Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (343)

Search Parameters:
Keywords = consumption displacement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4182 KB  
Article
Intelligent Alignment Control for Floating Raft Air Spring Mounting System Under Coupled Hull–Raft Deformation
by Jian-Wei Cheng, Wen-Jun Bu, Ze-Chao Hu, Jun-Qiang Fu, Hong-Rui Zhang and Liang Shi
J. Mar. Sci. Eng. 2025, 13(9), 1664; https://doi.org/10.3390/jmse13091664 - 29 Aug 2025
Abstract
Shaft alignment is adversely affected by the increasingly severe coupled hull–raft deformation in deep-diving, highly integrated submersibles, thereby compromising operational safety and potentially amplifying vibration noise. To address to this issue, this paper investigates an intelligent alignment control method for the floating raft [...] Read more.
Shaft alignment is adversely affected by the increasingly severe coupled hull–raft deformation in deep-diving, highly integrated submersibles, thereby compromising operational safety and potentially amplifying vibration noise. To address to this issue, this paper investigates an intelligent alignment control method for the floating raft air spring mounting system (ASMS) applied to marine propulsion unit (MPU) under coupled hull–raft deformation conditions. A multi-objective alignment control algorithm was developed based on the NSGA-II optimization method within an N-step receding horizon optimal control framework, enabling simultaneous achievement of shaft alignment attitude adjustment, hull deformation compensation, raft deformation suppression, and pneumatic energy consumption. Experimental validation was conducted on two distinct ASMS prototypes to evaluate the control algorithm. Tests performed on the ASMS for MPU (MPU-ASMS) prototype demonstrated effective compensation of hull-induced deformations, maintaining shaft alignment offsets within ±0.3 mm and angularities within ±0.5 mm/m. Concurrently, experiments on the floating raft ASMS for the stern compartment (SC-FR-ASMS) achieved precise control of axial offsets within ±0.3 mm, angularities within ±0.5 mm/m, and vertical displacements of critical monitoring points within ±1 mm. The adaptive control strategy additionally proved effective in suppressing raft deformation while simultaneously optimizing pneumatic energy consumption. This research provides robust theoretical and technical foundations for intelligent vibration isolation systems in deep-sea equipment to accommodate extreme-depth-induced hull deformation and large-scale raft deformation. Full article
(This article belongs to the Special Issue Deep-Sea Mineral Resource Development Technology and Equipment)
21 pages, 3922 KB  
Article
Spatiotemporal Evolution and Influencing Factors of China’s Embodied Oil Flows: A Consumer-Side Perspective
by Chuanguo Zhang, Pengyan Wu and Sirui Zhou
Energies 2025, 18(17), 4562; https://doi.org/10.3390/en18174562 - 28 Aug 2025
Abstract
Oil consumption brings both energy security risks and environmental responsibilities. While traditional studies assign environmental responsibility primarily to oil producers, our research uncovers a geographical displacement of accountability: substantial oil volumes are embedded in traded goods and ultimately consumed in distant regions. Although [...] Read more.
Oil consumption brings both energy security risks and environmental responsibilities. While traditional studies assign environmental responsibility primarily to oil producers, our research uncovers a geographical displacement of accountability: substantial oil volumes are embedded in traded goods and ultimately consumed in distant regions. Although China’s “dual control” policy regulates fossil energy use, it fails to account for the complexities of embodied oil flows. This oversight leads to imbalanced interregional responsibility allocation and resource exploitation issues. Adopting the “consumer pays” principle, this study makes methodological advances by innovatively combining multi-regional input–output (MRIO) modeling with geographically and temporally weighted regression (GTWR) analysis. The integrated approach provides spatial–temporal resolution in tracking embodied oil flows and their drivers across China’s provinces. Key findings include (1) strong concentration of oil inflows in developed eastern and central provinces, alongside rapid growth in southwestern regions; (2) evolving temporal patterns where economic growth and distance remain persistent drivers, while green technology and urbanization emerge as growing mitigating factors; (3) spatially, northwestern regions rely heavily on external supplies due to economic growth and urbanization, southeastern areas face rising transport costs, while green technologies in coastal regions have yet to significantly curb inflows due to rebound effects. These insights provide a new analytical framework for energy policy, supporting region-specific solutions to balance development and sustainability from a consumption perspective. Full article
Show Figures

