Synergies in Materials and Manufacturing: A Review of Composites and 3D Printing for Triboelectric Energy Harvesting
Abstract
1. Introduction
2. Fundamentals of Triboelectric Nanogenerators (TENGs)
2.1. TENGs’ Functioning Modes
2.1.1. Contact–Separation Mode TENG
2.1.2. Lateral-Sliding Mode TENG
2.1.3. Single-Electrode (SE) Mode TENG
2.1.4. Freestanding Triboelectric Layer TENG
3. Triboelectric Materials
3.1. Material Choice for Triboelectric Nanogenerators
3.2. Composite Materials in TENGs
3.3. Role of Composite Materials in Enhancing TENG Performance
Sl. No | Composite Materials | Key Features | TENG Performance Metrics | Reference |
---|---|---|---|---|
1 | PDMS/BTO/GQD nanocomposite | High permittivity, conductive media | VOC: ~310 V; power density: ~1.6 W/m2 | [84] |
2 | P(VDF-HFP)/NiFe2O4 nanofiber composite | High β-phase content, ferrimagnetic properties | VOC: 584 V; current: 25 μA | [85] |
3 | ZIF-72/PDMS nanocomposite | Enhanced dielectric constant, surface adhesion | VOC: 578 V; power density: ~5 W/m2 | [86] |
4 | PVDF-GnP fibrous composite | High mechanical stability, flexibility | VOC: 134.4 V; current: 12.9 μA | [87] |
5 | EC/TPU/BTO nanofiber composite | High roughness, piezoelectric enhancement | VOC: 125.8 V; power density: 1.68 W/m2 | [56] |
4. Three-Dimensional Printing for Triboelectric Nanogenerators (TENGs)
4.1. Advantages of 3D Printing in TENG Fabrication
4.2. Three-Dimensional Printing Techniques for TENGS
5. Applications of 3D-Printed Pure- and Composite-Material-Based TENGs
5.1. Three-Dimensional Printed TENGs for Energy Harvesting
5.2. Three-Dimensional Printed TENGs for Sensing
Sl. No | Fabrication Method | Power Output | Teng Dimensions | Material | Application | Reference |
---|---|---|---|---|---|---|
1 | Stereolithography (SLA) and fused deposition modelling (FDM) | - | Diameter—1.5 mm; height—0.2 mm | ABS and aluminum foil | Ultrasonic sensing | [115] |
2 | Liquid additive manufacturing | Voc—405 V; Isc—38 µA | (40 mm × 25 mm × 1 mm) | PDMS and barium titanate | Tactile sensor for onboard wear detection system | [118] |
3 | Fused deposition modelling (FDM) | Output power density—56 mW/m2 | 4 cm × 4 cm | Silver nitrate (AgNO3) and poly vinylpyrrolidone (PVP) | Energy harvesting and self-sustaining angle sensors for human–robot cooperation in the detection and operation of the robot | [29] |
4 | Fused deposition modeling (FDM) | Power output 4.33 mW | - | Poly lactic acid (PLA) and FEP | Intelligent speech recognition | [33] |
5 | Direct ink writing (DIW) | Voltage—10 V | 3.2 cm × 3.2 cm (length × width) | Cellulose nanofiber (CNF) aerogel, PET, and PDMS | Multifunctional electronic applications and sensitive humidity sensors | [119] |
5.3. Advancements in Composite-Based 3D-Printed TENG
5.3.1. Direct Energy Harvesting
5.3.2. Hybrid Energy-Harvesting Devices
5.3.3. Stretchable and Flexible TENG
5.3.4. Self-Powered Sensors and Devices
5.3.5. Wearable Energy Harvesting and Health Monitoring
Sl. No | Technique | Key Features | Performance Metrics | Reference |
---|---|---|---|---|
1 | Laser surface patterning | Increase in surface area and charge accumulation | Maximal VOC: 98.87 V; JSC: 0.10 µA/cm2 | [124] |
2 | Light-cured 3D printing | Couples surface structures for enhanced body friction | Improved output performance and pressure sensitivity | [125] |
3 | Bi2WO6-PDMS composite | Enhances dielectric properties and electrical output | Voltage: 200 V; current: 4 μA; charge: 5 nC | [126] |
4 | FRGO-PI composite | Amino-functionalized graphene oxide for improved tribological performance | Voltage: 58 V; current: 12 μA; charge: 33 nC | [127] |
5 | PEGDA surface treatment | Passivates surface defects in perovskite-based TENGs | VOC: 276.86 V; JSC: 68.61 mA/m2; charge: 56.08 nC | [128] |
6 | Plasma treatment | Enhances charge transfer efficiency | Performance improvement of up to 80% | [129] |
7 | 3D-printed PA6,6 | Flexible triboelectric materials for wearable electronics | VOC: 63 V; current: 0.8 μA | [130] |
8 | 3D-printed TENG arrays | Minimizes crosstalk for tactile sensing | Sensitivity: 0.11 V/kPa; pressure range: 10–65 kPa | [116] |
6. Challenges and Future Perspectives
6.1. Challenges in Materials Development and Processing
6.2. Performance Enhancement Strategies for 3D-Printed Composite TENG
6.2.1. Electrical Performance Analysis
6.2.2. Challenges Associated with Application Selection
6.2.3. Long-Term Stability of Composites
6.3. Future Research Direction
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wajahat, M.; Kouzani, A.Z.; Khoo, S.Y.; Mahmud, M.A.P. A review on extrusion-based 3D-printed nanogenerators for energy harvesting. J. Mater. Sci. 2022, 57, 140–169. [Google Scholar] [CrossRef]
- Jose, D.; Jelmy, E.J.; Subin, P.S.; Joseph, R.; John, H. Triboelectric nanogenerator based on polyaniline nanorods incorporated PDMScomposites through a facile synthetic route. J. Mater. Sci. Mater. Electron. 2022, 33, 15408–15421. [Google Scholar] [CrossRef]
- Ma, M.; Kang, Z.; Liao, Q.; Zhang, Q.; Gao, F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969. [Google Scholar] [CrossRef]
- Wu, C.; Wang, A.C.; Ding, W.; Guo, H.; Wang, Z.L. Triboelectric Nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2018, 9, 1802906. [Google Scholar] [CrossRef]
