Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,829)

Search Parameters:
Keywords = construction of houses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1145 KiB  
Article
An Integrated Fuzzy Quality Function Deployment Model for Designing Touch Panels
by Amy H. I. Lee, Chien-Jung Lai, He-Yau Kang and Chih-Chang Wang
Mathematics 2025, 13(16), 2636; https://doi.org/10.3390/math13162636 (registering DOI) - 17 Aug 2025
Abstract
Facing the global competitive market and ever-changing customer demands, manufacturers must navigate intense competition and uncertain demand while striving to enhance customer satisfaction. As a result, the demand for customized products has become a crucial design consideration. To respond accurately and swiftly in [...] Read more.
Facing the global competitive market and ever-changing customer demands, manufacturers must navigate intense competition and uncertain demand while striving to enhance customer satisfaction. As a result, the demand for customized products has become a crucial design consideration. To respond accurately and swiftly in a competitive market, manufacturers must focus on customer needs, analyze market trends and competitor information, and leverage data analysis as a reference for new product development and design. This study presents a new product development model by integrating quality function deployment (QFD), decision-making trial and evaluation laboratory (DEMATEL), analytic network process (ANP), and fuzzy set theory. It first uses a 2-tuple fuzzy DEMATEL to identify significant interrelationships among factors. A revised house of quality (HOQ) is then constructed to map relationships among customer requirements (CRs), engineering requirements (ERs), and the influences of CRs on ERs. To address uncertainty in human judgment, fuzzy set theory is incorporated into the ANP. The integrated model can determine the relative importance of the ERs. The proposed model is applied to touch panel development, and the results are recommended to the R&D team for new product development. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

33 pages, 6610 KiB  
Article
Characterization of the Physical, Mechanical, and Thermal Properties of Cement and Compressed Earth Stabilized Blocks, Incorporating Closed-Loop Materials for Use in Hot and Humid Climates
by Catalina Reyna-Ruiz, José Manuel Gómez-Soberón and María Neftalí Rojas-Valencia
Buildings 2025, 15(16), 2891; https://doi.org/10.3390/buildings15162891 - 15 Aug 2025
Abstract
The United States of America could build 20,000 bases for the Statue of Liberty every year using its construction and demolition waste, and 456 bases using waste glass from jars and bottles. However, some sectors of the population still face a shortage of [...] Read more.
The United States of America could build 20,000 bases for the Statue of Liberty every year using its construction and demolition waste, and 456 bases using waste glass from jars and bottles. However, some sectors of the population still face a shortage of affordable housing. The challenges of disposing of such large amounts of waste and solving the housing shortage could be addressed together if these materials, considered part of a closed-loop system, were integrated into new building blocks. This research studies compressed earth blocks that incorporate soils and gravels excavated in situ, river sand, crushed concrete from demolition waste, and recycled glass sand. To stabilize the blocks, cement is used at 5, 10, and 15% (by weight). The properties studied include the following: density, apparent porosity, initial water absorption, simple compression, modulus of elasticity, and thermal conductivity. Optical image analysis proved to be a tool for predicting the values of these properties as the stabilizer changed. To assist in decision making regarding the best overall performance of the total 12 mix designs, a ranking system is proposed. The best blocks, which incorporate the otherwise waste materials, exhibited simple compression values up to 7.3 MPa, initial water absorption of 8 g/(cm2 × min0.5) and thermal conductivity of 0.684 W/m·K. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 1179 KiB  
Review
Prefabricated and Modularized Residential Construction: A Review of Present Status, Opportunities, and Future Challenges
by Sunai Kim
Buildings 2025, 15(16), 2889; https://doi.org/10.3390/buildings15162889 - 15 Aug 2025
Viewed by 64
Abstract
Many countries worldwide are facing a housing crisis, marked by a shortage of affordable housing. To respond to this growing crisis, prefabricated residential construction is gaining popularity due to cost savings in mass production, faster construction times, improved quality control, and sustainability considerations. [...] Read more.
Many countries worldwide are facing a housing crisis, marked by a shortage of affordable housing. To respond to this growing crisis, prefabricated residential construction is gaining popularity due to cost savings in mass production, faster construction times, improved quality control, and sustainability considerations. This study provides a critical review of the available literature within the prefabricated and modular residential construction industry to assess its present status and to identify opportunities and challenges. The literature was categorized into the subfields of architecture, sustainability, structural, energy, environment, factory build, installation, policy, possibilities and challenges, and case studies. A detailed summary is provided for each subfield. This study aims to provide insights into the prefabricated and modular residential construction industry to fill the knowledge gap, discover possibilities, and address any challenges to create a clear pathway for implementation. Full article
Show Figures