Figure 1

21 pages, 2902 KB  
Article
Operating Speed Analysis of a 1.54 kW Walking-Type One-Row Cam-Follower-Type Cabbage Transplanter for Biodegradable Seedling Pots
by Md Razob Ali, Md Nasim Reza, Kyu-Ho Lee, Samsuzzaman, Eliezel Habineza, Md Asrakul Haque, Beom-Sun Kang and Sun-Ok Chung
Agriculture 2025, 15(17), 1816; https://doi.org/10.3390/agriculture15171816 - 26 Aug 2025
Viewed by 188
Abstract
Improving the operational speed of cabbage transplanters is essential for precision seed-ling placement and labor efficiency. In South Korea, manual cabbage transplanting can demand up to 184 person-hours per hectare, often leading to delays during peak periods due to labor shortages. Moreover, the [...] Read more.
Improving the operational speed of cabbage transplanters is essential for precision seed-ling placement and labor efficiency. In South Korea, manual cabbage transplanting can demand up to 184 person-hours per hectare, often leading to delays during peak periods due to labor shortages. Moreover, the environmental urgency to reduce plastic waste has accelerated the adoption of biodegradable pots in mechanized systems, supporting global sustainable development goals. This study aimed to determine optimal working conditions for a 1.54 kW semi-automatic single-row cabbage transplanter designed for biodegradable pots. The cam-follower-based planting mechanism was analyzed to identify ideal forward and rotational speeds, while evaluating power consumption and seedling placement quality. The mechanism includes a crank-driven four-bar linkage, with an added restoring spring for enhanced motion stability. A total of nine simulation trials were conducted across forward speeds of 250, 300, and 350 mm/s and planting unit speeds of 40, 50, and 60 rpm. Simulation and experimental results confirmed that a forward velocity of 300 mm/s and crank speed of 60 rpm produced optimal outcomes, achieving a vertical hopper displacement of 280 mm, minimal soil disturbance (2186.95 ± 2.27 mm2), upright seedling alignment, and the lowest power usage (17.42 ± 1.21 W). Comparative analysis showed that under the optimal condition, the characteristic coefficient λ = 1 minimized misalignment and power loss. These results support scalable and energy-efficient transplanting systems suitable for smallholder and mid-sized farms, offering an environmentally sustainable solution. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 2255 KB  
Article
Consumption of 100% Juice and Diluted 100% Juice Is Associated with Better Compliance with Dietary Guidelines for Americans: Analyses of NHANES 2017–2023
by Rozenn Gazan, Matthieu Maillot and Adam Drewnowski
Nutrients 2025, 17(16), 2715; https://doi.org/10.3390/nu17162715 - 21 Aug 2025
Viewed by 534
Abstract
Background: The Dietary Guidelines for Americans (DGA) and the American Academy of Pediatrics recommend limiting 100% juice consumption to 0.5–1.25 cups/day and to no more than one half of total fruit intake. Objective: To explore the dietary benefits of consuming 100% [...] Read more.
Background: The Dietary Guidelines for Americans (DGA) and the American Academy of Pediatrics recommend limiting 100% juice consumption to 0.5–1.25 cups/day and to no more than one half of total fruit intake. Objective: To explore the dietary benefits of consuming 100% fruit juice and diluted 100% juice across diverse socio-demographic strata in the US. Methods: Consumption patterns for 100% juice and diluted 100% juice were examined by sex, age group, income-to-poverty ratio (IPR), and race/ethnicity. Dietary intakes came from the National Health and Nutrition Examination Survey (NHANES 2017–2020 and 2021–2023). The Healthy Eating Index 2020 (HEI 2020) and diet-level Nutrient Rich Food (NRF9.3) scores were the two measures of diet quality. The amounts of 100% juice consumed were compared to published DGA recommendations. Results: The consumption of 100% juice was greatly below that of water, milk, and sugar-sweetened beverages (SSBs). The consumption of diluted 100% juice was very low. Consumers of 100% juice had higher HEI 2020 scores (53 vs. 48) and diets with less added sugar and more total fruit, more potassium, calcium, and vitamin C. About 88% of the NHANES sample consumed <4 oz/day (1/2 cup) of 100% juice and most derived at least 50% of fruit from whole fruit, though some variation by income and race/ethnicity was observed. About 93% of the sample consumed <1 cup/day (8 oz) of 100% juice. Lower income groups consumed less whole fruit and more 100% juice. Conclusion: The consumption of 100% fruit juice was a marker of healthier dietary choices. The observed social gradient suggests that 100% fruit juice may provide valuable nutrients to populations who may be unable to afford or access whole fruit. Public health recommendations: The consumption of 100% fruit juice by some population subgroups could be increased. Fruit juice was not displacing whole fruit, and current consumption was well below the current DGA recommended values. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