- Behera, S.A.; Kim, H.; Jang, I.R.; Hajra, S.; Panda, S.; Vittayakorn, N.; Kim, H.J.; Achary, P.G.R. Triboelectric nanogenerator for self-powered traffic monitoring. Mater. Sci. Eng. B 2024, 303, 117277. [Google Scholar] [CrossRef]
- Gaztelumendi, I.; Chapartegui, M.; Seddon, R.; Flórez, S.; Pons, F.; Cinquin, J. Enhancement of electrical conductivity of composite structures by integration of carbon nanotubes via bulk resin and/or buckypaper films. Compos. B Eng. 2017, 122, 31–40. [Google Scholar] [CrossRef]
- Khan, S.A.; Zhang, H.L.; Xie, Y.; Gao, M.; Shah, M.A.; Qadir, A.; Lin, Y. Flexible triboelectric nanogenerator based on carbon nanotubes for Self-Powered weighing. Adv. Eng. Mater. 2016, 19, 1600710. [Google Scholar] [CrossRef]
- Babu, A.; Ranpariya, S.; Sinha, D.K.; Mandal, D. Deep Learning enabled Perceptive Wearable Sensor: An interactive gadget for tracking movement disorder. Adv. Mater. Technol. 2023, 8, 2300046. [Google Scholar] [CrossRef]
- Li, W.; Sun, J.; Chen, M. Triboelectric nanogenerator using nano-Ag ink as electrode material. Nano Energy 2013, 3, 95–101. [Google Scholar] [CrossRef]
- Babu, A.; Aazem, I.; Walden, R.; Bairagi, S.; Mulvihill, D.M.; Pillai, S.C. Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chem. Eng. J. 2022, 452, 139060. [Google Scholar] [CrossRef]
- Kong, X.; Liu, Y.; Liu, Y.; Zheng, Y.; Wang, D.; Wang, B.; Xu, C.; Wang, D. New Coating TENG with Antiwear and Healing Functions for Energy Harvesting. ACS Appl. Mater. Interfaces 2020, 12, 9387–9394. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.J.; Yeon, J.S.; Jung, Y.; Park, H.S.; Choi, D. Extremely foldable and highly porous reduced graphene oxide films for Shape-Adaptive triboelectric nanogenerators. Small 2020, 17, 1903089. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Deng, Z.; Ouyang, R.; Zheng, R.; Jiang, Z.; Bai, H.; Xue, H. 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy 2021, 84, 105866. [Google Scholar] [CrossRef]
- Mahmud, M.A.P.; Zolfagharian, A.; Gharaie, S.; Kaynak, A.; Farjana, S.H.; Ellis, A.V.; Chen, J.; Kouzani, A.Z. 3D-Printed Triboelectric Nanogenerators: State of the art, applications, and challenges. Adv. Energy Sustain. Res. 2021, 2, 2000045. [Google Scholar] [CrossRef]
- Christiyan, K.J.; Chandrasekhar, U.; Venkateswarlu, K. A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite. IOP Conf. Ser. Mater. Sci. Eng. 2016, 114, 012109. [Google Scholar] [CrossRef]
- Jing, J.; Xiong, Y.; Shi, S.; Pei, H.; Chen, Y.; Lambin, P. Facile fabrication of lightweight porous FDM-Printed polyethylene/graphene nanocomposites with enhanced interfacial strength for electromagnetic interference shielding. Compos. Sci. Technol. 2021, 207, 108732. [Google Scholar] [CrossRef]
- Qiao, H.; Zhang, Y.; Huang, Z.; Wang, Y.; Li, D.; Zhou, H. 3D printing individualized triboelectric nanogenerator with macro-pattern. Nano Energy 2018, 50, 126–132. [Google Scholar] [CrossRef]
- Chen, B.; Tang, W.; Jiang, T.; Zhu, L.; Chen, X.; He, C.; Xu, L.; Guo, H.; Lin, P.; Li, D.; et al. Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy 2017, 45, 380–389. [Google Scholar] [CrossRef]
- Tong, Y.; Feng, Z.; Kim, J.; Robertson, J.L.; Jia, X.; Johnson, B.N. 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 2020, 75, 104973. [Google Scholar] [CrossRef]
- Mallineni, S.S.K.; Dong, Y.; Behlow, H.; Rao, A.M.; Podila, R. A wireless triboelectric nanogenerator. Adv. Energy Mater. 2017, 8, 1702736. [Google Scholar] [CrossRef]
- Zhang, R.; Hummelgård, M.; Örtegren, J.; Andersson, H.; Olsen, M.; Chen, D.; Li, J.; Eivazi, A.; Dahlström, C.; Norgren, M.; et al. Triboelectric nanogenerators with ultrahigh current density enhanced by hydrogen bonding between nylon and graphene oxide. Nano Energy 2023, 115, 108737. [Google Scholar] [CrossRef]
- Jiang, M.; Li, B.; Jia, W.; Zhu, Z. Predicting output performance of triboelectric nanogenerators using deep learning model. Nano Energy 2021, 93, 106830. [Google Scholar] [CrossRef]
- Niu, S.; Wang, Z.L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2014, 14, 161–192. [Google Scholar] [CrossRef]
- Zhou, X.; Lee, P.S. Three dimensional printed nanogenerators. EcoMat 2021, 3, e12098. [Google Scholar] [CrossRef]
- Mohapatra, A.; Divakaran, N.; Alex, Y.; Ajay Kumar, P.V.; Mohanty, S. The significant role of CNT-ZnO core-shell nanostructures in the development of FDM-based 3D-printed triboelectric nanogenerators. Mater. Today Nano 2023, 22, 100313. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric Nanogenerator (TENG)—Sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137. [Google Scholar] [CrossRef]
- Wang, S.; Lin, L.; Wang, Z.L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2014, 11, 436–462. [Google Scholar] [CrossRef]
- Huang, L.; Han, J.; Chen, S.; Sun, Z.; Dai, X.; Ge, P.; Zhao, C.; Zheng, Q.; Sun, F.; Hao, J. 4D-printed self-recovered triboelectric nanogenerator for energy harvesting and self-powered sensor. Nano Energy 2021, 84, 105873. [Google Scholar] [CrossRef]
- Tao, K.; Chen, Z.; Yi, H.; Zhang, R.; Shen, Q.; Wu, J.; Tang, L.; Fan, K.; Fu, Y.; Miao, J.; et al. Hierarchical Honeycomb-Structured Electret/Triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-Micro Lett. 2021, 13, 123. [Google Scholar] [CrossRef]
- Kawa, B.; Śliwa, K.; Lee, V.; Shi, Q.; Walczak, R. InkJet 3D Printed MEMS Vibrational Electromagnetic Energy Harvester. Energies 2020, 13, 2800. [Google Scholar] [CrossRef]
