Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (424)

Search Parameters:
Keywords = construction material supply

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10836 KiB  
Article
Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
by Núbia dos Santos Coimbra, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat and Thiago Gonçalves Fernandes
Materials 2025, 18(15), 3680; https://doi.org/10.3390/ma18153680 - 5 Aug 2025
Abstract
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of [...] Read more.
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of a circular economy strategy. In this context, ELV waste emerges as a valuable source of secondary raw materials, enabling the development of sustainable innovations that capitalize on its physical and mechanical properties. This paper aims to develop and evaluate construction industry composites incorporating waste from ELV carpets, with a focus on maintaining or enhancing performance compared to conventional materials. To achieve this, an experimental program was designed to assess cementitious composites, specifically subfloor mortars, incorporating automotive carpet waste (ACW). The results demonstrate that, beyond the physical and mechanical properties of the developed composites, the dynamic stiffness significantly improved across all tested waste incorporation levels. This finding highlights the potential of these composites as an alternative material for impact noise insulation in flooring systems. From an academic perspective, this research advances knowledge on the application of ACW in cement-based composites for construction. In terms of managerial contributions, two key market opportunities emerge: (1) the commercial exploitation of composites produced with ELV carpet waste and (2) the development of a network of environmental service providers to ensure a stable waste supply chain for innovative and sustainable products. Both strategies contribute to reducing landfill disposal and mitigating the environmental impact of ELV waste, reinforcing the principles of the circular economy. Full article
Show Figures

Figure 1

42 pages, 2167 KiB  
Systematic Review
Towards Sustainable Construction: Systematic Review of Lean and Circular Economy Integration
by Abderrazzak El Hafiane, Abdelali En-nadi and Mohamed Ramadany
Sustainability 2025, 17(15), 6735; https://doi.org/10.3390/su17156735 - 24 Jul 2025
Viewed by 474
Abstract
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer [...] Read more.
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer complementary frameworks for enhancing process performance and reducing environmental impacts. However, their combined implementation remains underdeveloped and fragmented. This study conducts a systematic literature review (SLR) of 18 peer-reviewed articles published between 2010 and 2025, selected using PRISMA 2020 guidelines and sourced from Scopus and Web of Science databases. A mixed-method approach combines bibliometric mapping and qualitative content analysis to investigate how LC and CE are jointly operationalized in construction contexts. The findings reveal that LC improves cost, time, and workflow reliability, while CE enables reuse, modularity, and lifecycle extension. Integration is further supported by digital tools—such as Building Information Modelling (BIM), Design for Manufacture and Assembly (DfMA), and digital twins—which enhance traceability and flow optimization. Nonetheless, persistent barriers—including supply chain fragmentation, lack of standards, and regulatory gaps—continue to constrain widespread adoption. This review identifies six strategic enablers for LC-CE integration: crossdisciplinary competencies, collaborative governance, interoperable digital systems, standardized indicators, incentive-based regulation, and pilot demonstrator projects. By consolidating fragmented evidence, the study provides a structured research agenda and practical insights to guide the transition toward more circular, efficient, and sustainable construction practices. Full article
Show Figures

Figure 1

50 pages, 15545 KiB  
Review
Synergies in Materials and Manufacturing: A Review of Composites and 3D Printing for Triboelectric Energy Harvesting
by T. Pavan Rahul and P. S. Rama Sreekanth
J. Compos. Sci. 2025, 9(8), 386; https://doi.org/10.3390/jcs9080386 - 23 Jul 2025
Viewed by 452
Abstract
Sophisticated energy-harvesting technologies have swiftly progressed, expanding energy supply distribution and leveraging advancements in self-sustaining electronic devices. Despite substantial advancements in friction nanomotors within the last decade, a considerable technical obstacle remains for their flawless incorporation using printed electronics and autonomous devices. Integrating [...] Read more.
Sophisticated energy-harvesting technologies have swiftly progressed, expanding energy supply distribution and leveraging advancements in self-sustaining electronic devices. Despite substantial advancements in friction nanomotors within the last decade, a considerable technical obstacle remains for their flawless incorporation using printed electronics and autonomous devices. Integrating advanced triboelectric nanogenerator (TENG) technology with the rapidly evolving field of composite material 3D printing with has resulted in the advancement of three-dimensionally printed TENGs. Triboelectric nanogenerators are an important part of the next generation of portable energy harvesting and sensing devices that may be used for energy harvesting and artificial intelligence tasks. This paper systematically analyzes the continual development of 3D-printed TENGs and the integration of composite materials. The authors thoroughly review the latest material combinations of composite materials and 3D printing techniques for TENGs. Furthermore, this paper showcases the latest applications, such as using a TENG device to generate energy for electrical devices and harvesting energy from human motions, tactile sensors, and self-sustaining sensing gloves. This paper discusses the obstacles in constructing composite-material-based 3D-printed TENGs and the concerns linked to research and methods for improving electrical output performance. The paper finishes with an assessment of the issues associated with the evolution of 3D-printed TENGs, along with innovations and potential future directions in the dynamic realm of composite-material-based 3D-printed TENGs. Full article
(This article belongs to the Special Issue Advancements in Composite Materials for Energy Storage Applications)
Show Figures

