Material Passports in Construction Waste Management: A Systematic Review of Contexts, Stakeholders, Requirements, and Challenges
Abstract
1. Introduction
2. Overview of Material Passports
3. Methodology
4. Results and Discussion
4.1. Bibliometric Information
4.1.1. Publication Trend
4.1.2. Keyword Co-Occurrence Analysis
4.2. Context of Studies
4.2.1. Buildings and Cities as Materials Banks
4.2.2. Integrated Digital Technologies and Methods
4.2.3. Reusable Designs, Prefabricated, and Modular Buildings
4.2.4. Waste Management and Trading
4.2.5. Awareness, Benefits, Challenges, Strategies
4.3. Stakeholders
4.3.1. Asset Owners and Managers
4.3.2. Design, Construction, and Deconstruction Teams
4.3.3. Manufacturers, Suppliers, and Logistics Providers
4.3.4. Waste Management Operators
4.3.5. Technology Providers and Developers
4.3.6. Sustainability Experts and Researchers
4.3.7. Policy, Regulators, and Government
4.3.8. Financial Intermediaries
4.4. Data Requirements
4.4.1. Material and Component Data
4.4.2. Building Stock and Classification Data
4.4.3. Lifecycle History and Supply Chain Data
4.4.4. Deconstruction, Handling, and End-of-Life Data
4.4.5. Economic Data
4.4.6. Environmental and Circularity Data
4.5. Infrastructure Requirements
4.5.1. Modeling and Analytical Tools
4.5.2. Sensory, Tracking, and Monitoring Systems
4.5.3. Digital Inventories and Databases
4.5.4. Physical Storage and Recycling Hubs
4.5.5. Secured Common Data Environment
4.5.6. Trading and Payment Solutions
4.6. Challenges to Implementation
4.6.1. Data Management and Protection Challenges
4.6.2. Financial Challenges
4.6.3. Technological Challenges
4.6.4. Standardization and Certification Challenges
4.6.5. Stakeholder Challenges
4.6.6. Supply Chain and Logistics Challenges
4.6.7. Market Maturity and Demand Challenges
5. Implications and Future Work
5.1. Practicality of Material Passport in Managing Construction Waste
5.2. Enhancing Trust with Standardization and Regulations
5.3. Integrating Automation and Artificial Intelligence Tools
5.4. Economic Viability of End-of-Life Products
5.5. Decentralizing Trading Hubs and Market Accessibility
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Musarat, M.A.; Alaloul, W.S.; Hameed, N.; Qureshi, A.H.; Wahab, M.M.A. Efficient Construction Waste Management: A Solution through Industrial Revolution (IR) 4.0 Evaluated by AHP. Sustainability 2022, 15, 274. [Google Scholar] [CrossRef]
- Zhao, W.; Hao, J.L.; Gong, G.; Fischer, T.; Liu, Y. Applying Digital Technologies in Construction Waste Management for Facilitating Sustainability. J. Environ. Manag. 2025, 373, 123560. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Peng, Y.; Webster, C.; Zuo, J. Stakeholders’ Willingness to Pay for Enhanced Construction Waste Management: A Hong Kong Study. Renew. Sustain. Energy Rev. 2015, 47, 233–240. [Google Scholar] [CrossRef]
- Sapuay, S.E. Construction Waste—Potentials and Constraints. Procedia Environ. Sci. 2016, 35, 714–722. [Google Scholar] [CrossRef]
- Yuan, H. A SWOT Analysis of Successful Construction Waste Management. J. Clean. Prod. 2013, 39, 1–8. [Google Scholar] [CrossRef]
- Wahi, N.; Joseph, C.; Tawie, R.; Ikau, R. Critical Review on Construction Waste Control Practices: Legislative and Waste Management Perspective. Procedia-Soc. Behav. Sci. 2016, 224, 276–283. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, J.; Xu, X. Machine Learning in Construction and Demolition Waste Management: Progress, Challenges, and Future Directions. Autom. Constr. 2024, 162, 105380. [Google Scholar] [CrossRef]
- de Oliveira, J.; Schreiber, D.; Jahno, V.D. Circular Economy and Buildings as Material Banks in Mitigation of Environmental Impacts from Construction and Demolition Waste. Sustainability 2024, 16, 5022. [Google Scholar] [CrossRef]