18 pages, 3210 KB  
Article
Dynamic Deformation Testing and Analysis of Wet Cylinder Liners Using the Eddy Current Method
by Haining He, Lizhong Shen, Song Zu, Yuchen Xu, Jianping Song and Yuhua Bi
Energies 2025, 18(16), 4421; https://doi.org/10.3390/en18164421 - 19 Aug 2025
Viewed by 337
Abstract
Improving the thermal efficiency of internal combustion engines plays a crucial role in reducing fuel consumption and engine emissions. Studies have shown that the friction loss caused by the piston ring–cylinder liner pair accounts for approximately 30–40% of the engine’s total mechanical friction. [...] Read more.
Improving the thermal efficiency of internal combustion engines plays a crucial role in reducing fuel consumption and engine emissions. Studies have shown that the friction loss caused by the piston ring–cylinder liner pair accounts for approximately 30–40% of the engine’s total mechanical friction. The key to improving mechanical and thermal efficiency lies in reducing frictional losses through advanced solutions. However, as engine intensification increases, the growing thermal and mechanical loads lead to out-of-round deformation of the cylinder liner. This deformation reduces the sealing conformity of the piston rings, leading to increased blow-by and elevated particulate matter (PM) emissions. To address this, a dynamic–static deformation testing system for cylinder liners, combined with a multi-physics simulation for data validation, has been developed to achieve energy conservation and emission reduction in engines. Based on established strain gauge and eddy current displacement sensors, this study developed a dynamic deformation testing system, modified for a specific type of diesel engine, and analyzed the cylinder liner deformation under fired conditions. Test results show that under engine speeds ranging from 700 rpm to 1100 rpm, the overall radial out-of-roundness of the cylinder liner increased, with a maximum deformation of 49.2 μm. The second-order component of out-of-roundness also increases with speed, showing a maximum rise of 28.9 μm, while the third-order and fourth-order components exhibit relatively minor changes. These findings suggest that the overall radial deformation under fired conditions is mainly dominated by second-order out-of-roundness, with third-order and fourth-order components contributing marginally. Full article
Show Figures

Figure 1

18 pages, 2297 KB  
Article
Effects of Wet Soybean Dregs on Forming Relaxation Ratio, Maximum Compressive Force and Specific Energy Consumption of Corn Stover Pellets
by Tianyou Chen, Wenyu Zhang, Yuqiu Song and Yanlin Wang
Agriculture 2025, 15(16), 1727; https://doi.org/10.3390/agriculture15161727 - 11 Aug 2025
Viewed by 320
Abstract
This study aims to explore the influence mechanism of wet fermented soybean dregs on corn stover formation, improve the forming quality of straws and reduce the power demand and specific energy consumption of forming equipment. This study takes 2 mm and 4 mm [...] Read more.
This study aims to explore the influence mechanism of wet fermented soybean dregs on corn stover formation, improve the forming quality of straws and reduce the power demand and specific energy consumption of forming equipment. This study takes 2 mm and 4 mm corn stover sizes as the objects and explores the influence of different amounts of fermented soybean dregs on the volume relaxation ratio, maximum compressive force and specific energy consumption of straw forming pellets under compression displacements of 90 mm and 92 mm. Different amounts of water are selected according to the total moisture content of the mixed feed, and the effects of adding water and fermented wet soybean dregs on feed forming are compared and studied. The results indicate that, under certain conditions, adding water or wet fermented soybean dregs to straw is beneficial for shaping. Adding wet fermented soybean dregs to straw can improve the nutritional value of feed and promote the utilization of agricultural waste. Therefore, adding wet fermented soybean dregs is an effective method for processing high-quality feed pellets. Taking into account the quality and specific energy consumption of mixed feed processing, the optimal pelleting process for corn stover and wet fermented soybean dregs in a mixed feed is as follows: straw particle size of 4 mm, added mass ratio of wet fermented soybean dregs of 5% and compression displacement of 92 mm. These results support the research and development of technology and devices for high-quality and low-energy mixed formation using fermented soybean dregs and straw, and they offer a new route for the utilization of other high-moisture feeds. Full article
Show Figures