Figure 1

13 pages, 2375 KiB  
Communication
Research on the Effect of Calcium Alginate-Red Mud Microspheres on the Performance of Cement Mortar by Partially Replacing Standard Sand
by Ruizhuo Liu, Zibo Lin, Shencheng Fan, Yao Cheng, Yuanyang Li, Jinsheng Li, Haiying Zou, Yongsi Chen, Liting Zheng and Jing Li
Materials 2025, 18(14), 3326; https://doi.org/10.3390/ma18143326 - 15 Jul 2025
Viewed by 277
Abstract
With the depletion of river sand resources and increasing environmental concerns, the development of alternative materials has become an urgent need in the construction industry. Waste concrete and non-waste concrete materials have been widely studied as alternatives to river sand. Although recycled concrete [...] Read more.
With the depletion of river sand resources and increasing environmental concerns, the development of alternative materials has become an urgent need in the construction industry. Waste concrete and non-waste concrete materials have been widely studied as alternatives to river sand. Although recycled concrete fine aggregates are close to natural sand in terms of mechanical properties, their surface cement adheres and affects the performance of cement, whereas non-recycled concrete fine aggregates perform superiorly in terms of ease of use and compressive properties, but there are challenges of supply stability and standardization. Red mud, as an industrial waste, is a potential alternative material due to its stable supply and high alkaline characteristics. In this paper, a new method is proposed for utilizing the cross-linking reaction between sodium alginate and calcium chloride by the calcium alginate-red mud microsphere preparation technique and the surface modification of red mud to enhance its bonding with cement. The experimental results showed that the mechanical properties of CMC-RM-SiO2-2.5% were improved by 13.9% compared with those of the benchmark cement mortar, and the encapsulation of red mud by calcium alginate significantly reduced the transfer of hazardous elements in red mud. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 3867 KiB  
Article
A Case-Study-Based Comparative Analysis of Using Prefabricated Structures in Industrial Buildings
by Abdelhadi Salih, Cynthia Changxin Wang, Rui Tian and Mohammad Mojtahedi
Buildings 2025, 15(14), 2416; https://doi.org/10.3390/buildings15142416 - 10 Jul 2025
Viewed by 384
Abstract
Construction costs have increased significantly since the COVID-19 pandemic due to supply chain disruption, labour shortages, and construction material price hikes. The market is increasingly demanding innovative construction methods that can save construction costs, reduce construction time, and minimise waste and carbon emission. [...] Read more.
Construction costs have increased significantly since the COVID-19 pandemic due to supply chain disruption, labour shortages, and construction material price hikes. The market is increasingly demanding innovative construction methods that can save construction costs, reduce construction time, and minimise waste and carbon emission. The prefabrication system has been used for years in industrial construction, resulting in better performance in regard to structure stability, the control of wastage, and the optimisation of construction time and cost. In addition, prefabrication has had a positive contribution on resource utilisation in the construction industry. There are various types of prefabricated wall systems. However, the majority of comparative studies have focused on comparing each prefabrication wall system against the conventional construction system, while limited research has been conducted to compare different prefabrication structures. This study examined four prominent prefabricated wall systems, i.e., precast walls, tilt-up walls, prefabricated steel-frame walls, and on-site-cut steel-frame walls, to determine which one is more suitable for the construction of industrial buildings to minimise cost, time delay, and labourer utilisation on construction sites, as well as to enhance structure durability, construction efficiency, and sustainability. One primary case project and five additional projects were included in this study. For the primary case project, data were collected and analysed; for example, a subcontractor cost comparison for supply and installation was conducted, and shop drawings, construction procedures, timelines, and site photos were collected. For the additional five projects, the overall cost data were compared. The main research finding of this study is that factory-made precast walls and tilt-up wall panels require similar construction time. However, on average, tilt-up prefabrication construction can reduce the cost by around 23.55%. It was also found that prefabricated frame walls provide cost and time savings of around 39% and 10.5%, respectively. These findings can provide architects, developers, builders, suppliers, regulators, and other stakeholders with a comprehensive insight into selecting a method of wall construction that can achieve greater efficiency, cost savings, and environmental sustainability in the construction of industrial and commercial buildings. Full article
(This article belongs to the Collection Buildings for the 21st Century)
Show Figures