- Balasbaneh, A.T.; Sher, W.; Li, J.; Ashour, A. Systematic Review of Construction Waste Management Scenarios: Informing Life Cycle Sustainability Analysis. Circ. Econ. Sustain. 2025, 5, 529–553. [Google Scholar] [CrossRef]
- Antwi-Afari, P.; Ng, S.T.; Hossain, M.U. A Review of the Circularity Gap in the Construction Industry through Scientometric Analysis. J. Clean. Prod. 2021, 298, 126870. [Google Scholar] [CrossRef]
- Ababio, B.K.; Lu, W. Barriers and Enablers of Circular Economy in Construction: A Multi-System Perspective towards the Development of a Practical Framework. Constr. Manag. Econ. 2023, 41, 3–21. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Delivering the Circular Economy: A Toolkit for Policymakers; Ellen MacArthur Foundation: Cowes, UK, 2015; 177p. [Google Scholar]
- Kouhizadeh, M.; Zhu, Q.; Sarkis, J. Blockchain and the Circular Economy: Potential Tensions and Critical Reflections from Practice. Prod. Plan. Control 2020, 31, 950–966. [Google Scholar] [CrossRef]
- Hossain, M.U.; Ng, S.T.; Antwi-Afari, P.; Amor, B. Circular Economy and the Construction Industry: Existing Trends, Challenges and Prospective Framework for Sustainable Construction. Renew. Sustain. Energy Rev. 2020, 130, 109948. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Wang, J.; Niu, D.; Nwetlawung, Z.E. Evaluating Stakeholders’ Decisions in a Blockchain-Based Recycling Construction Waste Project: A Hybrid Evolutionary Game and System Dynamics Approach. Buildings 2024, 14, 2205. [Google Scholar] [CrossRef]
- Mahpour, A. Prioritizing Barriers to Adopt Circular Economy in Construction and Demolition Waste Management. Resour. Conserv. Recycl. 2018, 134, 216–227. [Google Scholar] [CrossRef]
- Oluleye, B.I.; Chan, D.W.; Saka, A.B.; Olawumi, T.O. Circular Economy Research on Building Construction and Demolition Waste: A Review of Current Trends and Future Research Directions. J. Clean. Prod. 2022, 357, 131927. [Google Scholar] [CrossRef]
- Van Capelleveen, G.; Vegter, D.; Olthaar, M.; van Hillegersberg, J. The Anatomy of a Passport for the Circular Economy: A Conceptual Definition, Vision and Structured Literature Review. Resour. Conserv. Recycl. Adv. 2023, 17, 200131. [Google Scholar] [CrossRef]
- Honic, M.; Kovacic, I.; Rechberger, H. Improving the Recycling Potential of Buildings through Material Passports (MP): An Austrian Case Study. J. Clean. Prod. 2019, 217, 787–797. [Google Scholar] [CrossRef]
- Hoosain, M.S.; Paul, B.S.; Raza, S.M.; Ramakrishna, S. Material Passports and Circular Economy. In An Introduction to Circular Economy; Liu, L., Ramakrishna, S., Eds.; Springer: Singapore, 2021; pp. 131–158. ISBN 978-981-15-8509-8. [Google Scholar] [CrossRef]
- Rose, C.M.; Stegemann, J.A. Characterising Existing Buildings as Material Banks (E-BAMB) to Enable Component Reuse. Proc. Inst. Civ. Eng. Eng. Sustain. 2019, 172, 129–140. [Google Scholar] [CrossRef]
- Rumetshofer, T.; Fischer, J. Information-Based Plastic Material Tracking for Circular Economy—A Review. Polymers 2023, 15, 1623. [Google Scholar] [CrossRef]
- Gasue, R.; Aklashie, S.; Dompey, A.M.A.; Agyekum, K.; Opoku, D. Implementing Materials Passports in the Construction Industry: Empirical Evidence from Ghana. Int. J. Build. Pathol. Adapt. 2024. [Google Scholar] [CrossRef]
- Bertin, I.; Mesnil, R.; Jaeger, J.-M.; Feraille, A.; Le Roy, R. A BIM-Based Framework and Databank for Reusing Load-Bearing Structural Elements. Sustainability 2020, 12, 3147. [Google Scholar] [CrossRef]
- Francart, N.; Gummidi, S.R.B.; Hoxha, E.; Birgisdottir, H. A Danish Model of Building Macro-Components to Promote Circularity. J. Phys. Conf. Ser. 2023, 2600, 192001. [Google Scholar] [CrossRef]
- Markou, I.; Sinnott, D.; Thomas, K. Current Methodologies of Creating Material Passports: A Systematic Literature Review. Case Stud. Constr. Mater. 2025, 22, e04267. [Google Scholar] [CrossRef]
