Advances in 3D Bioprinting for Corneal Regeneration
Abstract
:1. Introduction
2. Three-Dimensional Bioprinting
2.1. Overview
2.2. Bioprinting Methods
2.3. Tissue Bioprinting
- (i)
- Pre-processing: This involves planning and designing the 3D structure by generating images and computer-aided design (CAD) of the object (organ or tissue) to be processed.
- (ii)
- Bioink preparation and printing: This comprises the selection of biomaterials for their preparation and choice of printing methodology.
- (iii)
- Post-processing: This involves the maturation of the cell-laden construct to enhance tissue development, including biomimetics or biomimicry, autonomous self-assembly, and tissue building blocks.
2.4. Corneal Bioprinting
2.5. Bioinks Designing for Corneal Applications
2.6. Biomechanical Requirements
2.7. Optical Requirements
3. Advancements in Corneal 3D Bioprinting
3.1. The Epithelium in 3D Bioprinting
3.2. The Stroma in 3D Bioprinting
3.3. The Endothelium in 3D Bioprinting
3.4. Other Approximations in Corneal 3D Bioprinting
3.5. In Vivo Assessment of 3D-Bioprinted Corneas
3.6. Traditional Scaffolds vs. Bioprinted Biomaterials for Corneal Tissue
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Report on Vision; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-000034-6. [Google Scholar]
- Gain, P.; Jullienne, R.; He, Z.; Aldossary, M.; Acquart, S.; Cognasse, F.; Thuret, G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016, 134, 167. [Google Scholar] [CrossRef] [PubMed]
- Inomata, T.; Mashaghi, A.; Di Zazzo, A.; Lee, S.-M.; Chiang, H.; Dana, R. Kinetics of Angiogenic Responses in Corneal Transplantation. Cornea 2017, 36, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Di Zazzo, A.; Kheirkhah, A.; Abud, T.B.; Goyal, S.; Dana, R. Management of High-Risk Corneal Transplantation. Surv. Ophthalmol. 2017, 62, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Jester, J.V. Corneal Crystallins and the Development of Cellular Transparency. Semin. Cell Dev. Biol. 2008, 19, 82–93. [Google Scholar] [CrossRef]
- Jester, J.V.; Moller-Pedersen, T.; Huang, J.; Sax, C.M.; Kays, W.T.; Cavangh, H.D.; Petroll, W.M.; Piatigorsky, J. The Cellular Basis of Corneal Transparency: Evidence for ‘Corneal Crystallins’. J. Cell Sci. 1999, 112, 613–622. [Google Scholar] [CrossRef]
- Levin, L.A. Cornea and Sclera. In Adler’s Physiology of the Eye: Expert Consult—Online and Print; Elsevier—Health Sciences Division: Philadelphia, PA, USA, 2011; pp. 71–115. ISBN 978-0-323-05714-1. [Google Scholar]
- On behalf of all contributors to the Australian Corneal Graft Registry (ACGR); Williams, K.A.; Muehlberg, S.M.; Lewis, R.F.; Coster, D.J. How Successful Is Corneal Transplantation? A Report from the Australian Corneal Graft Register. Eye 1995, 9, 219–227. [Google Scholar] [CrossRef]
- Mathews, P.M.; Lindsley, K.; Aldave, A.J.; Akpek, E.K. Etiology of Global Corneal Blindness and Current Practices of Corneal Transplantation: A Focused Review. Cornea 2018, 37, 1198–1203. [Google Scholar] [CrossRef]
- Hori, J.; Yamaguchi, T.; Keino, H.; Hamrah, P.; Maruyama, K. Immune Privilege in Corneal Transplantation. Prog. Retin. Eye Res. 2019, 72, 100758. [Google Scholar] [CrossRef]
- Liu, X.; Shen, J.; Yan, H.; Hu, J.; Liao, G.; Liu, D.; Zhou, S.; Zhang, J.; Liao, J.; Guo, Z.; et al. Posttransplant Complications: Molecular Mechanisms and Therapeutic Interventions. MedComm 2024, 5, e669. [Google Scholar] [CrossRef]
