Peskersoy, Tijen Pamir and Murat Turkun
Appl. Sci. 2025, 15(15), 8159; https://doi.org/10.3390/app15158159 - 22 Jul 2025
Viewed by 214
Abstract
This study evaluated the effect of various adhesive systems, particularly silane application, on the repair bond strength of a nanofill resin composite and associated stress distribution using finite element analysis (FEA). A total of 105 composite specimens (4 × 6 mm) were aged [...] Read more.
This study evaluated the effect of various adhesive systems, particularly silane application, on the repair bond strength of a nanofill resin composite and associated stress distribution using finite element analysis (FEA). A total of 105 composite specimens (4 × 6 mm) were aged by thermal cycling (10,000 cycles), roughened, etched with phosphoric acid, and assigned to seven groups (n = 15): G1. control—no adhesive; G2. Single Bond Universal Adhesive; G3. composite primer; G4. PQ1; G5. Silane + PQ1; G6. Clearfil Universal Bond; G7. All-Bond Universal. Shear bond strength was measured using a universal testing machine (1 mm/min), and failure modes were microscopically classified. FEA was conducted under static and fatigue conditions using 3D models built in Fusion-360. Mechanical properties were obtained from technical data and the literature. A 300 N load was applied and contact detection (0.05 mm) and constraint zones were defined. Statistical analysis was performed using one-way ANOVA and Tukey’s HSD (p = 0.05). Pearson’s correlation was used to assess the relationship between bond strength and von Mises stress. The highest bond strength was found in G2 (21.54 MPa) while G1 showed the lowest (8.86 MPa). Silane-treated groups exhibited favorable stress distribution and a strong correlation between experimental and simulated outcomes. Silane applications significantly enhance composite repair performance. Full article
(This article belongs to the Special Issue Dental Materials: Latest Advances and Prospects, Third Edition)
Show Figures

Figure 1

39 pages, 7187 KiB  
Review
Surface Coatings on Biomedical Magnesium Alloys
by Jiapeng Ren, Zhenyu Zhao, Hua Li, Dongsheng Wang, Cijun Shuai and Youwen Yang
Materials 2025, 18(14), 3411; https://doi.org/10.3390/ma18143411 - 21 Jul 2025
Viewed by 415
Abstract
Magnesium (Mg) alloys have demonstrated tremendous potential in biomedical applications, emerging as promising metallic biomaterials due to their biocompatibility, degradability, and favorable mechanical properties. However, their practical implementation faces significant limitations stemming from mechanical performance degradation and premature fracture failure caused by complex [...] Read more.
Magnesium (Mg) alloys have demonstrated tremendous potential in biomedical applications, emerging as promising metallic biomaterials due to their biocompatibility, degradability, and favorable mechanical properties. However, their practical implementation faces significant limitations stemming from mechanical performance degradation and premature fracture failure caused by complex physiological interactions, including flow erosion, corrosion fatigue, stress coupling effects, and dynamic wear under bodily conditions. Surface coating technology has been recognized as an effective strategy to prevent direct contact between magnesium substrates and corrosive media. This review systematically examines the fundamental degradation mechanisms of magnesium alloys in both vivo and vitro environments, presents recent advances in surface modification coatings for magnesium alloys, and critically analyses the interaction mechanisms between modified layers and electrolyte solutions. Special emphasis is placed on revealing the formation mechanisms, structural characteristics, and fracture behaviors of conversion coatings. Furthermore, the study discusses the current challenges in biomedical surface modification of magnesium alloys, proposes potential solutions to enhance their clinical applicability, and outlines future research directions to fully exploit the development potential of these advanced biomaterials. Full article
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 297
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 3570 KiB  
Article
Fatigue Life Analysis of Cylindrical Roller Bearings Considering Elastohydrodynamic Lubrications
by Ke Zhang, Zhitao Huang, Qingsong Li and Ruiyu Zhang
Appl. Sci. 2025, 15(14), 7867; https://doi.org/10.3390/app15147867 - 14 Jul 2025
Viewed by 253
Abstract
Cylindrical roller bearings are widely used in industrial machinery, automotive systems, and aerospace applications, where their reliability directly affects the performance and safety of mechanical systems. The fatigue life of cylindrical roller bearings is significantly affected by their elastohydrodynamic lubrication condition, with variations [...] Read more.
Cylindrical roller bearings are widely used in industrial machinery, automotive systems, and aerospace applications, where their reliability directly affects the performance and safety of mechanical systems. The fatigue life of cylindrical roller bearings is significantly affected by their elastohydrodynamic lubrication condition, with variations potentially reaching multiple times. However, conventional quasi-static models often neglect lubrication effects. This study establishes a quasi-static analysis model for cylindrical roller bearings that incorporates the effects of elastohydrodynamic lubrication by integrating elastohydrodynamic lubrication theory with the Lundberg–Palmgren life model. The isothermal line contact elastohydrodynamic lubrication equations are solved using the multigrid method, and the contact load distribution is determined through nonlinear iterative techniques to calculate bearing fatigue life. Taking the N324 support bearing on the main shaft of an SFW250-8/850 horizontal hydro-generator as an example, the influences of radial load, inner race speed, and lubricant viscosity on fatigue life are comparatively analyzed. Experimental validation is conducted under both light-load and heavy-load operating conditions. The results demonstrate that elastohydrodynamic lubrication markedly increases contact loads, leading to a reduced predicted fatigue life compared with that of the De Mul model (which ignores lubrication). The proposed lubrication-integrated model achieves an average deviation of 5.3% from the experimental data, representing a 16.1% improvement in prediction accuracy over the De Mul model. Additionally, increased rotational speed and lubricant viscosity accelerate fatigue life degradation. Full article
(This article belongs to the Special Issue Advances and Applications in Mechanical Fatigue and Life Assessment)
Show Figures