Figure 1

29 pages, 3253 KiB  
Article
Green Infrastructure: Opinion Mining and Construction Material Reuse Optimization Portal
by Arturas Kaklauskas, Elisabete Teixeira, Yiannis Xenidis, Anastasia Tzioutziou, Lorcan Connolly, Sarunas Skuodis, Kestutis Dauksys, Natalija Lepkova, Laura Tupenaite, Loreta Kaklauskiene, Simona Kildiene, Jurgita Zidoniene, Virginijus Milevicius and Saulius Naimavicius
Buildings 2025, 15(13), 2362; https://doi.org/10.3390/buildings15132362 - 5 Jul 2025
Viewed by 377
Abstract
More and more sustainability data are being generated from green buildings and from urban and civil infrastructures. For decades, various systems have been developed, and their data have been collected and stored. More detailed, real-time, and cost-effective data, however, are still in short [...] Read more.
More and more sustainability data are being generated from green buildings and from urban and civil infrastructures. For decades, various systems have been developed, and their data have been collected and stored. More detailed, real-time, and cost-effective data, however, are still in short supply. To address this gap, one of the main objectives of the present study is to propose the GREEN method for opinion analysis to support the development of green infrastructure. Google Search was used to gather substantial amounts of information reflecting the views of both ordinary individuals and professionals regarding the benefits, drawbacks, challenges, and limitations of green infrastructure. Previously, however, such data have not been employed to improve green infrastructure by means of opinion analytics. The GREEN method was developed for the analysis of green infrastructure (GI) and its context, enabling multiple-criteria, neural network, correlation, and regression analyses across micro-, meso-, and macro-environmental scales. A total of 788 global regression (R2 = 0.997) and neural network (R2 = 0.596) GREEN models were developed and tested. In addition, 34 regression models for 12 (R2 = 0.817) and 20 (R2 = 0.511) cities were created for the world and separate cities (Munich (R2 aver = 0.801) and London (R2 aver = 0.817)). The GREEN method is a new way to analyze stakeholder opinions on sustainable green infrastructure and its context. With the objective of making green infrastructure more efficient and reducing carbon emissions, the Construction Material Reuse Optimization (SOLUTION) Portal was created as part of this research. The portal generates multiple options and proposes optimal alternatives for reused construction products. The results show that the GREEN method and SOLUTION Portal are reliable tools for evidence-based and rational green infrastructure development. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