Figure 1

34 pages, 4433 KiB  
Article
Estimation of Residential Vacancy Rate in Underdeveloped Areas of China Based on Baidu Street View Residential Exterior Images: A Case Study of Nanning, Guangxi
by Weijia Zeng, Binglin Liu, Yi Hu, Weijiang Liu, Yuhe Fu, Yiyue Zhang and Weiran Zhang
Algorithms 2025, 18(8), 500; https://doi.org/10.3390/a18080500 - 11 Aug 2025
Viewed by 233
Abstract
Housing vacancy rate is a key indicator for evaluating urban sustainable development. Due to rapid urbanization, population outflow and insufficient industrial support, the housing vacancy problem is particularly prominent in China’s underdeveloped regions. However, the lack of official data and the limitations of [...] Read more.
Housing vacancy rate is a key indicator for evaluating urban sustainable development. Due to rapid urbanization, population outflow and insufficient industrial support, the housing vacancy problem is particularly prominent in China’s underdeveloped regions. However, the lack of official data and the limitations of traditional survey methods restrict in-depth research. This study proposes a vacancy rate estimation method based on Baidu Street View residential exterior images and deep learning technology. Taking Nanning, Guangxi as a case study, an automatic discrimination model for residential vacancy status is constructed by identifying visual clues such as window occlusion, balcony debris accumulation, and facade maintenance status. The study first uses Baidu Street View API to collect images of residential communities in Nanning. After manual annotation and field verification, a labeled dataset is constructed. A pre-trained deep learning model (ResNet50) is applied to estimate the vacancy rate of the community after fine-tuning with labeled street view images of Nanning’s residential communities. GIS spatial analysis is combined to reveal the spatial distribution pattern and influencing factors of the vacancy rate. The results show that street view images can effectively capture vacancy characteristics that are difficult to identify with traditional remote sensing and indirect indicators, providing a refined data source and method innovation for housing vacancy research in underdeveloped regions. The study further found that the residential vacancy rate in Nanning showed significant spatial differentiation, and the vacancy driving mechanism in the old urban area and the emerging area was significantly different. This study expands the application boundaries of computer vision in urban research and fills the research gap on vacancy issues in underdeveloped areas. Its results can provide a scientific basis for the government to optimize housing planning, developers to make rational investments, and residents to make housing purchase decisions, thus helping to improve urban sustainable development and governance capabilities. Full article
(This article belongs to the Special Issue Algorithms for Smart Cities (2nd Edition))
Show Figures