Figure 1

27 pages, 6693 KiB  
Article
Failure Mechanism and Structural Analysis of Chain Slings with Non-Standard Connections
by Yujun Choi and Jaesun Lee
Appl. Sci. 2025, 15(14), 7841; https://doi.org/10.3390/app15147841 - 13 Jul 2025
Viewed by 314
Abstract
This study investigates the mechanical behavior and failure characteristics of chain slings under standard and non-standard fastening methods. Through dimensional inspections, fracture tests, and finite element analysis, we identified critical factors influencing chain failure. Chains exhibiting over 10% diameter reduction or increased pitch [...] Read more.
This study investigates the mechanical behavior and failure characteristics of chain slings under standard and non-standard fastening methods. Through dimensional inspections, fracture tests, and finite element analysis, we identified critical factors influencing chain failure. Chains exhibiting over 10% diameter reduction or increased pitch exceeded discard criteria and showed significant strength loss. Fracture loads in aged chains dropped by more than 35% compared to standards. Structural analysis revealed that standard fastening (using master links) ensures uniform stress distribution and higher load capacity, whereas non-standard fastening (direct wrapping on eyebolts) caused stress concentration, reduced tensile capacity by over 15%, and led to localized failure near contact areas. These results validate the structural soundness of international standards (DIN EN 818-4, ISO 3056) and highlight the risks of improper fastening. Practical recommendations include strict adherence to standard fastening methods, avoidance of direct wrapping, and implementation of regular inspections. The findings emphasize the need for design considerations regarding fastening geometry and suggest further research into fatigue life prediction and contact condition optimization. Full article
Show Figures

Figure 1

12 pages, 421 KiB  
Article
Function and Health in Adults with Dyskinetic Cerebral Palsy—A Follow-Up Study
by Kate Himmelmann and Meta N. Eek
J. Clin. Med. 2025, 14(14), 4909; https://doi.org/10.3390/jcm14144909 - 10 Jul 2025
Viewed by 289
Abstract
Background/Objectives: Dyskinetic cerebral palsy (DCP) often implies severe motor impairment and risk of health problems. Our aim was to follow up a group of young adults with DCP that we previously examined as children, to describe health, function, and living conditions. Methods [...] Read more.
Background/Objectives: Dyskinetic cerebral palsy (DCP) often implies severe motor impairment and risk of health problems. Our aim was to follow up a group of young adults with DCP that we previously examined as children, to describe health, function, and living conditions. Methods: Interviews regarding health issues, treatments, and living conditions, and quality of life (RAND-36) and fatigue questionnaires were completed. Gross and fine motor function, communication, and speech ability were classified, and weight, height, spasticity, and dystonia were assessed and compared to previous data. Joint range of motion (ROM) was compared to older adults with DCP. Results: Dystonia was present in all fifteen participants, and spasticity in all but two. A decrease was found mainly in those who received intrathecal baclofen (ITB). ROM limitations were most pronounced in shoulder flexion, abduction and inward rotation (while outward rotation was hypermobile), hip abduction, hamstrings, and knee extension. The majority had frequent contact with primary and specialist healthcare. Seven participants were underweight, eight had a gastrostomy, and seven had ITB. Upper gastrointestinal and respiratory problems were frequent. Orthopedic surgery for scoliosis was reported in five, and lower extremity in nine, while fractures were reported in six participants. RAND-36 revealed physical functioning, general health, and vitality as the greatest problem areas. Fatigue was significant in 64%. Eight participants lived with their parents. Participants at more functional levels completed tertiary education and lived independently. Conclusions: Most participants had severe impairment and many health issues, despite decreased dystonia and spasticity due to ITB. Sleep problems and pain were uncommon. Full article
Show Figures