Figure 1

31 pages, 5417 KB  
Article
Design and Analysis of an Autonomous Active Ankle–Foot Prosthesis with 2-DoF
by Sayat Akhmejanov, Nursultan Zhetenbayev, Aidos Sultan, Algazy Zhauyt, Yerkebulan Nurgizat, Kassymbek Ozhikenov, Abu-Alim Ayazbay and Arman Uzbekbayev
Sensors 2025, 25(16), 4881; https://doi.org/10.3390/s25164881 - 8 Aug 2025
Viewed by 596
Abstract
This paper presents the development, modeling, and analysis of an autonomous active ankle prosthesis with two degrees of freedom (2-DoF), designed to reproduce movements in the sagittal (dorsiflexion/plantarflexion) and frontal (inversion/eversion) planes in order to enhance the stability and naturalness of the user’s [...] Read more.
This paper presents the development, modeling, and analysis of an autonomous active ankle prosthesis with two degrees of freedom (2-DoF), designed to reproduce movements in the sagittal (dorsiflexion/plantarflexion) and frontal (inversion/eversion) planes in order to enhance the stability and naturalness of the user’s gait. Unlike most commercial prostheses, which typically feature only one active degree of freedom, the proposed device combines a lightweight mechanical design, a screw drive with a stepper motor, and a microcontroller-based control system. The prototype was developed using CAD modeling in SolidWorks 2024, followed by dynamic modeling and finite element analysis (FEA). The simulation results confirmed the achievement of physiological angular ranges of ±20–22 deg. in both planes, with stable kinematic behavior and minimal vertical displacements. According to the FEA data, the maximum von Mises stress (1.49 × 108 N/m2) and deformation values remained within elastic limits under typical loading conditions, though cyclic fatigue and impact energy absorption were not experimentally validated and are planned for future work. The safety factor was estimated at ~3.3, indicating structural robustness. While sensor feedback and motor dynamics were idealized in the simulation, future work will address real-time uncertainties such as sensor noise and ground contact variability. The developed design enables precise, energy-efficient, and adaptive motion control, with an estimated average power consumption in the range of 7–9 W and an operational runtime exceeding 3 h per charge using a standard 18,650 cell pack. These results highlight the system’s potential for real-world locomotion on uneven surfaces. This research contributes to the advancement of affordable and functionally autonomous prostheses for individuals with transtibial amputation. Full article
(This article belongs to the Special Issue Recent Advances in Sensor Technology and Robotics Integration)
Show Figures

Figure 1

23 pages, 331 KB  
Article
Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model
by Bartosz Jóźwik, Siba Prasada Panda, Aruna Kumar Dash, Pritish Kumar Sahu and Robert Szwed
Energies 2025, 18(15), 4167; https://doi.org/10.3390/en18154167 - 6 Aug 2025
Viewed by 420
Abstract
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more [...] Read more.
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more than one-third of global emissions. Using annual data from 1990 to 2021, we implement Long Short-Term Memory (LSTM) neural networks, which outperform traditional linear models in capturing nonlinearities and lagged effects. The dataset is split into training (1990–2013) and testing (2014–2021) intervals to ensure rigorous out-of-sample validation. Results reveal stark national differences. For India, coal, natural gas consumption, and economic growth are the strongest positive drivers of emissions, whereas renewable energy exerts a significant mitigating effect, and nuclear energy is negligible. In China, emissions are dominated by coal and petroleum use and by economic growth, while renewable and nuclear sources show weak, inconsistent impacts. We recommend retrofitting India’s coal- and gas-plants with carbon capture and storage, doubling clean-tech subsidies, and tripling annual solar-plus-storage auctions to displace fossil baseload. For China, priorities include ultra-supercritical upgrades with carbon capture, utilisation, and storage, green-bond-financed solar–wind buildouts, grid-scale storage deployments, and hydrogen-electric freight corridors. These data-driven pathways simultaneously cut flagship emitters, decouple GDP from carbon, provide replicable models for global net-zero research, and advance climate-resilient economic growth worldwide. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
30 pages, 3150 KB  
Review
Making the Connection Between PFASs and Agriculture Using the Example of Minnesota, USA: A Review
by Sven Reetz, Joel Tallaksen, John Larson and Christof Wetter
Agriculture 2025, 15(15), 1676; https://doi.org/10.3390/agriculture15151676 - 2 Aug 2025
Viewed by 663
Abstract
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a [...] Read more.
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a pressing issue since health advisories are continuously being reassessed. This semi-systematic literature review connects the release, environmental fate, and agriculture uptake of PFASs to enhance comprehension and identify knowledge gaps which limit accurate risk assessment. It focuses on the heavily agricultural state of Minnesota, USA, which is representative of the large Midwestern US Corn Belt in terms of agricultural activities, because PFASs have been monitored in Minnesota since the beginning of the 21st century. PFAS contamination is a complex issue due to the over 14,000 individual PFAS compounds which have unique chemical properties that interact differently with air, water, soil, and biological systems. Moreover, the lack of field studies and monitoring of agricultural sites makes accurate risk assessments challenging. Researchers, policymakers, and farmers must work closely together to reduce the risk of PFAS exposure as the understanding of their potential health effects increases and legacy PFASs are displaced with shorter fluorinated replacements. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Graphical abstract