Figure 1

50 pages, 10950 KiB  
Article
Applicable and Flexible Post-Disaster Housing Through Parametric Design and 3D Printing: A Novel Model for Prototyping and Deployment
by Ali Mehdizade, Ahmad Walid Ayoobi and Mehmet Inceoğlu
Sustainability 2025, 17(16), 7212; https://doi.org/10.3390/su17167212 - 9 Aug 2025
Viewed by 444
Abstract
Natural disasters are increasing in frequency and intensity, causing escalating humanitarian crises and complex housing challenges globally. Traditional post-disaster housing solutions often fall short, being slow, costly, and ill-adapted to specific community needs. This study addresses these limitations by proposing an innovative, technology-driven [...] Read more.
Natural disasters are increasing in frequency and intensity, causing escalating humanitarian crises and complex housing challenges globally. Traditional post-disaster housing solutions often fall short, being slow, costly, and ill-adapted to specific community needs. This study addresses these limitations by proposing an innovative, technology-driven model for post-disaster housing that integrates parametric design with 3D printing. The objective is to develop a flexible and adaptable system capable of providing both immediate temporary shelter and evolving permanent housing solutions. In this study, the methodology of the proposed model for post-disaster housing solutions is structured around three main phases: the development of the theoretical framework, the parametric design process, and the implementation phase. In the first phase, a comprehensive literature review and conceptual analyses were conducted to examine the concept of disaster, post-disaster housing approaches, and advanced technologies, thereby establishing the conceptual foundation of the model. In the second phase, parametric modeling was carried out for a modular system using algorithmic design tools such as Grasshopper; the model’s applicability across various scales and its flexibility were analyzed. In the final phase, material selection and digital prototyping of the gridal system were undertaken using 3D printing technology to evaluate the model’s feasibility for rapid on-site production, assembly, and disassembly. The model prioritizes user participation, modularity, and configurability to ensure rapid response and socio-cultural sensitivity. Findings indicate that this integrated approach offers substantial benefits, including accelerated construction, reduced labor and material waste, enhanced design flexibility, and the use of local, sustainable materials. This research highlights the transformative potential of advanced manufacturing in providing resilient, user-centered, and environmentally sustainable post-disaster housing, advocating for governmental financial support to overcome adoption barriers and foster broader implementation. Full article
Show Figures

Figure 1

32 pages, 2238 KiB  
Review
Decarbonization Strategies for Northern Quebec: Enhancing Building Efficiency and Integrating Renewable Energy in Off-Grid Indigenous Communities
by Hossein Arasteh, Siba Kalivogui, Abdelatif Merabtine, Wahid Maref, Kun Zhang, Sullivan Durand, Patrick Turcotte, Daniel Rousse, Adrian Ilinca, Didier Haillot and Ricardo Izquierdo
Energies 2025, 18(16), 4234; https://doi.org/10.3390/en18164234 - 8 Aug 2025
Viewed by 321
Abstract
This review explores the pressing need for decarbonization strategies in the off-grid Indigenous communities of Northern Quebec, particularly focusing on Nunavik, where reliance on diesel and fossil fuels for heating and electricity has led to disproportionately excessive greenhouse gas emissions. These emissions underscore [...] Read more.
This review explores the pressing need for decarbonization strategies in the off-grid Indigenous communities of Northern Quebec, particularly focusing on Nunavik, where reliance on diesel and fossil fuels for heating and electricity has led to disproportionately excessive greenhouse gas emissions. These emissions underscore the urgent need for sustainable energy alternatives. This study investigates the potential for improving building energy efficiency through advanced thermal insulation, airtight construction, and the elimination of thermal bridges. These measures have been tested in practice; for instance, a prototype house in Quaqtaq achieved over a 54% reduction in energy consumption compared to the standard model. Beyond efficiency improvements, this review assesses the feasibility of renewable energy sources such as wood pellets, solar photovoltaics, wind power, geothermal energy, and run-of-river hydropower in reducing fossil fuel dependence in these communities. For instance, the Innavik hydroelectric project in Inukjuak reduced diesel use by 80% and is expected to cut 700,000 t of CO2 over 40 years. Solar energy, despite seasonal limitations, can complement other systems, particularly during sunnier months, while wind energy projects such as the Raglan Mine turbines save 4.4 million liters of diesel annually and prevent nearly 12,000 t of CO2 emissions. Geothermal and run-of-river hydropower systems are identified as long-term and effective solutions. This review emphasizes the role of Indigenous knowledge in guiding the energy transition and ensuring that solutions are culturally appropriate for community needs. By identifying both technological and socio-economic barriers, this review offers a foundation for future research and policy development aimed at enabling a sustainable and equitable energy transition in off-grid Northern Quebec communities. Full article
Show Figures