- Stella, A.; Terndrup, M.; Pilcher, N.; Nilsson, S.; Buhagiar, J. Waterman Materials Passports Framework Introducing a Standardised Approach to Materials Passports in the Construction Industry; Waterman Group: London, UK, 2023. [Google Scholar]
- Ohene, E.; Chan, A.P.; Darko, A. Prioritizing Barriers and Developing Mitigation Strategies toward Net-Zero Carbon Building Sector. Build. Environ. 2022, 223, 109437. [Google Scholar] [CrossRef]
- Adu-Amankwa, N.A.N.; Pour Rahimian, F.; Dawood, N.; Park, C. Digital Twins and Blockchain Technologies for Building Lifecycle Management. Autom. Constr. 2023, 155, 105064. [Google Scholar] [CrossRef]
- Larbi, J.A.; Tang, L.C.M.; Ababio, B.K.; Antwi-Afari, P. Developing an Integrated Digital Delivery Framework for Designing and Planning Construction Projects: A Review of Interoperable Digital Technologies. Int. J. Constr. Manag. 2025, 25, 347–362. [Google Scholar] [CrossRef]
- Chan, I.Y.; Twum-Ampofo, S.; Ababio, B.K.; Ghansah, F.A.; Li, S. Towards a Whole Process Engineering Approach for Enhancing Physical and Psychological Health in Underground Environments: A Systematic Review. Tunn. Undergr. Space Technol. 2025, 161, 106530. [Google Scholar] [CrossRef]
- Singh, R.K.; Mishra, R.; Gupta, S.; Mukherjee, A.A. Blockchain Applications for Secured and Resilient Supply Chains: A Systematic Literature Review and Future Research Agenda. Comput. Ind. Eng. 2023, 175, 108854. [Google Scholar] [CrossRef]
- Wu, L.; Lu, W.; Peng, Z.; Webster, C. A Blockchain Non-Fungible Token-Enabled ‘Passport’ for Construction Waste Material Cross-Jurisdictional Trading. Autom. Constr. 2023, 149, 104783. [Google Scholar] [CrossRef]
- Wibranek, B.; Tessmann, O. Augmented Reuse: A Mobile App to Acquire and Provide Information About Reusable Building Components for the Early Design Phase. In Towards Radical Regeneration; Gengnagel, C., Baverel, O., Betti, G., Popescu, M., Thomsen, M.R., Wurm, J., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 411–423. ISBN 978-3-031-13248-3. [Google Scholar] [CrossRef]
- Maraqa, M.J.; Spatari, S. BIM Material Passport to Support Building Deconstruction and a Circular Economy. In Proceedings of the Construction in the 21st Century 12th International Conference (CITC 12), Amman, Jordan, 16–19 May 2022; Volume 148. [Google Scholar]
- Copeland, S.; Bilec, M. Buildings as Material Banks Using RFID and Building Information Modeling in a Circular Economy. Procedia CIRP 2020, 90, 143–147. [Google Scholar] [CrossRef]
- Sauter, E.M.; Lemmens, R.L.G.; Pauwels, P. CEO & CAMO Ontologies: A Circulation Medium for Materials in the Construction Industry. In Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision; CRC Press: Boca Raton, FL, USA, 2018; pp. 1645–1652. [Google Scholar]
- O’Grady, T.M.; Brajkovich, N.; Minunno, R.; Chong, H.-Y.; Morrison, G.M. Circular Economy and Virtual Reality in Advanced BIM-Based Prefabricated Construction. Energies 2021, 14, 4065. [Google Scholar] [CrossRef]
- Göswein, V.; Carvalho, S.; Cerqueira, C.; Lorena, A. Circular Material Passports for Buildings–Providing a Robust Methodology for Promoting Circular Buildings. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Online, 23–25 November 2022; IOP Publishing: Bristol, UK, 2022; Volume 1122, p. 012049. [Google Scholar] [CrossRef]
- Manelius, A.-M.; Nielsen, S.; Kauschen, J.S. City as Material Bank–Constructing with Reuse in Musicon, Roskilde. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Brussels, Belgium, 5–7 February 2019; IOP Publishing: Bristol, UK, 2019; Volume 225, p. 012020. [Google Scholar] [CrossRef]
- Lopez Alvarez De Neyra, P.; Celoza, A. Deconstruction Information Model-Based Material Passports for Promoting Circular Economy in the AEC Industry through the Use of Building Information Modeling: A Literature Review. In Proceedings of the Construction Research Congress, Des Moines, IA, USA, 20–23 March 2024; American Society of Civil Engineers: Reston, VA, USA, 2024; pp. 96–105. [Google Scholar] [CrossRef]