16 pages, 1188 KB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 460
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Graphical abstract

31 pages, 8354 KB  
Article
The Design and Experiment of a Motion Control System for the Whole-Row Reciprocating Seedling Picking Mechanism of an Automatic Transplanter
by Jiawei Shi, Jianping Hu, Wei Liu, Junpeng Lv, Yongwang Jin, Mengjiao Yao and Che Wang
Agriculture 2025, 15(13), 1423; https://doi.org/10.3390/agriculture15131423 - 30 Jun 2025
Viewed by 403
Abstract
Aiming at the problem that the whole row of reciprocating seedling picking mechanism is prone to inertial impacts during operation due to its excessive mass, causing seedling damage and positioning errors, this study builds a motion control system with a PLC controller as [...] Read more.
Aiming at the problem that the whole row of reciprocating seedling picking mechanism is prone to inertial impacts during operation due to its excessive mass, causing seedling damage and positioning errors, this study builds a motion control system with a PLC controller as the core and proposes a composite motion control strategy based on planned S-curve acceleration and deceleration and fuzzy PID to achieve rapid response, precise positioning, and smooth operation of the seedling picking mechanism. By establishing the objective function and constraint conditions and taking into account the dynamic change of the seedling picking displacement, the S-curve acceleration and deceleration control algorithm is planned in six and seven stages to meet the requirements of a smooth transition of the speed and continuous change of the acceleration curve of the seedling picking mechanism during movement. A fuzzy PID positioning control system is designed, the control system transfer function is constructed, and fuzzy rules are formulated to dynamically compensate for the error and its rate of change to meet the requirements of fast response and no overshoot oscillation of the positioning control system. The speed and acceleration of the seedling picking mechanism under the six-segment and seven-segment S-curve acceleration and deceleration motion control conditions were simulated using MATLAB2024a simulation software and compared with the trapezoidal acceleration and deceleration motion control. The planned S-curve acceleration and deceleration control algorithm has a more stable control effect on the seedling picking mechanism when it operates under the conditions of the dynamic change of the displacement, and it meets the design requirements of seedling picking efficiency. The positioning control system was modeled and simulated using the Simulink simulation platform. When KP = 15, KI = 3, and KD = 1, the whole-row seedling picking control system ran stably, responded quickly, and had no overshoot. Compared with the PID control system with fixed parameters, the fuzzy PID control system reduced the time consumption in the rising stage by 24.5% and shortened the overall stabilization process by 17.6%. The zero overshoot characteristic was ensured, and the response speed was faster. When a disturbance signal is added, the overshoot of the fuzzy PID control system is reduced by 2.4%, and the response speed is increased by 6.8% compared with the fixed-parameter PID control system. The dynamic response rate and anti-disturbance performance are better than those of the fixed-parameter PID control system. A bench comparison test was carried out. The results showed that the S-curve acceleration and deceleration motion control algorithm reduced the average mass loss rate of seedlings by 46.19% compared with the trapezoidal acceleration and deceleration motion control algorithm, and the seedling picking efficiency met the design requirements. Fuzzy PID positioning control was used, and the maximum displacement error of the end effector during seedling picking was −1.4 mm, and the average relative error rate was 0.22%, which met the positioning accuracy requirements of the end effector in the X-axis direction and verified the stability and accuracy of the designed control system. The designed control system was tested in the field, and the average comprehensive success rate of seedling picking and throwing reached 96.2%, which verified the feasibility and practicality of the control system. Full article
(This article belongs to the Special Issue Soil-Machine Systems and Its Related Digital Technologies Application)
Show Figures