Figure 1

22 pages, 681 KiB  
Article
Unlocking the Nexus: Personal Remittances and Economic Drivers Shaping Housing Prices Across EU Borders
by Maja Nikšić Radić, Siniša Bogdan and Marina Barkiđija Sotošek
World 2025, 6(3), 112; https://doi.org/10.3390/world6030112 - 7 Aug 2025
Viewed by 268
Abstract
This study examines the impact of personal remittances on housing prices in European Union (EU) countries, while also accounting for a broader set of macroeconomic, demographic, and structural variables. Using annual data for 27 EU countries from 2007 to 2022, we employ a [...] Read more.
This study examines the impact of personal remittances on housing prices in European Union (EU) countries, while also accounting for a broader set of macroeconomic, demographic, and structural variables. Using annual data for 27 EU countries from 2007 to 2022, we employ a comprehensive panel econometric approach, including cross-sectional dependence tests, second-generation unit root tests, pooled mean group–autoregressive distributed lag (PMG-ARDL) estimation, and panel causality tests, to capture both short- and long-term dynamics. Our findings confirm that remittances significantly and positively influence long-term housing price levels, underscoring their relevance as a demand-side driver. Other key variables such as net migration, GDP, travel credit to GDP, economic freedom, and real effective exchange rates also contribute to housing price movements, while supply-side indicators, including production in construction and building permits, exert moderating effects. Moreover, real interest rates are shown to have a significant long-term negative effect on property prices. The analysis reveals key causal links from remittances, FDI, and net migration to housing prices, highlighting their structural and predictive roles. Bidirectional causality between economic freedom, housing output, and prices indicates reinforcing feedback effects. These findings position remittances as both a development tool and a key indicator of real estate dynamics. The study highlights complex interactions between international financial flows, demographic pressures, and domestic economic conditions and the need for policymakers to consider remittances and migrant investments in real estate strategies. These findings offer important implications for policymakers seeking to balance housing affordability, investment, and economic resilience in the EU context and key insights into the complexity of economic factors and real estate prices. Importantly, the analysis identifies several causal relationships, notably from remittances, FDI, and net migration toward housing prices, underscoring their predictive and structural importance. Bidirectional causality between economic freedom and house prices, as well as between housing output and pricing, reflects feedback mechanisms that further reinforce market dynamics. These results position remittances not only as a developmental instrument but also as a key signal for real estate market performance in recipient economies. Full article
Show Figures

Figure A1

30 pages, 8483 KiB  
Article
Research on Innovative Design of Two-in-One Portable Electric Scooter Based on Integrated Industrial Design Method
by Yang Zhang, Xiaopu Jiang, Shifan Niu and Yi Zhang
Sustainability 2025, 17(15), 7121; https://doi.org/10.3390/su17157121 - 6 Aug 2025
Viewed by 228
Abstract
With the advancement of low-carbon and sustainable development initiatives, electric scooters, recognized as essential transportation tools and leisure products, have gained significant popularity, particularly among young people. However, the current electric scooter market is plagued by severe product similarity. Once the initial novelty [...] Read more.
With the advancement of low-carbon and sustainable development initiatives, electric scooters, recognized as essential transportation tools and leisure products, have gained significant popularity, particularly among young people. However, the current electric scooter market is plagued by severe product similarity. Once the initial novelty fades for users, the usage frequency declines, resulting in considerable resource wastage. This research collected user needs via surveys and employed the KJ method (affinity diagram) to synthesize fragmented insights into cohesive thematic clusters. Subsequently, a hierarchical needs model for electric scooters was constructed using analytical hierarchy process (AHP) principles, enabling systematic prioritization of user requirements through multi-criteria evaluation. By establishing a house of quality (HoQ), user needs were transformed into technical characteristics of electric scooter products, and the corresponding weights were calculated. After analyzing the positive and negative correlation degrees of the technical characteristic indicators, it was found that there are technical contradictions between functional zoning and compact size, lightweight design and material structure, and smart interaction and usability. Then, based on the theory of inventive problem solving (TRIZ), the contradictions were classified, and corresponding problem-solving principles were identified to achieve a multi-functional innovative design for electric scooters. This research, leveraging a systematic industrial design analysis framework, identified critical pain points among electric scooter users, established hierarchical user needs through priority ranking, and improved product lifecycle sustainability. It offers novel methodologies and perspectives for advancing theoretical research and design practices in the electric scooter domain. Full article
Show Figures