16 pages, 912 KiB  
Article
Environmental Impact Assessment of Heat Storage System in Rock-Bed Accumulator
by Mateusz Malinowski, Stanisław Bodziacki, Stanisław Famielec, Damian Huptyś, Sławomir Kurpaska, Hubert Latała and Zuzanna Basak
Energies 2025, 18(13), 3360; https://doi.org/10.3390/en18133360 - 26 Jun 2025
Viewed by 240
Abstract
The use of a rock-bed accumulator for a short-term heat storage and air exchange in a building facility is an economical and energy-efficient technological solution to balance and optimize the energy supplied to the facility. Existing scientific studies have not addressed, as yet, [...] Read more.
The use of a rock-bed accumulator for a short-term heat storage and air exchange in a building facility is an economical and energy-efficient technological solution to balance and optimize the energy supplied to the facility. Existing scientific studies have not addressed, as yet, the environmental impacts of using a rock bed for heat storage. The purpose of the research is the environmental life cycle assessment (LCA) of a heat storage system in a rock-bed accumulator supported by a photovoltaic installation. The boundaries of the analyzed system include manufacturing the components of the storage device, land preparation for the construction of the accumulator, the entire construction process, including transportation of materials, and its operation in cooperation with a horticultural facility (foil tunnel) during one growing season, as well as the photovoltaic installation. The functional unit in the analysis is 1 square meter of rock-bed accumulator surface area. SimaPro 8.1 software and Ecoinvent database were used to perform the LCA, applying the ReCiPe model to analyze environmental impact. The analysis showed the largest negative environmental impact occurs during raw materials extraction and component manufacturing (32.38 Pt). The heat stored during one season (April to October) at a greenhouse facility reduces this negative impact by approx. 7%, mainly due to the reduction in the use of fossil fuels to heat the facility. A 3 °C increase in average air temperature results in an average reduction of 0.7% per year in the negative environmental impact of the rock-bed thermal energy storage system. Full article
Show Figures

Figure 1

25 pages, 1467 KiB  
Article
A Dual-Uncertainty Multi-Scenario Multi-Period Facility Location Model for Post-Disaster Humanitarian Logistics
by Le Xu, Liliang Dong, Fangqiong Luo, Weiweo Xiao, Xiaoyang Wang and Yu Liang
Symmetry 2025, 17(7), 999; https://doi.org/10.3390/sym17070999 - 25 Jun 2025
Viewed by 233
Abstract
The frequent occurrence of natural disasters creates a symmetry-breaking scenario between pre-disaster planning and post-disaster rescue operations, such as post-disaster supply–demand mismatches for materials and the risk of potential facility failures. Thus, we propose a dual-uncertainty multi-scenario multi-period facility location allocation model for [...] Read more.
The frequent occurrence of natural disasters creates a symmetry-breaking scenario between pre-disaster planning and post-disaster rescue operations, such as post-disaster supply–demand mismatches for materials and the risk of potential facility failures. Thus, we propose a dual-uncertainty multi-scenario multi-period facility location allocation model for humanitarian rescue. The model employs two polyhedral uncertainty sets to represent facility failure risks and demand uncertainty at disaster points. Moreover, by constructing diverse disaster scenarios, it simulates material distribution schemes across different relief periods, enhancing its realism. Given that the model integrates three subproblems—facility location, supply–demand matching analysis, and emergency material allocation—we design a hybrid algorithm (DCSA-MA) that combines the discrete crow search algorithm (DCSA) and the material allocation (MA) method for its solution. Experimental results demonstrate that the model maintains a relatively high material satisfaction rate even under significant demand fluctuations. The number of facility failures has a direct bearing on emergency rescue effectiveness. The DCSA-MA method achieves a superior material satisfaction rate compared to other algorithms across various disaster scenarios and multiple rescue periods. Furthermore, DCSA-MA outperforms other algorithms in terms of solution quality, convergence, computational time, and stability. These findings indicate that DCSA-MA is an effective and highly stable approach. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

23 pages, 2502 KiB  
Review
Bridging Sustainability and Performance: Conceptualizing Net-Zero Integration in Construction Supply Chain Evaluations
by Isuru Hettiarachchi, James Olabode Bamidele Rotimi, Wajiha Mohsin Shahzad and Ravindu Kahandawa
Sustainability 2025, 17(13), 5814; https://doi.org/10.3390/su17135814 - 24 Jun 2025
Viewed by 547
Abstract
The construction industry is a major contributor to global carbon emissions, highlighting the need to align material supply chains with net-zero targets. Evaluating supply chain performance is essential for reducing emissions, enhancing resource efficiency, and supporting sustainable decision-making. However, there is a lack [...] Read more.
The construction industry is a major contributor to global carbon emissions, highlighting the need to align material supply chains with net-zero targets. Evaluating supply chain performance is essential for reducing emissions, enhancing resource efficiency, and supporting sustainable decision-making. However, there is a lack of comprehensive frameworks that integrate net-zero objectives into construction material supply chain evaluation. This study aims to develop a conceptual framework that embeds net-zero principles into supply chain performance evaluation within the construction sector. A systematic literature review was conducted using PRISMA guidelines, covering 54 peer-reviewed articles published between 2016 and 2025. The review identifies key supply chain decarbonization performance indicators, tools, challenges, enablers, and improvement opportunities. The findings reveal the growing use of life cycle thinking, carbon accounting, and digitalization, shaped by policy, data access, technological readiness, and stakeholder coordination. The resulting framework integrates these factors to guide a structured, net-zero-aligned supply chain. This study contributes a novel and practical framework that addresses a critical gap by bridging digital tools, decarbonization metrics, and policy or organizational considerations. It offers theoretical insights and actionable guidance for researchers, practitioners, and policymakers pursuing climate-aligned construction supply chains. Full article
Show Figures