- Wang, Y.; Tohl, D.; Pham, A.T.T.; Tang, Y. Developing an affordable miniature 3D-Printed wave generator for wave energy harvesting application. Micromachines 2024, 15, 1500. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Li, C.; Liu, H.; Xu, Q.; Xie, Y. A 3D-printed acoustic triboelectric nanogenerator for quarter-wavelength acoustic energy harvesting and self-powered edge sensing. Nano Energy 2021, 85, 105962. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Y.; Zhang, J.; Chen, B.; Wang, Z.L. 3D-printed bearing structural triboelectric nanogenerator for intelligent vehicle monitoring. Cell Rep. Phys. Sci. 2021, 2, 100666. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, F.; Jia, C.; Huang, C.; Wang, K.; Li, Y.; Chou, L.; Mao, Y. A 3D printing triboelectric sensor for GAIT analysis and virtual control based on Human–Computer interaction and the Internet of things. Sustainability 2022, 14, 10875. [Google Scholar] [CrossRef]
- Li, H.; Fang, X.; Li, R.; Liu, B.; Tang, H.; Ding, X.; Xie, Y.; Zhou, R.; Zhou, G.; Tang, Y. All-printed soft triboelectric nanogenerator for energy harvesting and tactile sensing. Nano Energy 2020, 78, 105288. [Google Scholar] [CrossRef]
- Kim, W.; Kim, D.; Tcho, I.; Kim, J.; Kim, M.; Choi, Y. Triboelectric Nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef]
- Hasan, S.; Kouzani, A.Z.; Adams, S.; Long, J.; Mahmud, M.A.P. Comparative study on the contact-separation mode triboelectric nanogenerator. J. Electrost. 2022, 116, 103685. [Google Scholar] [CrossRef]
- Yang, U.J.; Lee, J.W.; Lee, J.P.; Baik, J.M. Remarkable output power enhancement of sliding-mode triboelectric nanogenerator through direct metal-to-metal contact with the ground. Nano Energy 2018, 57, 293–299. [Google Scholar] [CrossRef]
- Akram, W.; Chen, Q.; Xia, G.; Fang, J. A review of single electrode triboelectric nanogenerators. Nano Energy 2022, 106, 108043. [Google Scholar] [CrossRef]
- Ganesh, R.S.; Yoon, H.; Kim, S. Recent trends of biocompatible triboelectric nanogenerators toward self-powered e-skin. EcoMat 2020, 2, e12065. [Google Scholar] [CrossRef]
- Khandelwal, G.; Raj, N.P.M.J.; Kim, S. Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators. Adv. Energy Mater. 2021, 11, 2101170. [Google Scholar] [CrossRef]
- Cao, C.; Li, Z.; Shen, F.; Zhang, Q.; Gong, Y.; Guo, H.; Peng, Y.; Wang, Z.L. Progress in techniques for improving the output performance of triboelectric nanogenerators. Energy Environ. Sci. 2023, 17, 885–924. [Google Scholar] [CrossRef]
- Zhang, R.; Olin, H. Material choices for triboelectric nanogenerators: A critical review. EcoMat 2020, 2, e12062. [Google Scholar] [CrossRef]
- Shanbedi, M.; Ardebili, H.; Karim, A. Polymer-based triboelectric nanogenerators: Materials, characterization, and applications. Prog. Polym. Sci. 2023, 144, 101723. [Google Scholar] [CrossRef]
- Zi, Y.; Niu, S.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z.L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376. [Google Scholar] [CrossRef]
- Henniker, J. Triboelectricity in polymers. Nature 1962, 196, 474. [Google Scholar] [CrossRef]
- Seol, M.; Kim, S.; Cho, Y.; Byun, K.; Kim, H.; Kim, J.; Kim, S.K.; Kim, S.; Shin, H.; Park, S. Triboelectric series of 2D layered materials. Adv. Mater. 2018, 30, 1801210. [Google Scholar] [CrossRef]
- Zou, H.; Guo, L.; Xue, H.; Zhang, Y.; Shen, X.; Liu, X.; Wang, P.; He, X.; Dai, G.; Jiang, P.; et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 2020, 11, 2093. [Google Scholar] [CrossRef]
- Mathew, A.A.; Vivekanandan, S.; Chandrasekhar, A. Polymer-based composite materials for triboelectric energy harvesting. In Engineered Polymer Nanocomposites for Energy Harvesting Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 181–202. [Google Scholar] [CrossRef]
- Guo, X.; Chen, M.; Zheng, Y.; Cui, H.; Li, X. Triboelectric nanogenerators: Theoretical calculations, materials, and applications in net-zero emissions. J. Phys. D Appl. Phys. 2023, 56, 504001. [Google Scholar] [CrossRef]
- Hatta, F.F.; Shazni, M.A.; Mohamed, M.A. Enhanced performance Triboelectric nanogenerator based on polydimethylsiloxane (PDMS)/barium titanite (BTO)/Graphene Quantum Dot (GQD) nanocomposites for energy harvesting. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, Y.; Lee, Y.; Chen, H.; Chen, C. TENG-driven single-droplet green electrochemical etching and deposition for chemical sensing applications. Appl. Surf. Sci. Adv. 2024, 23, 100634. [Google Scholar] [CrossRef]
- Islam, M.H.; Afroj, S.; Uddin, M.A.; Andreeva, D.V.; Novoselov, K.S.; Karim, N. Graphene and CNT-Based Smart Fiber-Reinforced Composites: A review. Adv. Funct. Mater. 2022, 32, 2205723. [Google Scholar] [CrossRef]
- Han, J.; Wang, Y.; Ma, Y.; Wang, C. Enhanced energy harvesting performance of triboelectric nanogenerators via dielectric property regulation. ACS Appl. Mater. Interfaces 2023, 15, 31795–31802. [Google Scholar] [CrossRef]
- Mondal, A.; Faraz, M.; Dahiya, M.; Khare, N. Double-Layer electronegative Structure-Based triboelectric nanogenerator for enhanced performance using combined effect of enhanced charge generation and improved charge trapping. ACS Appl. Mater. Interfaces 2024, 16, 50659–50670. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Lv, M.; Qin, Y.; Wang, B.; Kang, W.; Li, Y.; Yang, G. Triboelectric Nanogenerators Based on Membranes Comprised of Polyurethane Fibers Loaded with Ethyl Cellulose and Barium Titanate Nanoparticles. ACS Appl. Nano Mater. 2023, 6, 5675–5684. [Google Scholar] [CrossRef]