- Chen, M.; Ng, S.M.; Akpek, E.K.; Ahmad, S. Artificial Corneas versus Donor Corneas for Repeat Corneal Transplants. Cochrane Database Syst. Rev. 2020, CD009561. [Google Scholar] [CrossRef]
- Griffith, M.; Buznyk, O.; Alarcon, E.I.; Simpson, F. Artificial Corneas. In Reference Module in Neuroscience and Biobehavioral Psychology; Elsevier: Amsterdam, The Netherlands, 2017; p. B9780128093245013092. ISBN 978-0-12-809324-5. [Google Scholar]
- Avadhanam, V.; Smith, H.; Liu, C. Keratoprostheses for Corneal Blindness: A Review of Contemporary Devices. Clin. Ophthalmol. 2015, 9, 697. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.B.; Shtein, R.M.; Kaufman, S.C.; Deng, S.X.; Rosenblatt, M.I. Boston Keratoprosthesis: Outcomes and Complications. Ophthalmology 2015, 122, 1504–1511. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.; Tan, D.T.; Tan, X.-W.; Mehta, J.S. Osteo-Odonto Keratoprosthesis: Systematic Review of Surgical Outcomes and Complication Rates. Ocul. Surf. 2012, 10, 15–25. [Google Scholar] [CrossRef]
- Chalam, K.V.; Chokshi, A.; Agarwal, S.; Edward, D.P. Complications of AlphaCor Keratoprosthesis: A Clinicopathologic Report. Cornea 2007, 26, 1258–1260. [Google Scholar] [CrossRef]
- Chen, Z.; You, J.; Liu, X.; Cooper, S.; Hodge, C.; Sutton, G.; Crook, J.M.; Wallace, G.G. Biomaterials for Corneal Bioengineering. Biomed. Mater. 2018, 13, 032002. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.; Mi, S. Electrospun Scaffolds for Corneal Tissue Engineering: A Review. Materials 2016, 9, 614. [Google Scholar] [CrossRef]
- Ozcelik, B.; Brown, K.D.; Blencowe, A.; Daniell, M.; Stevens, G.W.; Qiao, G.G. Ultrathin Chitosan–Poly(Ethylene Glycol) Hydrogel Films for Corneal Tissue Engineering. Acta Biomater. 2013, 9, 6594–6605. [Google Scholar] [CrossRef]
- Mahmoud Salehi, A.O.; Heidari Keshel, S.; Sefat, F.; Tayebi, L. Use of Polycaprolactone in Corneal Tissue Engineering: A Review. Mater. Today Commun. 2021, 27, 102402. [Google Scholar] [CrossRef]
- Teixeira, M.A.; Amorim, M.T.P.; Felgueiras, H.P. Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers 2019, 12, 7. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Seyed, M. Physicochemical Characterization and Bioactivity of an Improved Chitosan Scaffold Cross-Linked with Polyvinyl Alcohol for Corneal Tissue Engineering Applications. Annu. Res. Rev. Biol. 2018, 24, 1–16. [Google Scholar] [CrossRef]
- Deshpande, P.; McKean, R.; Blackwood, K.A.; Senior, R.A.; Ogunbanjo, A.; Ryan, A.J.; MacNeil, S. Using Poly(Lactide-Co-Glycolide) Electrospun Scaffolds to Deliver Cultured Epithelial Cells to the Cornea. Regen. Med. 2010, 5, 395–401. [Google Scholar] [CrossRef]
- Chae, J.J.; McIntosh Ambrose, W.; Espinoza, F.A.; Mulreany, D.G.; Ng, S.; Takezawa, T.; Trexler, M.M.; Schein, O.D.; Chuck, R.S.; Elisseeff, J.H. Regeneration of Corneal Epithelium Utilizing a Collagen Vitrigel Membrane in Rabbit Models for Corneal Stromal Wound and Limbal Stem Cell Deficiency. Acta Ophthalmol. 2015, 93, e57–e66. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.; Pacelli, S.; Haj, A.; Dua, H.; Hopkinson, A.; White, L.; Rose, F. Gelatin-Based Materials in Ocular Tissue Engineering. Materials 2014, 7, 3106–3135. [Google Scholar] [CrossRef]