Figure 1

19 pages, 1155 KiB  
Article
Role of Egoistic and Altruistic Values on Green Real Estate Purchase Intention Among Young Consumers: A Pro-Environmental, Self-Identity-Mediated Model
by Princy Roslin, Benny Godwin J. Davidson, Jossy P. George and Peter V. Muttungal
Real Estate 2025, 2(3), 13; https://doi.org/10.3390/realestate2030013 - 5 Aug 2025
Viewed by 269
Abstract
This study explores the role of egoistic and altruistic values on green real estate purchase intention among young consumers in Canada aged between 20 and 40 years. In addition, this study examines the mediating effects of pro-environmental self-identity between social consumption motivation and [...] Read more.
This study explores the role of egoistic and altruistic values on green real estate purchase intention among young consumers in Canada aged between 20 and 40 years. In addition, this study examines the mediating effects of pro-environmental self-identity between social consumption motivation and green real estate purchase intention. A quantitative cross-sectional research design with an explanatory nature is employed. A total of 432 participating consumers in Canada, comprising 44% men and 48% women, with a graduate educational background accounting for 46.7%, and the ages between 24 and 35 contributing 75.2%, were part of the study, and the data collection used a survey method with a purposive sampling, followed by a respondent-driven method. Descriptive and inferential statistics were performed on the scales used for the study variables. A structural equational model and path analysis were conducted to derive the results, and the relationships were positive and significant. The study results infer the factors contributing to green real estate purchase intention, including altruistic value, egoistic value, social consumption motivation, and pro-environmental self-identity, with pro-environmental self-identity mediating the relationship. This study emphasizes the relevance of consumer values in real estate purchasing decisions, urging developers and marketers to prioritize ethical ideas, sustainable practices, and building a feeling of belonging and social connectedness. Offering eco-friendly amenities and green construction methods might attract clients, but creating a secure area for social interaction is critical. To the best of the authors’ knowledge, this research is the first to explore the role of egoistic and altruistic values on purchase intention, mainly in the housing and real estate sector, with the target consumers being young consumers in Canada. Full article
Show Figures

Figure 1

34 pages, 7297 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 - 2 Aug 2025
Viewed by 572
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