- Petchnui, K.; Uwanno, T.; Reilly, M.P.; Pinming, C.; Treetong, A.; Yordsri, V.; Moolsradoo, N.; Klamcheun, A.; Wongwiriyapan, W. Preparation of Chitin nanofibers and natural rubber composites and their triboelectric nanogenerator applications. Materials 2024, 17, 738. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, B.; Huang, J.; Tan, D. Natural Silkworm Cocoon-Based hierarchically architected composite triboelectric nanogenerators for biomechanical energy harvesting. ACS Appl. Mater. Interfaces 2023, 15, 9182–9192. [Google Scholar] [CrossRef]
- Peng, J.; Wang, B.; Cheng, H.; Yang, R.; Yin, Y.; Xu, S.; Wang, C. Highly sensitive and superhydrophobic fabric sensor based on AgNPs/Polypyrrole composite conductive networks for body movement monitoring. Compos. Sci. Technol. 2022, 227, 109561. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, Y.; Wu, H.; Gao, T.; Zhang, Y.; Wu, J.; Yan, J.; Shi, J.; Morikawa, H.; Zhu, C. Solvent-Resistant wearable triboelectric nanogenerator for Energy-Harvesting and Self-Powered sensors. Energy Environ. Mater. 2024, 7, e12700. [Google Scholar] [CrossRef]
- Bugti, S.; Kasi, A.K.; Ullah, S.; Kasi, J.K. Self-powered TENG probe for scanning surface charge distribution. Nanotechnology 2023, 35, 065707. [Google Scholar] [CrossRef]
- Ali, S.; Palaniappan, V.; Maddipatla, D.; Panahi, M.; Bazuin, B.J.; Atashbar, M.Z. Triboelectric nanogenerators (TENGs) based on various flexible polymeric materials along with Printed and Non-PRinted Electrodes. IEEE J. Flex. Electron. 2022, 2, 92–100. [Google Scholar] [CrossRef]
- Vaid, R.; Sambyal, A.S. Triboelectric Nanogenerators (TENG) for Future Energy Harvesting Devices. In Proceedings of the 2024 IEEE Latin American Electron Devices Conference (LAEDC), Guatemala City, Guatemala, 8–10 May 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Kim, Y.W.; Akin, S.; Yun, H.; Xu, S.; Wu, W.; Jun, M.B. Enhanced performance of triboelectric nanogenerators and sensors via cold spray particle deposition. ACS Appl. Mater. Interfaces 2022, 14, 46410–46420. [Google Scholar] [CrossRef]
- Das, P.S.; Park, J.Y.; Kim, D.H. Vacuum filtered conductive nylon membrane-based flexible TENG for wearable electronics. Micro Nano Lett. 2017, 12, 697–700. [Google Scholar] [CrossRef]
- Anand, D.; Sambyal, A.S.; Vaid, R.; Khosla, A. Fabrication of a low cost triboelectric nanogenerator (TENG) for wearable devices. Meet. Abstr. 2022, MA2022-01, 2376. [Google Scholar] [CrossRef]
- Bochu, L.; Potu, S.; Navaneeth, M.; Khanapuram, U.K.; Rajaboina, R.K.; Kodali, P. Innovative Integration of Triboelectric Nanogenerators into Signature Stamps for Energy Harvesting, Self-Powered Electronic Devices, and Smart Applications. Eng 2024, 5, 958–966. [Google Scholar] [CrossRef]
- Paria, S.; Si, S.K.; Karan, S.K.; Das, A.K.; Maitra, A.; Bera, R.; Halder, L.; Bera, A.; De, A.; Khatua, B.B. A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification. J. Mater. Chem. A 2019, 7, 3979–3991. [Google Scholar] [CrossRef]
- Pan, J.; Jin, A. Improvement of output performance of the TENG based on PVDF by doping Tourmaline. ACS Sustain. Chem. Eng. 2024, 12, 2092–2099. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, B.; Gao, Y.; Li, M. Conductive Composite Fiber with Customizable Functionalities for Energy Harvesting and Electronic Textiles. ACS Appl. Mater. Interfaces 2021, 13, 49927–49935. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, C.; Lan, D.; Zhang, Y.; Lin, Y.; Wan, L.; Wei, W.; Liang, Y.; Guo, D.; Liu, Y.; et al. Enhancing the output performance of a triboelectric nanogenerator based on modified polyimide and Sandwich-Structured nanocomposite film. Nanomaterials 2023, 13, 1056. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X.; Wang, N. B4C/PVDF-Based Triboelectric Nanogenerator: Achieving high Wear-Resistance and thermal conductivity. Tribol. Int. 2024, 197, 109828. [Google Scholar] [CrossRef]
- Cao, V.A.; Kim, M.; Lee, S.; Van, P.C.; Jeong, J.; Park, P.; Nah, J. Chemically modified MXene nanoflakes for enhancing the output performance of triboelectric nanogenerators. Nano Energy 2022, 107, 108128. [Google Scholar] [CrossRef]
- Johnson, A.D.; Rastegardoost, M.M.; Barri, N.; Filleter, T.; Saadatnia, Z.; Naguib, H.E. High performance flexible green triboelectric nanogenerator with polyethylene oxide/mica tribo-positive composite material. Appl. Mater. Today 2024, 39, 102321. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, H. Fabrication of composite material based nanogenerator for electricity generation enhancement of food waste by-product. Mater. Chem. Phys. 2020, 256, 123331. [Google Scholar] [CrossRef]
- Luo, Y.; Cao, X.; Wang, Z.L. Self-powered smart agriculture sensing using triboelectric nanogenerators based on living plant leaves. Nano Energy 2022, 107, 108097. [Google Scholar] [CrossRef]
- Pandey, P.; Jung, D.; Choi, G.; Seo, M.; Lee, S.; Kim, J.M.; Park, I.; Sohn, J.I. Nafion-mediated barium titanate-polymer composite nanofibers-based triboelectric nanogenerator for self-powered smart street and home control system. Nano Energy 2022, 107, 108134. [Google Scholar] [CrossRef]
- Choi, J.H.; Ra, Y.; Cho, S.; La, M.; Park, S.J.; Choi, D. Electrical charge storage effect in carbon based polymer composite for long-term performance enhancement of the triboelectric nanogenerator. Compos. Sci. Technol. 2021, 207, 108680. [Google Scholar] [CrossRef]