Figure 1

15 pages, 1063 KB  
Review
Ultraprocessed Food and Risk of Cancer: Mechanistic Pathways and Public Health Implications
by Bruna Menegassi and Manlio Vinciguerra
Cancers 2025, 17(13), 2064; https://doi.org/10.3390/cancers17132064 - 20 Jun 2025
Viewed by 1879
Abstract
Ultraprocessed foods (UPFs), now dominant in global diets, pose health risks that go beyond poor nutrition due to the synergistic effects of compounds in their ultracomplex industrial formulations. This narrative review aims to provide researchers and health professionals in the field of cancer [...] Read more.
Ultraprocessed foods (UPFs), now dominant in global diets, pose health risks that go beyond poor nutrition due to the synergistic effects of compounds in their ultracomplex industrial formulations. This narrative review aims to provide researchers and health professionals in the field of cancer with updated and critical information, as they are often unaware of the complex and evolving evidence linking UPFs to carcinogenesis. The review discusses potential mechanisms through which UPFs may contribute to cancer development, including harmful additives, neo-formed contaminants, and packaging-derived substances, as well as the displacement of protective nutrients found in whole foods. Despite limitations in establishing direct causality, epidemiological studies consistently associate high UPF intake with increased incidence of various cancers, notably colorectal, breast, and pancreatic cancers. These findings reflect a broader paradigm shift in nutritional epidemiology, recognizing that food processing is an essential dimension of diet-related health risks. To mitigate the impact of UPFs, the review emphasizes the need for preventive strategies that integrate clear dietary guidelines, regulatory measures on food labeling and additives, and public education campaigns. Successful international experiences in regulating marketing and improving transparency serve as important references. Moreover, eliminating corporate influence and conflicts of interest is crucial to ensure that public health, rather than industry agendas, guides nutrition policy. As scientific research advances to clarify the mechanisms of action and synergistic effects of harmful compounds in UPFs, coordinated efforts are needed to reduce their consumption and ultimately alleviate the global cancer burden. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

15 pages, 856 KB  
Article
Psychosocial Factors Influencing Resilience in a Sample of Victims of Armed Conflict in Colombia: A Quantitative Study
by Andrés Camargo, Rafael Vargas, Alexander Rincón-Rodríguez, Elena Jiménez and Martha Trujillo-Güiza
Behav. Sci. 2025, 15(6), 816; https://doi.org/10.3390/bs15060816 - 13 Jun 2025
Viewed by 719
Abstract
Background: This study examines the psychosocial factors influencing resilience in Colombian victims of armed conflict, highlighting the role of personal, family, and community resources in mitigating trauma. Resilience is a dynamic process that enables individuals and communities to adapt to adversity. Given Colombia’s [...] Read more.
Background: This study examines the psychosocial factors influencing resilience in Colombian victims of armed conflict, highlighting the role of personal, family, and community resources in mitigating trauma. Resilience is a dynamic process that enables individuals and communities to adapt to adversity. Given Colombia’s prolonged violence and forced displacement, trauma has significantly impacted both physical and emotional health. Methods: 200 adult conflict victims were recruited through snowball sampling and completed validated scales via a secure online platform. The Connor–Davidson Resilience Scale (CD-RISC-10), the APGAR Family Scale, and the Brief Resilience Coping Scale assessed resilience, social support, and psychological well-being. Results: Findings indicate that family support was strongly associated with higher resilience, with participants exhibiting higher family support scores (mean = 15.6, SD = 4.47) demonstrating significantly greater resilience (p < 0.001). Additionally, resilient coping strategies (Exp(B) = 0.772, p < 0.001) and higher subjective happiness (Exp(B) = 0.864, p = 0.001) were identified as key predictors of resilience. Significant correlations were found between resilience and mental health outcomes, with higher resilience linked to lower anxiety (ρ = −0.388, p < 0.001) and depression (ρ = −0.388, p < 0.001). Education, employment, and socioeconomic status also positively influenced resilience, with individuals with higher educational levels (χ2 = 21.265, p = 0.006) and income (χ2 = 8.945, p = 0.030) showing higher resilience scores. In contrast, alcohol consumption (Exp(B) = 0.813, p = 0.014) was negatively associated with resilience. Conclusions: This study shows that resilience in conflict victims is influenced by both individual and social factors. Strengthening family and community support, along with improving coping strategies, is essential for long-term recovery, highlighting the need for targeted interventions to enhance psychosocial well-being in affected populations. Full article
(This article belongs to the Section Health Psychology)
Show Figures