- Tarsitano, M.; Cristiano, M.C.; Fresta, M.; Paolino, D.; Rafaniello, C. Alginate-Based Composites for Corneal Regeneration: The Optimization of a Biomaterial to Overcome Its Limits. Gels 2022, 8, 431. [Google Scholar] [CrossRef] [PubMed]
- Ahearne, M.; Fernández-Pérez, J.; Masterton, S.; Madden, P.W.; Bhattacharjee, P. Designing Scaffolds for Corneal Regeneration. Adv. Funct. Mater. 2020, 30, 1908996. [Google Scholar] [CrossRef]
- Ulag, S.; Uysal, E.; Bedir, T.; Sengor, M.; Ekren, N.; Ustundag, C.B.; Midha, S.; Kalaskar, D.M.; Gunduz, O. Recent Developments and Characterization Techniques in 3D Printing of Corneal Stroma Tissue. Polym. Adv. Technol. 2021, 32, 3287–3296. [Google Scholar] [CrossRef]
- Zhang, M.-C.; Liu, X.; Jin, Y.; Jiang, D.-L.; Wei, X.-S.; Xie, H.-T. Lamellar Keratoplasty Treatment of Fungal Corneal Ulcers with Acellular Porcine Corneal Stroma. Am. J. Transplant. 2015, 15, 1068–1075. [Google Scholar] [CrossRef]
- Guo, X.; Hutcheon, A.E.K.; Melotti, S.A.; Zieske, J.D.; Trinkaus-Randall, V.; Ruberti, J.W. Morphologic Characterization of Organized Extracellular Matrix Deposition by Ascorbic Acid–Stimulated Human Corneal Fibroblasts. Investig. Opthalmology Vis. Sci. 2007, 48, 4050. [Google Scholar] [CrossRef]
- Islam, M.M.; Ravichandran, R.; Olsen, D.; Ljunggren, M.K.; Fagerholm, P.; Lee, C.J.; Griffith, M.; Phopase, J. Self-Assembled Collagen-like-Peptide Implants as Alternatives to Human Donor Corneal Transplantation. RSC Adv. 2016, 6, 55745–55749. [Google Scholar] [CrossRef]
- Fagerholm, P.; Lagali, N.S.; Merrett, K.; Jackson, W.B.; Munger, R.; Liu, Y.; Polarek, J.W.; Söderqvist, M.; Griffith, M. A Biosynthetic Alternative to Human Donor Tissue for Inducing Corneal Regeneration: 24-Month Follow-Up of a Phase 1 Clinical Study. Sci. Transl. Med. 2010, 2, 46ra61. [Google Scholar] [CrossRef]
- Fagerholm, P.; Lagali, N.S.; Ong, J.A.; Merrett, K.; Jackson, W.B.; Polarek, J.W.; Suuronen, E.J.; Liu, Y.; Brunette, I.; Griffith, M. Stable Corneal Regeneration Four Years after Implantation of a Cell-Free Recombinant Human Collagen Scaffold. Biomaterials 2014, 35, 2420–2427. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Buznyk, O.; Reddy, J.C.; Pasyechnikova, N.; Alarcon, E.I.; Hayes, S.; Lewis, P.; Fagerholm, P.; He, C.; Iakymenko, S.; et al. Biomaterials-Enabled Cornea Regeneration in Patients at High Risk for Rejection of Donor Tissue Transplantation. npj Regen. Med. 2018, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Ozbolat, I.T. Applications of 3D Bioprinting with Minor Contributions by Dr. Weijie Peng, The Pennsylvania State University. In 3D Bioprinting; Elsevier: Amsterdam, The Netherlands, 2017; pp. 271–312. ISBN 978-0-12-803010-3. [Google Scholar]
- Ng, W.L.; Chan, A.; Ong, Y.S.; Chua, C.K. Deep Learning for Fabrication and Maturation of 3D Bioprinted Tissues and Organs. Virtual Phys. Prototyp. 2020, 15, 340–358. [Google Scholar] [CrossRef]
- Lemarteleur, V.; Peycelon, M.; Sablayrolles, J.-L.; Plaisance, P.; El-Ghoneimi, A.; Ceccaldi, P.-F. Realization of Open Software Chain for 3D Modeling and Printing of Organs in Simulation Centers: Example of Renal Pelvis Reconstruction. J. Surg. Educ. 2021, 78, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xue, Q.; Li, J.; Ma, L.; Yao, Y.; Ye, H.; Cui, Z.; Yang, H. 3D Bioprinting for Artificial Cornea: Challenges and Perspectives. Med. Eng. Phys. 2019, 71, 68–78. [Google Scholar] [CrossRef]