- Mai, V.; Lee, T.; Yang, R. Enhanced-performance droplet-triboelectric nanogenerators with composite polymer films and electrowetting-assisted charge injection. Energy 2022, 260, 125173. [Google Scholar] [CrossRef]
- Lazar, K.A.; Vijoy, K.; Joseph, T.; John, H.; Saji, K. Vertically integrated triboelectric nanogenerators using PDMS/LSCO composite. Mater. Sci. Eng. B 2023, 292, 116388. [Google Scholar] [CrossRef]
- Zhao, K.; Sun, W.; Zhang, X.; Meng, J.; Zhong, M.; Qiang, L.; Liu, M.; Gu, B.; Chung, C.; Liu, M.; et al. High-performance and long-cycle life of triboelectric nanogenerator using PVC/MoS2 composite membranes for wind energy scavenging application. Nano Energy 2021, 91, 106649. [Google Scholar] [CrossRef]
- Wu, S.; Li, G.; Liu, W.; Yu, D.; Li, G.; Liu, X.; Song, Z.; Wang, H.; Liu, H. Fabrication of polyethyleneimine-paper composites with improved tribopositivity for triboelectric nanogenerators. Nano Energy 2021, 93, 106859. [Google Scholar] [CrossRef]
- Kang, M.; Khusrin, M.S.B.M.; Kim, Y.; Kim, B.; Park, B.J.; Hyun, I.; Imani, I.M.; Choi, B.; Kim, S. Nature-derived highly tribopositive ϰ-carrageenan-agar composite-based fully biodegradable triboelectric nanogenerators. Nano Energy 2022, 100, 107480. [Google Scholar] [CrossRef]
- Hatta, F.F.; Haniff, M.A.S.M.; Mohamed, M.A. Enhanced-Performance Triboelectric nanogenerator based on Polydimethylsiloxane/Barium Titanate/Graphene Quantum Dot nanocomposites for energy harvesting. ACS Omega 2024, 9, 5608–5615. [Google Scholar] [CrossRef] [PubMed]
- Pabba, D.P.; Rao, B.B.; Thiam, A.; Thirumurugan, A.; Meruane, V.; Aepuru, R.; Hemalatha, J. Magnetic field assisted high performance triboelectric nanogenerators based on P(VDF–HFP)/NiFe2O4 nanofiber composite. Ceram. Int. 2023, 50, 4178–4189. [Google Scholar] [CrossRef]
- Ye, J.; Tan, J. High-performance triboelectric nanogenerators incorporating chlorinated zeolitic imidazolate frameworks with topologically tunable dielectric and surface adhesion properties. Nano Energy 2023, 114, 108687. [Google Scholar] [CrossRef]
- Rastegardoost, M.M.; Tafreshi, O.A.; Saadatnia, Z.; Ghaffari-Mosanenzadeh, S.; Serles, P.; Filleter, T.; Park, C.B.; Naguib, H.E. Highly durable triboelectric nanogenerators based on fibrous fluoropolymer composite mats with enhanced mechanical and dielectric properties. Mater. Today Energy 2023, 38, 101431. [Google Scholar] [CrossRef]
- Wang, Z.; Luan, C.; Zhu, Y.; Liao, G.; Liu, J.; Li, X.; Yao, X.; Fu, J. Integrated and shape-adaptable multifunctional flexible triboelectric nanogenerators using coaxial direct ink writing 3D printing. Nano Energy 2021, 90, 106534. [Google Scholar] [CrossRef]
- Chen, B.; Tang, W.; Wang, Z.L. Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Mater. Today 2021, 50, 224–238. [Google Scholar] [CrossRef]
- Parida, K.; Thangavel, G.; Cai, G.; Zhou, X.; Park, S.; Xiong, J.; Lee, P.S. Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun. 2019, 10, 2158. [Google Scholar] [CrossRef]
- Fan, F.; Tian, Z.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Lee, J.; Kim, N.; Kim, M.K. Recent advances of additively manufactured noninvasive kinematic biosensors. Front. Bioeng. Biotechnol. 2023, 11, 1303004. [Google Scholar] [CrossRef]
- Divakaran, N.; Kumar, P.V.A.; Mohapatra, A.; Alex, Y.; Mohanty, S. Significant role of carbon nanomaterials in material Extrusion-Based 3D-Printed triboelectric nanogenerators. Energy Technol. 2022, 11, 2201275. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Y.; Wang, D.; He, P. Solid–liquid contact TENG using a melting near-field direct writing PCL nano-fiber structure. Int. J. Smart Nano Mater. 2023, 14, 90–102. [Google Scholar] [CrossRef]
- Gao, S.; Zhu, Y.; Chen, Y.; Tian, M.; Yang, Y.; Jiang, T.; Wang, Z.L. Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators. Mater. Today 2019, 28, 17–24. [Google Scholar] [CrossRef]
- Kang, X.; Pan, C.; Chen, Y.; Pu, X. Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer. RSC Adv. 2020, 10, 17752–17759. [Google Scholar] [CrossRef] [PubMed]
- Razack, R.K.; Sadasivuni, K.K. Advancing Nanogenerators: The role of 3D-Printed Nanocomposites in energy harvesting. Polymers 2025, 17, 1367. [Google Scholar] [CrossRef] [PubMed]
- Jiao, P.; Wang, Z.L.; Alavi, A.H. Maximizing triboelectric nanogenerators by Physics-Informed AI inverse design. Adv. Mater. 2023, 36, 2308505. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Z.; Wu, W.; Xiong, Y.; Luo, J.; Sun, Q.; Mao, Y.; Wang, Z.L. TENG-Boosted Smart Sports with Energy Autonomy and Digital Intelligence. Nano-Micro Lett. 2025, 17, 265. [Google Scholar] [CrossRef]
- Chen, S.; Huang, T.; Zuo, H.; Qian, S.; Guo, Y.; Sun, L.; Lei, D.; Wu, Q.; Zhu, B.; He, C.; et al. A single integrated 3D-Printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics. Adv. Funct. Mater. 2018, 28, 1805108. [Google Scholar] [CrossRef]
- Liu, G.; Gao, Y.; Xu, S.; Bu, T.; Xie, Y.; Xu, C.; Zhou, H.; Qi, Y.; Zhang, C. One-stop fabrication of triboelectric nanogenerator based on 3D printing. EcoMat 2021, 3, e12130. [Google Scholar] [CrossRef]
- Yoon, H.; Kim, D.; Seung, W.; Khan, U.; Kim, T.Y.; Kim, T.; Kim, S. 3D-printed biomimetic-villus structure with maximized surface area for triboelectric nanogenerator and dust filter. Nano Energy 2019, 63, 103857. [Google Scholar] [CrossRef]