Figure 1

21 pages, 1113 KiB  
Review
Review of Material Passports and Their Application in Industrialised Construction: Enhancing Material Circularity in Construction
by Abhishek KC, Sepani Senaratne, Srinath Perera and Samudaya Nanayakkara
Sustainability 2025, 17(12), 5661; https://doi.org/10.3390/su17125661 - 19 Jun 2025
Viewed by 545
Abstract
Construction industry largely produces long-life, unique, and inflexible products; and combined with dispersed supply chains, it makes material tracking difficult. Thus, to achieve a circular economy (CE) in construction, there is a need for managing material information at the asset level to support [...] Read more.
Construction industry largely produces long-life, unique, and inflexible products; and combined with dispersed supply chains, it makes material tracking difficult. Thus, to achieve a circular economy (CE) in construction, there is a need for managing material information at the asset level to support reuse and recovery. This study explores the solutions for a CE in construction, and adopts a critical review, and a systematic search and review process. Initially the critical review for CE solutions revealed that maintaining authentic material information via material passports (MPs) and adopting industrialised construction (IC) for resource efficiency and flexibility are the key actions for CE implementation. As initial findings suggested the implementation of MPs in IC as imperative for a CE in construction, it was deemed necessary to develop a framework for MPs’ creation and management in IC. Thus, a further critical review was conducted to explore MPs and IC in detail, and a systematic search and review process extracted the actual information that goes into MPs, which was further categorised under various IC lifecycle processes at different stages of lifecycle, to present the incorporation of MPs into IC. The knowledge of MP processes and information in IC from this review is the vital component for the development of a necessary information management framework for MPs. This study can also be a basis for further research on the application of digital technologies and managerial actions required to realise operational MPs in IC, which is required for material circularity in construction. Full article
Show Figures

Figure 1

26 pages, 1973 KiB  
Article
Circular Economy Innovation in Built Environments: Mapping Policy Thresholds and Resonant Resilience via DEMATEL–TAISM
by Zhuo Su, Junlong Peng, Mengyu Wang, Guyue Gui, Qian Meng, Yuntao Su, Zhenlin Xiao and Sisi Zhang
Buildings 2025, 15(12), 2110; https://doi.org/10.3390/buildings15122110 - 18 Jun 2025
Viewed by 492
Abstract
Under China’s dual-carbon strategy, the construction sector still lacks a systematic quantitative view of what drives its shift to a circular economy. This study couples the Decision-Making Trial and Evaluation Laboratory (DEMATEL) with Total Adversarial Interpretive Structural Modeling (TAISM) to build a weighted, [...] Read more.
Under China’s dual-carbon strategy, the construction sector still lacks a systematic quantitative view of what drives its shift to a circular economy. This study couples the Decision-Making Trial and Evaluation Laboratory (DEMATEL) with Total Adversarial Interpretive Structural Modeling (TAISM) to build a weighted, multi-layer model of the policy–market–organization–technology chain. DEMATEL measures causal strengths, and TAISM arranges the variables into five levels without subjective thresholds, revealing a five-stage activation pathway. Fiscal incentives and regulations start the cascade; market demand amplifies their effect into a “resonant resilience” mechanism that improves cost performance. Robustness tests show 87% hierarchy stability and causal variation within ±0.6%. Sensitivity checks indicate that policy support must supply at least 30% of total network weight, because market capital alone cannot meet circular-construction costs. A three-tier intervention—policy incentives, financial amplification, and digital decomposition via green finance, BIM, and material passports—is therefore recommended. Full article
Show Figures