Graphical abstract

21 pages, 3327 KiB  
Review
Tread-Braked Wheels: Review and Recent Findings
by Gianluca Megna and Andrea Bracciali
Machines 2025, 13(7), 579; https://doi.org/10.3390/machines13070579 - 3 Jul 2025
Viewed by 291
Abstract
Tread braking is still extensively used on freight wagons due to lower purchasing and maintenance costs compared to disk braking. Cast iron brake blocks were replaced by composite materials (organic or sintered) that result in a lower wheel roughness, reducing rolling noise. Unfortunately, [...] Read more.
Tread braking is still extensively used on freight wagons due to lower purchasing and maintenance costs compared to disk braking. Cast iron brake blocks were replaced by composite materials (organic or sintered) that result in a lower wheel roughness, reducing rolling noise. Unfortunately, composite brake blocks have a lower thermal conductivity, negatively affecting the wheel mechanical behavior as the braking energy is almost entirely dissipated by the wheels, which are therefore subjected to higher temperatures. Mechanical properties of the wheel material, such as yield stress and Rolling Contact Fatigue (RCF) behavior, markedly decrease with temperature, resulting in higher wear rates and wheel tread damage. Contacted to analyze defects not clearly defined in the current regulations used for maintenance and inspections, the authors surveyed the literature and the technical documentation about tread-braked wheels. The paper provides an updated view about the state-of-the-art of the research on thermomechanical behavior of railway wheels and discusses the implication of the increased thermal stresses generated by composite brake blocks. Full article
(This article belongs to the Special Issue Wheel–Rail Contact: Mechanics, Wear and Analysis)
Show Figures

Figure 1

12 pages, 262 KiB  
Article
Temperature Gradients in Tire Rubber Can Reduce/Increase Tensile Stresses and Hence Wear and Fatigue
by Jean-Emmanuel Leroy and Michele Ciavarella
Lubricants 2025, 13(7), 294; https://doi.org/10.3390/lubricants13070294 - 30 Jun 2025
Viewed by 921
Abstract
It has been known for some time that grading of the elastic modulus (namely, softer in the surface) leads to a significant reduction in tensile stresses due to contact loadings; this has been studied mostly to suppress the cracking of brittle materials. In [...] Read more.
It has been known for some time that grading of the elastic modulus (namely, softer in the surface) leads to a significant reduction in tensile stresses due to contact loadings; this has been studied mostly to suppress the cracking of brittle materials. In particular, a recent study has demonstrated that the effect is most pronounced for a large Poisson’s ratio, as is the case for incompressible materials. Grading of the modulus occurs intrinsically in viscoelastic materials like rubber when there is a temperature gradient within the rubber, which leads to significant changes of tensile stresses, affecting fatigue and wear. Friction and wear have been analyzed experimentally in the past with respect to mean temperature, revealing an ideal range of temperature with the highest friction and lowest wear, but the effect of the temperature gradient is not as well understood. The present paper presents a simple model of a sinusoidal wave of pressure and shear traction moving on a viscoelastic half-plane (standard material) at constant velocity, finding an approximate solution for a linear variation of viscosity across the depth. We find that tensile stresses may be very significantly altered by temperature changes of a few degrees only across the depth equal to the wavelength of the loading wave. In particular, they are reduced if the temperature decreases with depth, with beneficial effects for fatigue and wear. Full article
Show Figures

Figure 1

31 pages, 8652 KiB  
Article
Study on Road Performance and Ice-Breaking Effect of Rubber Polyurethane Gel Mixture
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Jingyu Yang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Deqing Tang and Jiajie Feng
Gels 2025, 11(7), 505; https://doi.org/10.3390/gels11070505 - 29 Jun 2025
Viewed by 371
Abstract
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of [...] Read more.
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of roads and ensure the safety of winter pavements. A pavement material with high efficiency, low carbon and environmental friendliness for active snow melting and ice breaking is developed. Firstly, NaOH, NaClO and KH550 were used to optimize the treatment of rubber particles. The hydrophilic properties, surface morphology and phase composition of rubber particles before and after optimization were studied, and the optimal treatment method of rubber particles was determined. Then, the optimized rubber particles were used to replace the natural aggregate in the polyurethane gel mixture by the volume substitution method, and the optimum polyurethane gel dosages and molding and curing processes were determined. Finally, the influence law of the road performance of RPGM was compared and analyzed by means of an indoor test, and the ice-breaking effect of RPGM was explored. The results showed that the contact angles of rubber particles treated with three solutions were reduced by 22.5%, 30.2% and 36.7%, respectively. The surface energy was improved, the element types on the surface of rubber particles were reduced and the surface impurities were effectively removed. Among them, the improvement effect of the KH550 solution was the most significant. With the increase in rubber particle content from 0% to 15%, the dynamic stability of the mixture gradually increases, with a maximum increase of 23.5%. The maximum bending strain increases with the increase in its content. The residual stability increases first and then decreases with the increase in rubber particle content, and the increase ranges are 1.4%, 3.3% and 0.5%, respectively. The anti-scattering performance increases with the increase in rubber content, and an excessive amount will lead to an increase in the scattering loss rate, but it can still be maintained below 5%. The fatigue life of polyurethane gel mixtures with 0%, 5%, 10% and 15% rubber particles is 2.9 times, 3.8 times, 4.3 times and 4.0 times higher than that of the AC-13 asphalt mixture, respectively, showing excellent anti-fatigue performance. The friction coefficient of the mixture increases with an increase in the rubber particle content, which can be increased by 22.3% compared with the ordinary asphalt mixture. RPGM shows better de-icing performance than traditional asphalt mixtures, and with an increase in rubber particle content, the ice-breaking ability is effectively improved. When the thickness of the ice layer exceeds 9 mm, the ice-breaking ability of the mixture is significantly weakened. Mainly through the synergistic effect of stress coupling, thermal effect and interface failure, the bonding performance of the ice–pavement interface is weakened under the action of driving load cycle, and the ice layer is loosened, broken and peeled off, achieving efficient de-icing. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