- Kim, Y.W.; Lee, H.B.; Yoon, J.; Park, S. 3D customized triboelectric nanogenerator with high performance achieved via charge-trapping effect and strain-mismatching friction. Nano Energy 2022, 95, 107051. [Google Scholar] [CrossRef]
- Hong, D.; Choi, Y.; Jang, Y.; Jeong, J. A multilayer thin-film screen-printed triboelectric nanogenerator. Int. J. Energy Res. 2018, 42, 3688–3695. [Google Scholar] [CrossRef]
- Seol, M.; Ivaškevičiūtė, R.; Ciappesoni, M.A.; Thompson, F.V.; Moon, D.; Kim, S.J.; Kim, S.J.; Han, J.; Meyyappan, M. All 3D printed energy harvester for autonomous and sustainable resource utilization. Nano Energy 2018, 52, 271–278. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Zheng, J.; Xiang, Y.; Zhao, P.; Cui, J.; Zhou, H.; Li, D. Rapidly fabricated triboelectric nanogenerator employing insoluble and infusible biomass materials by fused deposition modeling. Nano Energy 2019, 68, 104382. [Google Scholar] [CrossRef]
- Paranjape, M.V.; Graham, S.A.; Patnam, H.; Manchi, P.; Yu, J.S. 3D printed bidirectional rotatory hybrid nanogenerator for mechanical energy harvesting. Nano Energy 2021, 88, 106250. [Google Scholar] [CrossRef]
- Kim, I.; Kim, D. 3D printed double Roller-Based triboelectric nanogenerator for blue energy harvesting. Micromachines 2021, 12, 1089. [Google Scholar] [CrossRef]
- Li, H.; Li, R.; Fang, X.; Jiang, H.; Ding, X.; Tang, B.; Zhou, G.; Zhou, R.; Tang, Y. 3D printed flexible triboelectric nanogenerator with viscoelastic inks for mechanical energy harvesting. Nano Energy 2019, 58, 447–454. [Google Scholar] [CrossRef]
- Chiappone, A.; Roppolo, I.; Scavino, E.; Mogli, G.; Pirri, C.F.; Stassi, S. Three-Dimensional printing of triboelectric nanogenerators by digital light processing technique for mechanical energy harvesting. ACS Appl. Mater. Interfaces 2023, 15, 53974–53983. [Google Scholar] [CrossRef]
- Hazarika, A.; Lee, S.; Park, H.; Mun, C.H.; Jeong, H.E.; Park, Y.; Deka, B.K.; Park, H.W. 3D printed gradient porous fabric-based thermal and moisture regulating composite integrated triboelectric nanogenerator for human motion cognizance. Nano Energy 2024, 132, 110350. [Google Scholar] [CrossRef]
- Wen, D.; Liu, X.; Deng, H.; Sun, D.; Qian, H.; Brugger, J.; Zhang, X. Printed silk-fibroin-based triboelectric nanogenerators for multi-functional wearable sensing. Nano Energy 2019, 66, 104123. [Google Scholar] [CrossRef]
- Zhang, S.; Rana, S.S.; Bhatta, T.; Pradhan, G.B.; Sharma, S.; Song, H.; Jeong, S.; Park, J.Y. 3D printed smart glove with pyramidal MXene/Ecoflex composite-based toroidal triboelectric nanogenerators for wearable human-machine interaction applications. Nano Energy 2022, 106, 108110. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, B.; Wang, H.; Wu, Y.; Cao, H.; He, L.; Li, C.; Luo, X.; Li, X.; Mao, Y. 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression. Nano Res. 2023, 15, 7460–7467. [Google Scholar] [CrossRef]
- Nowacki, B.; Mistewicz, K.; Hajra, S.; Kim, H.J. 3D printed triboelectric nanogenerator for underwater ultrasonic sensing. Ultrasonics 2023, 133, 107045. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Wu, M.; Yao, K.; Gao, Z.; Gao, Y.; Huang, X.; Wong, T.H.; Zhou, J.; Li, D.; et al. Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing. Fundam. Res. 2022, 3, 111–117. [Google Scholar] [CrossRef]
- Haque, R.I.; Chandran, O.; Lani, S.; Briand, D. Self-powered triboelectric touch sensor made of 3D printed materials. Nano Energy 2018, 52, 54–62. [Google Scholar] [CrossRef]
- Meena, K.K.; Arief, I.; Ghosh, A.K.; Liebscher, H.; Hait, S.; Nagel, J.; Heinrich, G.; Fery, A.; Das, A. 3D-printed stretchable hybrid piezoelectric-triboelectric nanogenerator for smart tire: Onboard real-time tread wear monitoring system. Nano Energy 2023, 115, 108707. [Google Scholar] [CrossRef]
- Qian, C.; Li, L.; Gao, M.; Yang, H.; Cai, Z.; Chen, B.; Xiang, Z.; Zhang, Z.; Song, Y. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 2019, 63, 103885. [Google Scholar] [CrossRef]
- He, S.; Yu, Z.; Zhou, H.; Huang, Z.; Zhang, Y.; Li, Y.; Li, J.; Wang, Y.; Li, D. Polymer tubes as carrier boats of thermosetting and powder materials based on 3D printing for triboelectric nanogenerator with microstructure. Nano Energy 2018, 52, 134–141. [Google Scholar] [CrossRef]
- Montero, K.L.; Guzman, R.C.; Tewari, A.; Zou, H.; Wang, Z.L.; Mäntysalo, M.; Laurila, M. Printed and stretchable triboelectric energy harvester based on P(VDF-TRFE) porous aerogel. Adv. Funct. Mater. 2024, 34, 2312881. [Google Scholar] [CrossRef]
- Tung, D.T.; Tam, L.T.T.; Duong, N.T.T.; Dung, H.T.; Dung, N.T.; Duc, N.A.; Hong, P.N.; Dung, N.T.; Minh, P.N.; Lu, L.T. A novel polymer composite from polyhexamethylene guanidine hydrochloride for high performance triboelectric nanogenerators (TENGs). RSC Adv. 2025, 15, 844–850. [Google Scholar] [CrossRef]
- Gunasekhar, R.; Reza, M.S.; Kim, K.J.; Prabu, A.A.; Kim, H. Electrospun PVDF/aromatic HBP of 4th gen based flexible and self-powered TENG for wearable energy harvesting and health monitoring. Sci. Rep. 2023, 13, 22645. [Google Scholar] [CrossRef]