16 pages, 2641 KiB  
Article
Seismic Assessment of Informally Designed 2-Floor RC Houses: Lessons from the 2020 Southern Puerto Rico Earthquake Sequence
by Lautaro Peralta and Luis A. Montejo
Eng 2025, 6(8), 176; https://doi.org/10.3390/eng6080176 - 1 Aug 2025
Viewed by 1332
Abstract
The 2020 southern Puerto Rico earthquake sequence highlighted the severe seismic vulnerability of informally constructed two-story reinforced concrete (RC) houses. This study examines the failure mechanisms of these structures and assesses the effectiveness of first-floor RC shear-wall retrofitting. Nonlinear pushover and dynamic time–history [...] Read more.
The 2020 southern Puerto Rico earthquake sequence highlighted the severe seismic vulnerability of informally constructed two-story reinforced concrete (RC) houses. This study examines the failure mechanisms of these structures and assesses the effectiveness of first-floor RC shear-wall retrofitting. Nonlinear pushover and dynamic time–history analyses were performed using fiber-based distributed plasticity models for RC frames and nonlinear macro-elements for second-floor masonry infills, which introduced a significant inter-story stiffness imbalance. A bi-directional seismic input was applied using spectrally matched, near-fault pulse-like ground motions. The findings for the as-built structures showed that stiffness mismatches between stories, along with substantial strength and stiffness differences between orthogonal axes, resulted in concentrated plastic deformations and displacement-driven failures in the first story—consistent with damage observed during the 2020 earthquakes. Retrofitting the first floor with RC shear walls notably improved the performance, doubling the lateral load capacity and enhancing the overall stiffness. However, the retrofitted structures still exhibited a concentration of inelastic action—albeit with lower demands—shifted to the second floor, indicating potential for further optimization. Full article
Show Figures

Figure 1

26 pages, 3012 KiB  
Perspective
The Palisades Fire of Los Angeles: Lessons to Be Learned
by Vytenis Babrauskas
Fire 2025, 8(8), 303; https://doi.org/10.3390/fire8080303 - 31 Jul 2025
Viewed by 482
Abstract
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which [...] Read more.
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which took place close to the 1961 fire location. Disastrous WUI fires are, unfortunately, an anticipatable occurrence in many U.S. cities. A number of issues identified earlier remained the same. Some were largely solved, while other new ones have emerged. The paper examines the Palisades Fire of January, 2025 in this context. In the intervening decades, the population of the city grew substantially. But firefighting resources did not keep pace. Very likely, the single-most-important factor in causing the 2025 disasters is that the Los Angeles Fire Department operational vehicle count shrank to 1/5 of what it was in 1961 (per capita). This is likely why critical delays were experienced in the initial attack on the Palisades Fire, leading to a runaway conflagration. Two other crucial issues were the management of vegetation and the adequacy of water supplies. On both these issues, the Palisades Fire revealed serious problems. A problem which arose after 1961 involves the unintended consequences of environmental legislation. Communities will continue to be devastated by wildfires unless adequate vegetation management is accomplished. Yet, environmental regulations are focused on maintaining the status quo, often making vegetation management difficult or ineffective. House survival during a wildfire is strongly affected by whether good vegetation management practices and good building practices (“ignition-resistant” construction features) have been implemented. The latter have not been mandatory for housing built prior to 2008, and the vast majority of houses in the area predated such building code requirements. California has also suffered from a highly counterproductive stance on insurance regulation. This has resulted in some residents not having property insurance, due to the inhospitable operating conditions for insurance firms in the state. Because of the historical precedent, the details in this paper focus on the Palisades Fire; however, many of the lessons learned apply to managing fires in all WUI areas. Policy recommendations are offered, which could help to reduce the potential for future conflagrations. Full article
Show Figures

Figure 1

30 pages, 924 KiB  
Review
Wood-Based Panels and Volatile Organic Compounds (VOCs): An Overview on Production, Emission Sources and Analysis
by Fátima Daniela Gonçalves, Luísa Hora Carvalho, José António Rodrigues and Rui Miguel Ramos
Molecules 2025, 30(15), 3195; https://doi.org/10.3390/molecules30153195 - 30 Jul 2025
Viewed by 506
Abstract
The emission and presence of volatile organic compounds (VOCs) in the indoor air of houses and factories has been a growing topic of debate in the industry and related research fields. Given the extended times people in modern society spend indoors, monitoring VOCs [...] Read more.
The emission and presence of volatile organic compounds (VOCs) in the indoor air of houses and factories has been a growing topic of debate in the industry and related research fields. Given the extended times people in modern society spend indoors, monitoring VOCs is crucial due to the associated potential health hazards, with formaldehyde being particularly noteworthy. Wood and wood-based panels (WBPs) (the latter constituting a significant segment of the wood-transforming industry, being widely used in furniture, construction, and other applications) are known sources for the emission of VOCs to indoor air. In the case of the WBPs, the emission of VOCs depends on the type and species of wood, together with industrial processing and addition of additives. This review integrates perspectives on the production processes associated with WBPs, together with the evolving global regulations, and thoroughly examines VOC sources associated with WBPs, health risks from exposure, and current analytical methods utilized for VOC detection. It comprises an overview of the WBP industry, providing relevant definitions, descriptions of manufacturing processes and adhesive use, analysis of legal constraints, and explanations of VOC source identification and describing analysis techniques utilized for VOCs in WBPs. Full article
Show Figures