- Fan, D.; Li, Y.; Wang, X.; Zhu, T.; Wang, Q.; Cai, H.; Li, W.; Tian, Y.; Liu, Z. Progressive 3D Printing Technology and Its Application in Medical Materials. Front. Pharmacol. 2020, 11, 122. [Google Scholar] [CrossRef]
- Mobaraki, M. Bioinks and Bioprinting: A Focused Review. Bioprinting 2020, 18, e00080. [Google Scholar] [CrossRef]
- Yilmaz, B.; Al Rashid, A.; Mou, Y.A.; Evis, Z.; Koç, M. Bioprinting: A Review of Processes, Materials and Applications. Bioprinting 2021, 23, e00148. [Google Scholar] [CrossRef]
- Mironov, V.; Reis, N.; Derby, B. Review: Bioprinting: A Beginning. Tissue Eng. 2006, 12, 631–634. [Google Scholar] [CrossRef]
- Wu, Z.; Su, X.; Xu, Y.; Kong, B.; Sun, W.; Mi, S. Bioprinting Three-Dimensional Cell-Laden Tissue Constructs with Controllable Degradation. Sci. Rep. 2016, 6, 24474. [Google Scholar] [CrossRef]
- Starly, B.; Shirwaiker, R. 3D Bioprinting Techniques. In 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine; Elsevier: Amsterdam, The Netherlands, 2015; pp. 71–91. ISBN 978-0-12-824552-1. [Google Scholar]
- Tan, B.; Gan, S.; Wang, X.; Liu, W.; Li, X. Applications of 3D Bioprinting in Tissue Engineering: Advantages, Deficiencies, Improvements, and Future Perspectives. J. Mater. Chem. B 2021, 9, 5385–5413. [Google Scholar] [CrossRef]
- Matai, I. Progress in 3D Bioprinting Technology for Tissue/Organ Regenerative Engineering. Biomaterials 2020, 226, 119536. [Google Scholar] [CrossRef]
- Farasatkia, A. Robust and Double-Layer Micro-Patterned Bioadhesive Based on Silk Nanofibril/GelMA-Alginate for Stroma Tissue Engineering. Int. J. Biol. Macromol. 2021, 183, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- Grönroos, P.; Mörö, A.; Puistola, P.; Hopia, K.; Huuskonen, M.; Viheriälä, T.; Ilmarinen, T.; Skottman, H. Bioprinting of Human Pluripotent Stem Cell Derived Corneal Endothelial Cells with Hydrazone Crosslinked Hyaluronic Acid Bioink. Stem Cell Res. Ther. 2024, 15, 81. [Google Scholar] [CrossRef] [PubMed]
- Leijten, J.; Rouwkema, J.; Zhang, Y.S.; Nasajpour, A.; Dokmeci, M.R.; Khademhosseini, A. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration. Small 2016, 12, 2130–2145. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, S.; Sharifi, H.; Akbari, A.; Koza, D.; Dohlman, C.H.; Paschalis, E.I.; Chodosh, J. Photo-Cross-Linked Gelatin Glycidyl Methacrylate/N-Vinylpyrrolidone Copolymeric Hydrogel with Tunable Mechanical Properties for Ocular Tissue Engineering Applications. ACS Appl. Bio. Mater. 2021, 4, 7682–7691. [Google Scholar] [CrossRef]
- Wang, Z.; Kapadia, W.; Li, C.; Lin, F.; Pereira, R.F.; Granja, P.L.; Sarmento, B.; Cui, W. Tissue-Specific Engineering: 3D Bioprinting in Regenerative Medicine. J. Control Release 2021, 329, 237–256. [Google Scholar] [CrossRef]
- Gao, B.; Yang, Q.; Zhao, X.; Jin, G.; Ma, Y.; Xu, F. 4D Bioprinting for Biomedical Applications. Trends Biotechnol. 2016, 34, 746–756. [Google Scholar] [CrossRef]
- Fu, Z.; Ouyang, L.; Xu, R.; Yang, Y.; Sun, W. Responsive Biomaterials for 3D Bioprinting: A Review. Mater. Today 2022, 52, 112–132. [Google Scholar] [CrossRef]