Figure 1

20 pages, 3609 KiB  
Article
Mesoporous Bi2S3/Bi2O3 Heterostructure-Based Sensors for Sub-ppm NO2 Detection at Room Temperature
by Wei Liu, Jiashuo Chen, Ding Gu, Shupeng Sun, Xinlei Li and Xiaogan Li
Sensors 2025, 25(12), 3612; https://doi.org/10.3390/s25123612 - 9 Jun 2025
Viewed by 484
Abstract
Novel Bi2S3/Bi2O3 hybrid materials with unique mesoporous structures were successfully synthesized via a facile in situ elevated-temperature thermal oxidation method using the Bi2S3 as a precursor in air. The as-prepared Bi2S [...] Read more.
Novel Bi2S3/Bi2O3 hybrid materials with unique mesoporous structures were successfully synthesized via a facile in situ elevated-temperature thermal oxidation method using the Bi2S3 as a precursor in air. The as-prepared Bi2S3/Bi2O3 heterostructure-based sensor exhibits an excellent performance for detecting sub-ppm concentrations of NO2 at room temperature (RT). In the presence of 8 ppm NO2, the sensor registers a response of approximately 7.85, reflecting a 3.5-fold increase compared to the pristine Bi2S3-based sensor. The response time is 71 s, while the recovery time is 238 s, which are reduced by 32.4% and 24.2%, respectively, compared to the pristine Bi2S3-based sensor. The Bi2S3/Bi2O3 heterostructure-based sensor achieves an impressively low detection limit of 0.1 ppm for NO2, and the sensor has been demonstrated to possess superior signal repeatability, gas selectivity, and long-term stability. The optimal preparation conditions of the hybrid materials were explored, and the formation of mesoporous structure was analyzed. The obviously improved gas sensitivity of the Bi2S3/Bi2O3 heterostructure-based sensor can be assigned to the combined influence of electronic sensitization and its distinctive morphological structure. The potential gas-sensitive mechanisms were revealed by employing density functional theory (DFT). It was found that the formation of heterostructures could enhance the adsorption energies and increase the amount of electron transfer between NO2 molecules and the hybrid materials. Furthermore, the electron redistribution driven by orbital hybridization between O and Bi atoms improves the capacity of NO2 molecules to capture additional electrons from the Bi2S3/Bi2O3 heterostructures. The content of this work supplies an innovative design strategy for constructing NO2 sensor with high performance and low energy consumption at RT. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

21 pages, 7405 KiB  
Review
Advances in 3D Bioprinting for Corneal Regeneration
by Juan Hernández, Nicolás Santos and Manuel Ahumada
Gels 2025, 11(6), 422; https://doi.org/10.3390/gels11060422 - 31 May 2025
Viewed by 1149
Abstract
Worldwide, millions of people suffer from visual impairments, ranging from partial to total blindness, with far-reaching consequences on personal, societal, and governmental levels. Corneal-related issues are among the leading causes of blindness, with corneal transplantation (keratoplasty) being the primary treatment. However, the demand [...] Read more.
Worldwide, millions of people suffer from visual impairments, ranging from partial to total blindness, with far-reaching consequences on personal, societal, and governmental levels. Corneal-related issues are among the leading causes of blindness, with corneal transplantation (keratoplasty) being the primary treatment. However, the demand for donor tissues far exceeds supply. The rise of printing technologies marks a revolution in tissue engineering, with 3D bioprinting at the forefront of developing innovative tissue repair and replacement solutions. The cornea emerges as an ideal candidate for this technology due to its distinct layers (epithelium, stroma, and endothelium). From a materials engineering standpoint, these layers resemble a hydrogel structure that facilitates fabrication. This review explores advancements in 3D bioprinting, focusing on the methodologies developed for corneal tissue engineering. It highlights design and construction aspects, including biomechanical and biocompatibility properties essential for creating synthetic implants and corneal scaffolds through bioprinting. Additionally, the review discusses the challenges and opportunities that could further drive innovation in tissue engineering. Full article
(This article belongs to the Special Issue Innovative Biopolymer-Based Hydrogels (2nd Edition))
Show Figures