Figure 1

14 pages, 1882 KiB  
Article
Carbon-Negative Construction Material Based on Rice Production Residues
by Jüri Liiv, Catherine Rwamba Githuku, Marclus Mwai, Hugo Mändar, Peeter Ritslaid, Merrit Shanskiy and Ergo Rikmann
Materials 2025, 18(15), 3534; https://doi.org/10.3390/ma18153534 - 28 Jul 2025
Viewed by 398
Abstract
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting [...] Read more.
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting as a strong pozzolanic agent. Wood ash contributes calcium oxide and alkalis to serve as a reactive binder, while rice straw functions as a lightweight organic filler, enhancing thermal insulation and indoor climate comfort. These materials undergo natural pozzolanic reactions with water, eliminating the need for Portland cement—a major global source of anthropogenic CO2 emissions (~900 kg CO2/ton cement). This process is inherently carbon-negative, not only avoiding emissions from cement production but also capturing atmospheric CO2 during lime carbonation in the hardening phase. Field trials in Kenya confirmed the composite’s sufficient structural strength for low-cost housing, with added benefits including termite resistance and suitability for unskilled laborers. In a collaboration between the University of Tartu and Kenyatta University, a semi-automatic mixing and casting system was developed, enabling fast, low-labor construction of full-scale houses. This innovation aligns with Kenya’s Big Four development agenda and supports sustainable rural development, post-disaster reconstruction, and climate mitigation through scalable, eco-friendly building solutions. Full article
Show Figures

Figure 1

33 pages, 3621 KiB  
Systematic Review
Space to Place, Housing to Home: A Systematic Review of Sense of Place in Housing Studies
by Melody Safarkhani
Sustainability 2025, 17(15), 6842; https://doi.org/10.3390/su17156842 - 28 Jul 2025
Viewed by 514
Abstract
This study conducts a systematic qualitative review of empirical research on sense of place within housing contexts, employing the tripartite model of place identity, place attachment, and place dependence. The study employs an expanded model that captures the internal complexity of each indicator [...] Read more.
This study conducts a systematic qualitative review of empirical research on sense of place within housing contexts, employing the tripartite model of place identity, place attachment, and place dependence. The study employs an expanded model that captures the internal complexity of each indicator by integrating its cognitive, affective, and conative components, which represent the dimensions of human–place interaction. This model conceptualizes sense of place as a multidimensional construct, facilitating thematic synthesis and cross-study comparisons. A structured search of Scopus and Web of Science identified 10 studies that met predefined inclusion criteria. Additionally, eight studies with divergent conceptualizations of sense of place were narratively analyzed to explore the diversity of interpretations across disciplinary perspectives in housing research. The review yields three key findings: (1) The expanded tripartite model provides a framework for understanding the relationships between residents and housing. (2) Sense of place is both a criterion and a catalyst for housing sustainability. (3) The development of a sense of place is influenced by the interaction of physical, spatial, environmental, social, cultural, economic, and institutional housing factors. Sense of place provides insight into how housing becomes home, informing context-dependent strategies that enhance place-based connections and contribute to housing sustainability. Full article
Show Figures

Figure 1

Back to TopTop