- Reiffel, A.J.; Kafka, C.; Hernandez, K.A.; Popa, S.; Perez, J.L.; Zhou, S.; Pramanik, S.; Brown, B.N.; Ryu, W.S.; Bonassar, L.J.; et al. High-Fidelity Tissue Engineering of Patient-Specific Auricles for Reconstruction of Pediatric Microtia and Other Auricular Deformities. PLoS ONE 2013, 8, e56506. [Google Scholar] [CrossRef]
- Norotte, C.; Marga, F.S.; Niklason, L.E.; Forgacs, G. Scaffold-Free Vascular Tissue Engineering Using Bioprinting. Biomaterials 2009, 30, 5910–5917. [Google Scholar] [CrossRef] [PubMed]
- Billiet, T.; Vandenhaute, M.; Schelfhout, J.; Van Vlierberghe, S.; Dubruel, P. A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering. Biomaterials 2012, 33, 6020–6041. [Google Scholar] [CrossRef]
- Sommer, A.C.; Blumenthal, E.Z. Implementations of 3D Printing in Ophthalmology. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 1815–1822. [Google Scholar] [CrossRef]
- Ludwig, P.E.; Huff, T.J.; Zuniga, J.M. The Potential Role of Bioengineering and Three-Dimensional Printing in Curing Global Corneal Blindness. J. Tissue Eng. 2018, 9, 2041731418769863. [Google Scholar] [CrossRef]
- Gibney, R.; Matthyssen, S.; Patterson, J.; Ferraris, E.; Zakaria, N. The Human Cornea as a Model Tissue for Additive Biomanufacturing: A Review. Procedia CIRP 2017, 65, 56–63. [Google Scholar] [CrossRef]
- Mahdavi, S.S.; Abdekhodaie, M.J.; Mashayekhan, S.; Baradaran-Rafii, A.; Djalilian, A.R. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng. Regen. Med. 2020, 17, 567–593. [Google Scholar] [CrossRef]
- Sorkio, A.; Koch, L.; Koivusalo, L.; Deiwick, A.; Miettinen, S.; Chichkov, B.; Skottman, H. Human Stem Cell Based Corneal Tissue Mimicking Structures Using Laser-Assisted 3D Bioprinting and Functional Bioinks. Biomaterials 2018, 171, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K. Development of a Bioengineered Cornea Using a 3-Dimensional Bioprinting System. Cornea 2014, 33, S12. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kumar, J.P. Application of an MCDM Tool for Selection of 3D Bioprinting Processes. In Innovative Product Design and Intelligent Manufacturing Systems; Deepak, B., Parhi, D., Jena, P.C., Eds.; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2020; pp. 787–797. ISBN 978-981-15-2695-4. [Google Scholar]
- Rohrbach, L.; Huebner, P. Application of Multi-Criteria Decision Making in Bioink Selection. In Proceedings of the 2021 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 29–30 April 2021; pp. 1–6. [Google Scholar]
- Hernández, J.; Panadero-Medianero, C.; Arrázola, M.S.; Ahumada, M. Mimicking the Physicochemical Properties of the Cornea: A Low-Cost Approximation Using Highly Available Biopolymers. Polymers 2024, 16, 1118. [Google Scholar] [CrossRef]
- He, B.; Wang, J.; Xie, M.; Xu, M.; Zhang, Y.; Hao, H.; Xing, X.; Lu, W.; Han, Q.; Liu, W. 3D Printed Biomimetic Epithelium/Stroma Bilayer Hydrogel Implant for Corneal Regeneration. Bioact. Mater. 2022, 17, 234–247. [Google Scholar] [CrossRef]
- Suzuki, K. Cell–Matrix and Cell–Cell Interactions during Corneal Epithelial Wound Healing. Prog. Retin. Eye Res. 2003, 22, 113–133. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Gao, H.; Qin, L.; Jia, Y.; Gao, M.; Ren, L. Microgrooved Collagen-Based Corneal Scaffold for Promoting Collective Cell Migration and Antifibrosis. RSC Adv. 2019, 9, 29463–29473. [Google Scholar] [CrossRef] [PubMed]