- Lu, W.; Peng, Z.; Webster, C.; Wu, L. Developing a Construction Waste Material ‘Passport’ for Cross-Jurisdictional Trading. J. Clean. Prod. 2023, 414, 137509. [Google Scholar] [CrossRef]
- Trubina, N.; Leindecker, G.; Askar, R.; Karanafti, A.; Gómez-Gil, M.; Blázquez, T.; Güngör, B.; Bragança, L. Digital Technologies and Material Passports for Circularity in Buildings: An in-Depth Analysis of Current Practices and Emerging Trends. In Proceedings of the International Conference “Coordinating Engineering for Sustainability and Resilience”, Timișoara, Romania, 29–31 May 2024; Springer Nature: Cham, Switzerland, 2024; pp. 690–699. [Google Scholar] [CrossRef]
- Atta, I.; Bakhoum, E.S.; Marzouk, M.M. Digitizing Material Passport for Sustainable Construction Projects Using BIM. J. Build. Eng. 2021, 43, 103233. [Google Scholar] [CrossRef]
- Topraklı, A.Y. Enabling Circularity in Turkish Construction: A Case of BIM-Based Material Management Utilizing Material Passports. Smart Sustain. Built Environ. 2024. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.-A. Framework for Designing Sustainable Structures through Steel Beam Reuse. Sustainability 2020, 12, 9494. [Google Scholar] [CrossRef]
- Cocco, P.L.; Ruggiero, R. From Rubbles to Digital Material Bank. A Digital Methodology for Construction and Demolition Waste Management in Post-Disaster Areas. Environ. Res. Technol. 2023, 6, 151–158. [Google Scholar] [CrossRef]
- Honic, M.; Kovacic, I.; Aschenbrenner, P.; Ragossnig, A. Material Passports for the End-of-Life Stage of Buildings: Challenges and Potentials. J. Clean. Prod. 2021, 319, 128702. [Google Scholar] [CrossRef]
- Yilmaz, G.; Hutton, C.; Valsaladas, V.; Donovan, C.; Zvirgzda, K.; Charlson, A.; Heaton, R.; Suc, C.; Ahmed-Kristensen, S. Material Passport for Modular Construction. IET Conf. Proc. 2024, 2024, 159–164. [Google Scholar] [CrossRef]
- Abuhalimeh, D.; Shahin, A.; Elenany, Y.; Beheiry, S. Material Passports for the End-of-Life Stage of Buildings: A Systematic Review of Benefits & Challenges. In Proceedings of the Thirteenth International Conference on Construction in the 21st Century (CITC-13), Arnhem, The Netherlands, 8–11 May 2023. [Google Scholar]
- KC, A.; Senaratne, S.; Perera, S.; Nanayakkara, S. Review of Current Digital Technologies for Material Passports to Enhance Circularity towards Net Zero. Built Environ. Proj. Asset Manag. 2024. [Google Scholar] [CrossRef]
- Vahidi, A.; Gebremariam, A.T.; Di Maio, F.; Meister, K.; Koulaeian, T.; Rem, P. RFID-Based Material Passport System in a Recycled Concrete Circular Chain. J. Clean. Prod. 2024, 442, 140973. [Google Scholar] [CrossRef]
- Caroli, T. Soft Technologies for the Circular Transition: Practical Experimentation of the Product “Material Passport”. In Technological Imagination in the Green and Digital Transition; Arbizzani, E., Cangelli, E., Clemente, C., Cumo, F., Giofrè, F., Giovenale, A.M., Palme, M., Paris, S., Eds.; The Urban Book Series; Springer International Publishing: Cham, Switzerland, 2023; pp. 439–448. ISBN 978-3-031-29514-0. [Google Scholar]
- Tsui, T.; Furlan, C.; Wandl, A.; Van Timmeren, A. Spatial Parameters for Circular Construction Hubs: Location Criteria for a Circular Built Environment. Circ. Econ. Sustain. 2024, 4, 317–338. [Google Scholar] [CrossRef]
- Freitas, M.C.D.; Tavares, S.; Bragança, L.; Barbosa, S. The Rehabilitation of Buildings from the Perspective of Circular Economy Principles. In Creating a Roadmap Towards Circularity in the Built Environment; Springer: Cham, Switzerland, 2023; pp. 263–274. ISBN 978-3-031-45979-5. [Google Scholar] [CrossRef]
- Marin, J.; De Meulder, B. Wood(s): Imagining How a Materials Bank Can Catalyse Circular Timber Flows in Leuven, Belgium. Archit. Theory Rev. 2021, 25, 117–135. [Google Scholar] [CrossRef]