Graphical abstract

22 pages, 2319 KiB  
Systematic Review
Material Passports in Construction Waste Management: A Systematic Review of Contexts, Stakeholders, Requirements, and Challenges
by Lawrence Martin Mankata, Prince Antwi-Afari, Samuel Frimpong and S. Thomas Ng
Buildings 2025, 15(11), 1825; https://doi.org/10.3390/buildings15111825 - 26 May 2025
Cited by 1 | Viewed by 738
Abstract
The growth in the adoption of circular economy principles in the construction industry has given rise to material passports as a critical implementation tool. Given the existing problems of high resource use and high waste generation in the construction industry, there is a [...] Read more.
The growth in the adoption of circular economy principles in the construction industry has given rise to material passports as a critical implementation tool. Given the existing problems of high resource use and high waste generation in the construction industry, there is a pressing need to adopt novel strategies and tools to mitigate the adverse impacts of the built environment. However, research on the application of material passports in the context of construction waste management remains limited. The aim of this paper is to identify the contextual uses, stakeholders, requirements, and challenges in the application of material passports for managing waste generated from building construction and demolition processes through a systematic review approach. Comprehensive searches in Scopus and the Web of Science databases are used to identify relevant papers and reduce the risk of selection bias. Thirty-five (35) papers are identified and included in the review. The identified key contexts of use included buildings and cities as material banks, waste management and trading, and integrated digital technologies. Asset owners, waste management operators, construction and deconstruction teams, technology providers, and regulatory and sustainability teams are identified as key stakeholders. Data requirements related to material, components, building stock data, lifecycle, environmental impact data, and deconstruction and handling data are critical. Moreover, the key infrastructure requirements include modeling and analytical tools, collaborative information exchange systems, sensory tracking tools, and digital and physical storage hubs. However, challenges with data management, costs, process standardization, technology, stakeholder collaboration, market demand, and supply chain logistics still limit the implementation. Therefore, it is recommended that future research be directed towards certification and standardization protocols, automation, artificial intelligence tools, economic viability, market trading, and innovative end-use products. Full article
(This article belongs to the Special Issue A Circular Economy Paradigm for Construction Waste Management)
Show Figures

Figure 1

25 pages, 6817 KiB  
Article
Theoretical Research on the Shear Mechanical Properties and Size Effect of Recycled Concrete Beams Without Stirrups
by Chunyang Liu, Guangkai Zhou, Hao Wang and Yilin Wang
Buildings 2025, 15(10), 1737; https://doi.org/10.3390/buildings15101737 - 20 May 2025
Viewed by 320
Abstract
As a new type of building material with great potential, recycled concrete is playing a vital role in the context of the current construction industry’s pursuit of sustainable development. At present, the analysis method of recycled concrete structures is mainly based on the [...] Read more.
As a new type of building material with great potential, recycled concrete is playing a vital role in the context of the current construction industry’s pursuit of sustainable development. At present, the analysis method of recycled concrete structures is mainly based on the test results of small-scale specimens, but the reports relevant to the size effect of large components are not enough. Therefore, in this paper, the three-dimensional mesoscale numerical simulation is employed to conduct the static shear failure analysis of recycled concrete beams without web reinforcement. Based on existing experiments and verification of the rationality and accuracy of such numerical simulation, the influence of cross-sectional height, shear-span ratio, and the replacement rate of recycled aggregate on the shear mechanical properties and consequential size effect of recycled concrete beams are investigated. The research results reveal the dimension effect of nominal shear strength (NSS) and indicate that the shear strength of recycled concrete beams without stirrups shows a notable size-dependent effect, and the shear-bearing ability of recycled concrete beams reduces as the shear-span ratio and replacement rate of recycled aggregate rises. For every 20% increase in replacement rate, the shear-bearing capacity decreases by approximately 5%. The NSS shows a significant size effect, and it diminishes as beam height elevates. In addition, building on the material hierarchy of the Bažant size-effect law, a theoretical formula for the dimension effect on the shear strength of recycled concrete beams is proposed, considering the impact of shear-span ratio and replacement rate. The shear strength obtained from the supplied formula is subsequently compared with the standards of various countries, the results from existing calculation methods, and experiments. The accuracy and rationality of the supplied formula are verified. The research conclusion of this paper can provide a reference for engineering design. Full article
Show Figures

Figure 1

Back to TopTop