- Prasathkumar, M.; Dhrisya, C.; Lin, F.; Sadhasivam, S. The Design and Developments of Protein-Polysaccharide Biomaterials for Corneal Tissue Engineering. Adv. Mater. Technol. 2023, 8, 2300171. [Google Scholar] [CrossRef]
- Asher, R.; Gefen, A.; Moisseiev, E.; Varssano, D. An Analytical Approach to Corneal Mechanics for Determining Practical, Clinically-Meaningful Patient-Specific Tissue Mechanical Properties in the Rehabilitation of Vision. Ann. Biomed. Eng. 2015, 43, 274–286. [Google Scholar] [CrossRef]
- Xue, C.; Xiang, Y.; Shen, M.; Wu, D.; Wang, Y. Preliminary Investigation of the Mechanical Anisotropy of the Normal Human Corneal Stroma. J. Ophthalmol. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mascolini, M.V.; Toniolo, I.; Carniel, E.L.; Fontanella, C.G. Ex Vivo, in Vivo and in Silico Studies of Corneal Biomechanics: A Systematic Review. Phys. Eng. Sci. Med. 2024, 47, 403–441. [Google Scholar] [CrossRef]
- Elsheikh, A.; Alhasso, D.; Rama, P. Biomechanical Properties of Human and Porcine Corneas. Exp. Eye Res. 2008, 86, 783–790. [Google Scholar] [CrossRef]
- Gingras, A.A.; Jansen, P.A.; Smith, C.; Zhang, X.; Niu, Y.; Zhao, Y.; Roberts, C.J.; Herderick, E.D.; Swindle-Reilly, K.E. 3D Bioprinting of Acellular Corneal Stromal Scaffolds with a Low Cost Modified 3D Printer: A Feasibility Study. Curr. Eye Res. 2023, 48, 1112–1121. [Google Scholar] [CrossRef]
- Zhang, R.; Li, B.; Li, H. Extracellular-Matrix Mechanics Regulate the Ocular Physiological and Pathological Activities. J. Ophthalmol. 2023, 2023, 7626920. [Google Scholar] [CrossRef]
- Zhe, M.; Wu, X.; Yu, P.; Xu, J.; Liu, M.; Yang, G.; Xiang, Z.; Xing, F.; Ritz, U. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering. Materials 2023, 16, 3197. [Google Scholar] [CrossRef]
- Puistola, P.; Kethiri, A.; Nurminen, A.; Turkki, J.; Hopia, K.; Miettinen, S.; Mörö, A.; Skottman, H. Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering. ACS Appl. Mater. Interfaces 2024, 16, 15761–15772. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, M.-N.; Kim, J.; Jang, J.; Kim, H.-K.; Cho, D.-W. Characterization of Cornea-Specific Bioink: High Transparency, Improved in Vivo Safety. J. Tissue Eng. 2019, 10, 2041731418823382. [Google Scholar] [CrossRef]
- Chae, J.J.; Choi, J.S.; Lee, J.D.; Lu, Q.; Stark, W.J.; Kuo, I.C.; Elisseeff, J.H. Physical and Biological Characterization of the Gamma-Irradiated Human Cornea. Cornea 2015, 34, 1287–1294. [Google Scholar] [CrossRef]
- Patel, S.; Tutchenko, L. The Refractive Index of the Human Cornea: A Review. Contact Lens Anterior Eye 2019, 42, 575–580. [Google Scholar] [CrossRef]
- Tayebi, T.; Baradaran-Rafii, A.; Hajifathali, A.; Rahimpour, A.; Zali, H.; Shaabani, A.; Niknejad, H. Biofabrication of Chitosan/Chitosan Nanoparticles/Polycaprolactone Transparent Membrane for Corneal Endothelial Tissue Engineering. Sci. Rep. 2021, 11, 7060. [Google Scholar] [CrossRef] [PubMed]
- Kilic Bektas, C.; Hasirci, V. Mimicking Corneal Stroma Using Keratocyte-loaded Photopolymerizable Methacrylated Gelatin Hydrogels. J. Tissue Eng. Regen. Med. 2018, 12, e1899–e1910. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Deng, S.; Wu, Y.; Wei, H.; Jing, G.; Zhang, B.; Liu, F.; Tian, H.; Chen, X.; Tian, W. Remodelling 3D Printed GelMA-HA Corneal Scaffolds by Cornea Stromal Cells. Colloid Interface Sci. Commun. 2022, 49, 100632. [Google Scholar] [CrossRef]