Figure 1

22 pages, 1729 KB  
Review
Revision and Comparative Study with Experimental Validation of Sliding Mode Control Approaches Using Artificial Neural Networks for Positioning Piezoelectric Actuator
by Cristian Napole, Oscar Barambones, Jokin Uralde, Isidro Calvo, Eneko Artetxe and Asier del Rio
Mathematics 2025, 13(12), 1952; https://doi.org/10.3390/math13121952 - 12 Jun 2025
Viewed by 604
Abstract
Piezoelectric actuators are commonly used in high precision, micro-displacement applications. However, nonlinear phenomena, like hysteresis, may reduce their performance. This article compares several control approaches—based on the combination of sliding mode control and artificial neural networks—for coping with these nonlinearities and improving actuator [...] Read more.
Piezoelectric actuators are commonly used in high precision, micro-displacement applications. However, nonlinear phenomena, like hysteresis, may reduce their performance. This article compares several control approaches—based on the combination of sliding mode control and artificial neural networks—for coping with these nonlinearities and improving actuator positioning accuracy and robustness. In particular, it discusses the application of diverse order sliding mode control techniques, such as conventional, twisting algorithms, super-twisting algorithms, and the prescribed convergence law, in combination with artificial neural networks. Moreover, it validates experimentally, with a commercial piezoelectric actuator, the application of these control structures using a dSPACE 1104 controller board. Finally, it evaluates the computational time consumption for the control strategies presented. This work intends to guide the designers of PEA commercial applications to select the best control algorithm and identify the hardware requirements. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Dynamical Systems)
Show Figures

Figure 1

14 pages, 6839 KB  
Article
Analysis of Colorectal Cancer Gene Mutations and Application of Long Blocker Displacement Amplification Technology for High-Throughput Mutation Detection
by Ping Lu, Xinglei Su, Sirui Leong, Xuehao Xiu, Ping Song, Junjie Peng and Yunpei Si
Biosensors 2025, 15(5), 308; https://doi.org/10.3390/bios15050308 - 12 May 2025
Cited by 1 | Viewed by 898
Abstract
Genetic mutation detection for colorectal cancer (CRC) is crucial for precision diagnosis and treatment, yet current methods often suffer from challenges such as low sensitivity, time consumption, and high costs. In our preliminary bioinformatic analysis of 751 CRC cases from The Cancer Genome [...] Read more.
Genetic mutation detection for colorectal cancer (CRC) is crucial for precision diagnosis and treatment, yet current methods often suffer from challenges such as low sensitivity, time consumption, and high costs. In our preliminary bioinformatic analysis of 751 CRC cases from The Cancer Genome Atlas and 131 Chinese patient samples, APC, TP53, and KRAS were identified as the most frequently mutated genes. Among them, KRAS missense mutations emerged as key diagnostic biomarkers. In this study, we applied a fluorescence-based long block displacement amplification (LBDA) sensing method for the rapid, high-throughput, and cost-effective detection of KRAS genetic mutations. In the LBDA system, SYBR Green dye binds to the amplified double-stranded DNA, generating a fluorescence signal that directly reflects the abundance of mutant types (MTs). This real-time signal output enables the enrichment and sensitive detection of MTs, establishing LBDA as an efficient biosensing platform for KRAS genotyping. Using this technique, a detection limit of 0.08% variant allele frequency was achieved with 20 ng of synthetic DNA input. To evaluate clinical performance, the LBDA method was applied to 118 tissue samples from 59 CRC patients, including tumor and matched peritumoral tissues. For 59 CRC tumor samples, LBDA successfully identified KRAS mutations in 37.29% of cases, closely matching results (42.37%) obtained by next-generation sequencing and achieving 88% sensitivity and 100% specificity. In conclusion, this study presents a rapid and cost-effective mutation detection method based on optical biosensing, offering strong potential for advancing personalized CRC diagnosis and treatment. Full article
(This article belongs to the Special Issue DNA Molecular Engineering-Based Biosensors)
Show Figures

Graphical abstract

Back to TopTop