- Amorntep, N.; Siritaratiwat, A.; Srichan, C.; Sriphan, S.; Wiangwiset, T.; Ariyarit, A.; Supasai, W.; Bootthanu, N.; Narkglom, S.; Vittayakorn, N.; et al. Enhancing performance of Composite-Based triboelectric nanogenerators through laser surface patterning and graphite coating for sustainable energy solutions. Energies 2024, 17, 5354. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Huang, Z.; Wang, F. Enhancing performance of triboelectric nanogenerator via surface structure coupling by Light-Cured 3-D printing. IEEE Trans. Electron Devices 2023, 70, 1231–1235. [Google Scholar] [CrossRef]
- Graham, S.A.; Jang, J.B.; Manchi, P.; Paranjape, M.V.; Kim, S.; Yu, J.S. Enhanced electrical output via a 3D printed dual nanogenerator based on BI2WO6 for mechanical energy harvesting and sensing applications. ACS Sustain. Chem. Eng. 2024, 12, 785–794. [Google Scholar] [CrossRef]
- Sun, W.; Liu, J.; Pan, J.; Wang, Y.; Wei, C.; Li, X.; Ma, T.; He, N.; Dong, J.; Nan, D. In-situ amino-functionalized and reduced graphene oxide/polyimide composite films for high-performance triboelectric nanogenerator. J. Colloid Interface Sci. 2024, 675, 488–495. [Google Scholar] [CrossRef]
- Li, J.; Qin, Q. Enhanced output performance of perovskite-based triboelectric nanogenerators devices by surface engineering. J. Phys. Conf. Ser. 2024, 2849, 012026. [Google Scholar] [CrossRef]
- Kim, J.H.; Jin, D.W.; Jeon, J.H.; Kumar, D.; Yoon, H.; Cho, H.; Ihee, H.; Park, J.Y.; Jung, J.H. Tailoring morphological and chemical contributions of nanoscale charge transfer for enhanced triboelectric nanogenerators. Nanoscale 2024, 16, 14793–14801. [Google Scholar] [CrossRef]
- Wajahat, M.; Kouzani, A.Z.; Khoo, S.Y.; Mahmud, M.A.P. Development of Triboelectric Nanogenerator Using Flexible 3D Printed Polyamide. In Proceedings of the 2023 IEEE International Flexible Electronics Technology Conference (IFETC), San Jose, CA, USA, 13–16 August 2023; pp. 1–3. [Google Scholar] [CrossRef]
- Prada, T.; Harnchana, V.; Lakhonchai, A.; Chingsungnoen, A.; Poolcharuansin, P.; Chanlek, N.; Klamchuen, A.; Thongbai, P.; Amornkitbamrung, V. Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications. Nano Res. 2021, 15, 272–279. [Google Scholar] [CrossRef]
- Jiang, F.; Zheng, S.; Hou, B.; Wang, X.; Sun, F.; Wang, S.; Joo, S.W.; Cong, C.; Kim, S.H.; Li, X. Printed triboelectric nanogenerator for self-powered devices: Ink formulation of printed materials and smart integrated devices. Nano Energy 2023, 121, 109224. [Google Scholar] [CrossRef]
- Luo, H.; Tan, Y.; Zhang, F.; Zhang, J.; Tu, Y.; Cui, K. Selectively enhanced 3D printing process and performance analysis of continuous carbon fiber composite material. Materials 2019, 12, 3529. [Google Scholar] [CrossRef]
- Kim, F.; Yang, S.E.; Ju, H.; Choo, S.; Lee, J.; Kim, G.; Jung, S.; Kim, S.; Cha, C.; Kim, K.T.; et al. Direct ink writing of three-dimensional thermoelectric microarchitectures. Nat. Electron. 2021, 4, 579–587. [Google Scholar] [CrossRef]
- Han, J.; Dai, X.; Huang, L.; Hao, J. Optimizing electrical output performance of triboelectric nanogenerators by micro-/nano-morphology design and fabrication. Int. J. Extreme Manuf. 2025, 7, 032008. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y.; Luo, N.; Liu, Y.; Feng, Y.; Chen, S.; Wang, D. Controlling the triboelectric properties and tribological behavior of polyimide materials via plasma treatment. Nano Energy 2022, 102, 107691. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, J.; Zhang, Y.; Chen, F.; Wang, H.; Wu, M.; Li, H.; Zhu, Q.; Zheng, H.; Zhang, R. Remarkably enhanced hybrid piezo/triboelectric nanogenerator via rational modulation of piezoelectric and dielectric properties for self-powered electronics. Appl. Phys. Lett. 2020, 116, 023901. [Google Scholar] [CrossRef]
- Seol, M.; Meyyappan, M.; Han, J. All-Printed Triboelectric Nanogenerator (TENG) for NASA’s in-Space manufacturing program. Meet. Abstr. 2019, MA2019-02, 2481. [Google Scholar] [CrossRef]
- Zeng, L.; Ling, S.; Du, D.; He, H.; Li, X.; Zhang, C. Direct Ink Writing 3D Printing for High-Performance Electrochemical Energy Storage Devices: A minireview. Adv. Sci. 2023, 10, 2303716. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, E.; Van Hemelrijck, D.; Pyl, L. An Open-Source ABAQUS Plug-In for delamination analysis of 3D printed composites. Polymers 2023, 15, 2171. [Google Scholar] [CrossRef] [PubMed]
- Adibelli, S.; Juyal, P.; Zajic, A. On the Surface Roughness and Smoothing in the 3D Printed THz Reflectors. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 593–594. [Google Scholar] [CrossRef]
- Cai, N.; Sun, P.; Jiang, S. Rapid prototyping and customizable multifunctional structures: 3D-printing technology promotes the rapid development of TENGs. J. Mater. Chem. A 2021, 9, 16255–16280. [Google Scholar] [CrossRef]
Sl. No | Composite Materials | Fabrication Technique | Application | Output Parameters | Reference |
---|---|---|---|---|---|
1 | ZnO/PDMS | Thermal oxidation and composite formation | Surface charge density detection | - | [61] |
2 | PET/TPU/Fabric/PDMS | Layering and screen printing | Energy harvesting, sensor application | - | [62] |
3 | PMMA/PTFE/Al/C | DC Magnetron sputtering, spin-coating | Energy harvesting for IoT devices | - | [63] |
4 | Sn/PTFE/Al | Cold spray deposition | High-performance energy generation | - | [64] |
5 | Multiwall carbon nanotubes, PEDOT:PSS | Vacuum filtration | Wearable electronics | 7.9 V | [65] |
6 | Aluminum, PDMS, AuNPs | Simple layering and spraying | Self-powered systems, wearable devices | 169 mV (voltage), 120.4 µA (current), 6.006 µW (power) | [66] |