- Chand, R.; Janarthanan, G.; Elkhoury, K.; Vijayavenkataraman, S. Digital Light Processing 3D Bioprinting of Biomimetic Corneal Stroma Equivalent Using Gelatin Methacryloyl and Oxidized Carboxymethylcellulose Interpenetrating Network Hydrogel. Biofabrication 2025, 17, 025011. [Google Scholar] [CrossRef]
- Das, S.; Pati, F.; Choi, Y.-J.; Rijal, G.; Shim, J.-H.; Kim, S.W.; Ray, A.R.; Cho, D.-W.; Ghosh, S. Bioprintable, Cell-Laden Silk Fibroin–Gelatin Hydrogel Supporting Multilineage Differentiation of Stem Cells for Fabrication of Three-Dimensional Tissue Constructs. Acta Biomater. 2015, 11, 233–246. [Google Scholar] [CrossRef]
- Mahdavi, S.S.; Abdekhodaie, M.J.; Kumar, H.; Mashayekhan, S.; Baradaran-Rafii, A.; Kim, K. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Ann. Biomed. Eng. 2020, 48, 1955–1970. [Google Scholar] [CrossRef]
- Kutlehria, S.; Dinh, T.C.; Bagde, A.; Patel, N.; Gebeyehu, A.; Singh, M. High-throughput 3D Bioprinting of Corneal Stromal Equivalents. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 2981–2994. [Google Scholar] [CrossRef]
- Wu, K.Y.; Belaiche, M.; Wen, Y.; Choulakian, M.Y.; Tran, S.D. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers 2024, 16, 2882. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.W.; Lee, S.J.; Park, S.H.; Kim, J.C. Ex Vivo Functionality of 3D Bioprinted Corneal Endothelium Engineered with Ribonuclease 5-Overexpressing Human Corneal Endothelial Cells. Adv. Healthc. Mater. 2018, 7, 1800398. [Google Scholar] [CrossRef]
- Isaacson, A.; Swioklo, S.; Connon, C.J. 3D Bioprinting of a Corneal Stroma Equivalent. Exp. Eye Res. 2018, 173, 188–193. [Google Scholar] [CrossRef]
- Simonini, I.; Pandolfi, A. Customized Finite Element Modelling of the Human Cornea. PLoS ONE 2015, 10, e0130426. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jang, J.; Park, J.; Lee, K.-P.; Lee, S.; Lee, D.-M.; Kim, K.H.; Kim, H.K.; Cho, D.-W. Shear-Induced Alignment of Collagen Fibrils Using 3D Cell Printing for Corneal Stroma Tissue Engineering. Biofabrication 2019, 11, 035017. [Google Scholar] [CrossRef]
- Duarte Campos, D.F.; Rohde, M.; Ross, M.; Anvari, P.; Blaeser, A.; Vogt, M.; Panfil, C.; Yam, G.H.; Mehta, J.S.; Fischer, H.; et al. Corneal Bioprinting Utilizing Collagen-based Bioinks and Primary Human Keratocytes. J. Biomed. Mater. Res. A 2019, 107, 1945–1953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xue, Q.; Hu, H.; Yu, M.; Gao, L.; Luo, Y.; Li, Y.; Li, J.; Ma, L.; Yao, Y.; et al. Integrated 3D Bioprinting-Based Geometry-Control Strategy for Fabricating Corneal Substitutes. J. Zhejiang Univ.-Sci. B 2019, 20, 945–959. [Google Scholar] [CrossRef]
- Zhong, Z.; Balayan, A.; Tian, J.; Xiang, Y.; Hwang, H.H.; Wu, X.; Deng, X.; Schimelman, J.; Sun, Y.; Ma, C.; et al. Bioprinting of Dual ECM Scaffolds Encapsulating Limbal Stem/Progenitor Cells in Active and Quiescent Statuses. Biofabrication 2021, 13, 044101. [Google Scholar] [CrossRef]