- Ruggiero, R.; Cognoli, R.; Cocco, P.L. From Debris to the Data Set (DEDA) a Digital Application for the Upcycling of Waste Wood Material in Post Disaster Areas. In Architecture and Design for Industry 4.0; Barberio, M., Colella, M., Figliola, A., Battisti, A., Eds.; Lecture Notes in Mechanical Engineering; Springer International Publishing: Cham, Switzerland, 2024; pp. 807–835. ISBN 978-3-031-36921-6. [Google Scholar] [CrossRef]
- Dar Amer, S.; Al Khaffaf, I.; Samara, F.; Beheiry, S. Material Passports for the End-of-Life Stage of Buildings: A Study on the Challenges of Material Passports Adoption in the UAE. In Proceedings of the ICSDI 2024 Volume 3; Mansour, Y., Subramaniam, U., Mustaffa, Z., Abdelhadi, A., Al-Atroush, M., Abowardah, E., Eds.; Lecture Notes in Civil Engineering; Springer Nature: Singapore, 2025; Volume 558, pp. 429–436. ISBN 978-981-97-8344-1. [Google Scholar] [CrossRef]
- Çetin, S.; Raghu, D.; Honic, M.; Straub, A.; Gruis, V. Data Requirements and Availabilities for Material Passports: A Digitally Enabled Framework for Improving the Circularity of Existing Buildings. Sustain. Prod. Consum. 2023, 40, 422–437. [Google Scholar] [CrossRef]
- Mao, S.; Cao, W.-J. Evaluating Material Passports for Circularity in the Construction Industry. Sustain. Prod. Consum. 2025, 54, 88–101. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software Tools: Review, Analysis, and Cooperative Study among Tools. J. Am. Soc. Inf. Sci. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Debrah, C.; Chan, A.P.; Darko, A. Artificial Intelligence in Green Building. Autom. Constr. 2022, 137, 104192. [Google Scholar] [CrossRef]
- Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Hijazi, A.A.; Perera, S.; Calheiros, R.N.; Alashwal, A. A Data Model for Integrating BIM and Blockchain to Enable a Single Source of Truth for the Construction Supply Chain Data Delivery. Eng. Constr. Archit. Manag. 2023, 30, 4645–4664. [Google Scholar] [CrossRef]
- Jaskula, K.; Kifokeris, D.; Papadonikolaki, E.; Rovas, D. Common Data Environments in Construction: State-of-the-Art and Challenges for Practical Implementation. Constr. Innov. 2024. [Google Scholar] [CrossRef]
String | Keywords | Scopus | Web of Science |
---|---|---|---|
1 | (construction OR demolition) AND (waste) AND (“material passport”) | 39 | 13 |
2 | (“material passport” OR “material bank” OR “digital passport” OR “building passport” OR “circularity passport” OR “waste passport” OR “recycling passport” OR “resource passport”) AND (“construction and demolition waste” OR “construction waste” OR “building waste” OR “demolition waste” OR “CDW” OR “C&DW”) | 26 | 7 |
3 | (“material passport” OR “material bank” OR “digital passport” OR “building passport” OR “circularity passport” OR “waste passport” OR “recycling passport” OR “resource passport”) AND (“construction and demolition waste” OR “construction waste” OR “building waste” OR “demolition waste” OR “CDW” OR “C&DW” OR “waste”) | 74 | 18 |
N | Authors | Context | Type |
---|---|---|---|
S1 | Bertin et al. [24] | BIM-based building as a material bank for structural element reuse | JP, CSP |
S2 | Wu et al. [33] | Blockchain NFT-based material passports for construction waste trading | JP, CSP |
S3 | Francart et al. [25] | Building macro-component bank for circularity | CP, CSP |
S4 | Wibranek and Tessmann [34] | Reusable building component mobile app in early-stage design | CP, CSP |
S5 | Maraqa and Spatari [35] | BIM-based material passport for deconstruction and circular economy | CP, CSP |
S6 | Copeland and Bilec [36] | RFID and BIM-based building as a material bank for circular economy | JP, RV |
S7 | Sauter et al. [37] | Circular exchange and activities ontologies for materials circulation | CP, CSP |
S8 | Rose and Stegemann [21] | Existing buildings as a material bank for building component reuse | JP, RV |