7 | FEP, Al | Modified stamp holder | Energy harvesting, sensing, data prediction | 310 V, 165 μA, 14.8 W/m2 | [67] |
8 | PDMS/ZnSnO3/MWCNT | Aqueous solution synthesis | Portable electronics, sensors | 475 V, 36 mA, 4.2 mW | [68] |
9 | PVDF/tourmaline | Electrospinning | Powers LEDs, electronic watches | 107 mW/m2, 267 V open-circuit voltage | [69] |
10 | Conductive and staple fibers, triboelectric materials | Core-spun yarn coating | Smart wearables, motion detection | 117 V, 213 mW/m2 | [70] |
Sl. No | Fabrication Method | Power Output | Teng Dimensions | Material | Application | Reference |
---|---|---|---|---|---|---|
1 | Electrospun nanofibrous tribo-surfaces | Voltage—880 V; current—3.75 μA | PDMS layer thicknesses of 40, 80, and 800 µm | Al sheet and a poly(vinylidene fluoride–trifluoroethylene) (PVDF-TrFE) nanofibrous structure | Human interactive triboelectric system | [103] |
2 | Direct ink writing (DIW) | Voltage—3.25 V | 6 × 6 mesh structure | Graphene powder, PDMS prepolymer, and PTFE particles | Self-powered wearable tactile sensing | [8] |
3 | Fused deposition modelling (FDM) | Voltage—5.75 V; current—0.38 μA | Length—30 mm; width—30 mm | Silicon (SI 595CL) and polylactic acid | Wearable triboelectric electronic devices | [19] |
4 | Fused deposition modelling (FDM) | Voltage—241 V; current—1.52 mA | Length—120 mm; size—30 mm × 30 mm | Positive—PA and PLA; negative—PP/PE and PETG | Environmental energy harvesting | [12] |
5 | Digital light processing (DLP) | Voltage (RMS)—1.7 V and 2.3 V in vertical and rotational directions | - | PTFE and ABS | Self-powered dust-filtration systems | [102] |
6 | Screen-printing technology | Voltage—11.45 V; current—4.46 μA | Thin-film—30 mm × 30 mm × 1.4 mm | PTFE | Wearable power source | [104] |
7 | SLM, FDM, and SLA | RMS voltage—231 V; RMS current—18.9 μA | - | ABS, PLA, NYLON, and MMA | Sensors, electronics, and energy storage modules | [105] |
8 | Fused deposition modeling (FDM) | Voltage—308 V; current—61.6 μA | - | PDMS, PA, and PE | Energy harvesting | [106] |
Sl. No | 3D Printing Technique | Power Output | Teng Dimensions | Material | Application | Reference |
---|---|---|---|---|---|---|
1 | Fused deposition modelling (FDM) | Voltage—37.5 V | - | BR-HND-PLA+ and porous sodium niobate and polydimethylsiloxane | Energy harvesting | [107] |
2 | Fused deposition modeling (FDM) | Voltage—5.68 V; current—20 nA | Volume—108.2 cm2; thickness 2 mm ABS | ABS, PI tape, aluminum | Water energy harvester | [108] |
3 | Direct ink writing (DIW) | Voltage—124 V | Length—30 mm; width—30 mm | Silicone elastomer | Wearable sensors and display | [109] |
4 | Digital light processing (DLP) | Peak voltage—47.7 V; current—2.5 μA | 2 × 2 cm2 and 1 mm thickness | Acrylate polydimethylsiloxane | Energy harvesting from human movements | [110] |
Sl. No | Technical Challenge | 3D Printing Technique(s)/Material Type(s) | Impact on TENG Performance | Mitigation Strategies | Reference |
---|---|---|---|---|---|
1 | Layer delamination | FDM and multi-material printing | Mechanical failure, reduced flexibility/durability, and inconsistent electrical output due to poor contact | Optimized printing temperature, controlled cooling rates, annealing, use of adhesion promoters, and interface engineering | [140] |
2 | Poor surface roughness control | FDM and extrusion-based methods | Suboptimal triboelectric contact (too smooth/rough) and increased wear | Post-processing intentional micro-patterning during design and optimization of layer height/nozzle diameter | [141] |
3 | Post-processing complexity | SLA/DLP and FDM (support removal) | Increased fabrication time and potential damage to parts | Design for minimal supports, water-soluble supports, automated post-processing, and development of self-curing materials | [100] |
4 | Long-term stability issues | Environmental exposure and mechanical fatigue | Performance degradation (output voltage/current drop) over time | Robust encapsulation, use of durable materials, self-healing materials, and optimized device architecture for stress distribution | [142] |
5 | Low throughput/scalability | Most lab-scale 3D printing techniques | Hinders industrial production and commercialization | Development of high-speed 3D printers, multi-nozzle/multi-material systems, process automation, and hybrid manufacturing approaches | [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahul, T.P.; Sreekanth, P.S.R. Synergies in Materials and Manufacturing: A Review of Composites and 3D Printing for Triboelectric Energy Harvesting. J. Compos. Sci. 2025, 9, 386. https://doi.org/10.3390/jcs9080386
Rahul TP, Sreekanth PSR. Synergies in Materials and Manufacturing: A Review of Composites and 3D Printing for Triboelectric Energy Harvesting. Journal of Composites Science. 2025; 9(8):386. https://doi.org/10.3390/jcs9080386
Chicago/Turabian StyleRahul, T. Pavan, and P. S. Rama Sreekanth. 2025. "Synergies in Materials and Manufacturing: A Review of Composites and 3D Printing for Triboelectric Energy Harvesting" Journal of Composites Science 9, no. 8: 386. https://doi.org/10.3390/jcs9080386
APA StyleRahul, T. P., & Sreekanth, P. S. R. (2025). Synergies in Materials and Manufacturing: A Review of Composites and 3D Printing for Triboelectric Energy Harvesting. Journal of Composites Science, 9(8), 386. https://doi.org/10.3390/jcs9080386