- Sagga, N.; Kuffová, L.; Vargesson, N.; Erskine, L.; Collinson, J.M. Limbal Epithelial Stem Cell Activity and Corneal Epithelial Cell Cycle Parameters in Adult and Aging Mice. Stem Cell Res. 2018, 33, 185–198. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, F.; Han, D.; Zhang, S.; Dong, Y.; Li, X.; Ling, L.; Deng, Z.; Cao, X.; Tian, J.; et al. 3D Bioprinting of Corneal Decellularized Extracellular Matrix: GelMA Composite Hydrogel for Corneal Stroma Engineering. Int. J. Bioprinting 2023, 9, 774. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Tang, Y.; Wu, T.; Zhao, X.; Xu, Z.; Yang, R.; Sun, Y.; Wu, B.; Han, Q.; Hui, J.; et al. 3D Printing Sequentially Strengthening High-Strength Natural Polymer Hydrogel Bilayer Scaffold for Cornea Regeneration. Regen. Biomater. 2024, 11, rbae012. [Google Scholar] [CrossRef] [PubMed]
- Balters, L.; Reichl, S. 3D Bioprinting of Corneal Models: A Review of the Current State and Future Outlook. J. Tissue Eng. 2023, 14, 20417314231197793. [Google Scholar] [CrossRef]
- Yilmaz, H.; Gursoy, S.; Calik, H.; Kazancioglu, Y.; Yildirim, R.; Cakir, R.; Gunduz, O.; Ahmed, A.; Ustundag, C.B. Comparative Studies of GelMA Hydrogels: Investigating the Effect of Different Source on Mechanical, Physical and Biological Properties. Mater. Res. Express 2024, 11, 075307. [Google Scholar] [CrossRef]
- Chen, S.-L.; Senadeera, M.; Ruberu, K.; Chung, J.; Rana, S.; Venkatesh, S.; Chen, C.-Y.; Chen, G.-Y.; Wallace, G. Machine Learning-Generated Compression Modulus Database for 3D Printing of Gelatin Methacryloyl. Int. J. Bioprinting 2024, 10, 3814. [Google Scholar] [CrossRef]
- Peyret, C.; Elkhoury, K.; Bouguet-Bonnet, S.; Poinsignon, S.; Boulogne, C.; Giraud, T.; Stefan, L.; Tahri, Y.; Sanchez-Gonzalez, L.; Linder, M.; et al. Gelatin Methacryloyl (GelMA) Hydrogel Scaffolds: Predicting Physical Properties Using an Experimental Design Approach. Int. J. Mol. Sci. 2023, 24, 13359. [Google Scholar] [CrossRef] [PubMed]
- Kilic Bektas, C.; Hasirci, V. Cell Loaded 3D Bioprinted GelMA Hydrogels for Corneal Stroma Engineering. Biomater. Sci. 2020, 8, 438–449. [Google Scholar] [CrossRef]
- Xiao, X.; Pan, S.; Liu, X.; Zhu, X.; Connon, C.J.; Wu, J.; Mi, S. In Vivo Study of the Biocompatibility of a Novel Compressed Collagen Hydrogel Scaffold for Artificial Corneas. J. Biomed. Mater. Res. A 2014, 102, 1782–1787. [Google Scholar] [CrossRef]
- Subramanian, D.; Tjahjono, N.S.; Hernandez, P.A.; Varner, V.D.; Petroll, W.M.; Schmidtke, D.W. Fabrication of Micropatterns of Aligned Collagen Fibrils. Langmuir 2024, 40, 2551–2561. [Google Scholar] [CrossRef]
- Santos, N.; Fuentes-Lemus, E.; Ahumada, M. Use of Photosensitive Molecules in the Crosslinking of Biopolymers: Applications and Considerations in Biomaterials Development. J. Mater. Chem. B 2024, 12, 6550–6562. [Google Scholar] [CrossRef]
- Kačarević, Ž.P.; Rider, P.M.; Alkildani, S.; Retnasingh, S.; Smeets, R.; Jung, O.; Ivanišević, Z.; Barbeck, M. An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects. Materials 2018, 11, 2199. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, J.; Santos, N.; Ahumada, M. Advances in 3D Bioprinting for Corneal Regeneration. Gels 2025, 11, 422. https://doi.org/10.3390/gels11060422
Hernández J, Santos N, Ahumada M. Advances in 3D Bioprinting for Corneal Regeneration. Gels. 2025; 11(6):422. https://doi.org/10.3390/gels11060422
Chicago/Turabian StyleHernández, Juan, Nicolás Santos, and Manuel Ahumada. 2025. "Advances in 3D Bioprinting for Corneal Regeneration" Gels 11, no. 6: 422. https://doi.org/10.3390/gels11060422
APA StyleHernández, J., Santos, N., & Ahumada, M. (2025). Advances in 3D Bioprinting for Corneal Regeneration. Gels, 11(6), 422. https://doi.org/10.3390/gels11060422