22 pages, 4685 KiB  
Article
Mental Fatigue Detection of Crane Operators Based on Electroencephalogram Signals Acquired by a Novel Rotary Switch-Type Semi-Dry Electrode Using Multifractal Detrend Fluctuation Analysis
by Fuwang Wang, Daping Chen and Xiaolei Zhang
Sensors 2025, 25(13), 3994; https://doi.org/10.3390/s25133994 - 26 Jun 2025
Viewed by 302
Abstract
The mental fatigue of crane operators can pose a serious threat to construction safety. To enhance the safety of crane operations on construction sites, this study proposes a rotary switch semi-dry electrode for detecting the mental fatigue of crane operators. This rotary switch [...] Read more.
The mental fatigue of crane operators can pose a serious threat to construction safety. To enhance the safety of crane operations on construction sites, this study proposes a rotary switch semi-dry electrode for detecting the mental fatigue of crane operators. This rotary switch semi-dry electrode overcomes the problems of the large impedance value of traditional dry electrodes, the cumbersome wet electrode operation, and the uncontrollable outflow of conductive liquid from traditional semi-dry electrodes. By designing a rotary switch structure inside the electrode, it allows the electrode to be turned on and used in motion, which greatly improves the efficiency of using the conductive fluid and prolongs the electrode’s use time. A conductive sponge was used at the electrode’s contact end with the skin, improving comfort and making it suitable for long-term wear. In addition, in this study, the multifractal detrend fluctuation analysis (MF-DFA) method was used to detect the mental fatigue state of crane operators. The results indicate that the MF-DFA is more responsive to the tiredness traits of individuals than conventional fatigue detection methods. The proposed rotary switch semi-dry electrode can quickly and accurately detect the mental fatigue of crane operators, provide support for timely warning or intervention, and effectively reduce the risk of accidents at construction sites, enhancing construction safety and efficiency. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

13 pages, 2467 KiB  
Article
Thermal-Tribological Synergy in PTFE-Based Self-Lubricating Retainers for Ball Bearings Under Oil-Depleted Conditions
by Zhining Jia and Caizhe Hao
Lubricants 2025, 13(7), 280; https://doi.org/10.3390/lubricants13070280 - 23 Jun 2025
Viewed by 427
Abstract
To investigate the temperature rise characteristics and tribological performance of angular contact ball bearings equipped with polymer-based self-lubricating retainers under oil-depleted conditions. PTFE-based composite retainers were fabricated using cold-press sintering technology. Comparative experiments on 7206C were conducted on three bearing configurations (domestic, imported [...] Read more.
To investigate the temperature rise characteristics and tribological performance of angular contact ball bearings equipped with polymer-based self-lubricating retainers under oil-depleted conditions. PTFE-based composite retainers were fabricated using cold-press sintering technology. Comparative experiments on 7206C were conducted on three bearing configurations (domestic, imported NSK, and YSU-S1/S2 self-lubricating retainer bearing) using a dedicated fatigue tester under oil-depleted lubrication. This study demonstrates that angular contact ball bearings equipped with PTFE-based self-lubricating retainers exhibit superior thermal behavior under oil-depleted conditions. Compared to domestic and imported NSK bearings, the retainer-equipped bearing reduced equilibrium temperatures by 2~3 °C versus NSK/domestic bearings, with 60% lower peak temperatures. The high speed further facilitates the formation of transfer films, resulting in a smoother raceway and notably enhancing the bearing’s temperature rise characteristics. This study establishes a material–process–performance framework, bridging polymer composites and industrial bearing design. Full article
Show Figures

Figure 1

Back to TopTop