S9 | Oliveira et al. [8] | Building as a material bank for construction and demolition waste | JP, RV |
S10 | O’grady et al. [38] | BIM-based prefabrication with circular economy and virtual reality | CP, CSP |
S11 | Göswein et al. [39] | Circular material passports for buildings | CP, RV |
S12 | Manelius et al. [40] | Cities as material banks for reuse in the construction industry | CP, CSP |
S13 | Markou et al. [26] | Methodologies for creating material passports | JP, RV |
S14 | Lopez Alvarez De Neyra and Celoza [41] | Deconstruction information model-based material passports | CP, RV |
S15 | Lu et al. [42] | Construction waste material passport for cross-jurisdictional trading | JP, CSP |
S16 | Trubina et al. [43] | Digital technologies in material passports for building circularity | CP, RV |
S17 | Atta et al. [44] | Digitizing material passports with BIM for sustainable construction | JP, CSP |
S18 | Topraklı [45] | BIM-based material passport for construction circularity | JP, CSP |
S19 | Kim and Kim [46] | Material banks in the design of reusable sustainable structures | JP, CSP |
S20 | Cocco and Ruggiero [47] | Digital materials banks for construction and demolition waste | JP; CSP |
S21 | Gasue et al. [23] | Factors in the implementation of material passports | JP; ESI |
S22 | Honic et al. [48] | Material passports for improving building recycling potential | JP, CSP |
S23 | Yilmaz et al. [49] | Material passports in modular construction | CP, CSP |
S24 | Abuhalimeh et al. [50] | Benefits and challenges of material passports for buildings at end-of-life | CP, RV |
S25 | Honic et al. [48] | Potential and challenges of material passports for buildings at end-of-life | JP, CSP |
S26 | KC et al. [51] | Digital technologies in material passports for circularity and net-zero | JP, RV |
S27 | Vahidi et al. [52] | RFID-based material passport for recycled concrete | JP, CSP |
S28 | Caroli [53] | Soft technologies in product material passports for circular transition | CP, CSP |
S29 | Tsui et al. [54] | Spatial parameters in circular construction hubs in the built environment | JP, ESI |
S30 | Freitas et al. [55] | Building rehabilitation with circular economy principles | BC, CSP |
S31 | Marin and De Meulder [56] | Material banks to catalyze circular time flows | JP, CSP |
S32 | Ruggiero et al. [57] | Material banks for waste wood material upcycling from post-disaster areas | BC, CSP |
S33 | Dar Amer et al. [58] | Challenges of material passports for buildings at end-of-life | CP, ESI |
S34 | Çetin et al. [59] | Material passports data requirement, and availability for building circularity | JP, ESI |
S35 | Mao and Cao [60] | Material passports for circularity in the construction industry | JP, RV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mankata, L.M.; Antwi-Afari, P.; Frimpong, S.; Ng, S.T. Material Passports in Construction Waste Management: A Systematic Review of Contexts, Stakeholders, Requirements, and Challenges. Buildings 2025, 15, 1825. https://doi.org/10.3390/buildings15111825
Mankata LM, Antwi-Afari P, Frimpong S, Ng ST. Material Passports in Construction Waste Management: A Systematic Review of Contexts, Stakeholders, Requirements, and Challenges. Buildings. 2025; 15(11):1825. https://doi.org/10.3390/buildings15111825
Chicago/Turabian StyleMankata, Lawrence Martin, Prince Antwi-Afari, Samuel Frimpong, and S. Thomas Ng. 2025. "Material Passports in Construction Waste Management: A Systematic Review of Contexts, Stakeholders, Requirements, and Challenges" Buildings 15, no. 11: 1825. https://doi.org/10.3390/buildings15111825
APA StyleMankata, L. M., Antwi-Afari, P., Frimpong, S., & Ng, S. T. (2025). Material Passports in Construction Waste Management: A Systematic Review of Contexts, Stakeholders, Requirements, and Challenges. Buildings, 15(11), 1825. https://doi.org/10.3390/buildings15111825