Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (819)

Search Parameters:
Keywords = constitutive laws

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 15079 KB  
Article
Elucidating the Spatial Patterns and Influencing Mechanisms of Traditional Villages in Shanxi Province, China: Insights from a River Basin Perspective
by Shiyan Huo, Jinping Wang, Jinxi Hua, Benjamin de Foy and Ishaq Dimeji Sulaymon
Water 2025, 17(22), 3259; https://doi.org/10.3390/w17223259 - 14 Nov 2025
Abstract
Shanxi Province hosts a rich diversity of traditional villages. From a river basin perspective, adherence to natural laws and the removal of administrative barriers are essential for reshaping the conservation paradigm. Using spatial analysis and multiscale geographically weighted regression, this study revealed the [...] Read more.
Shanxi Province hosts a rich diversity of traditional villages. From a river basin perspective, adherence to natural laws and the removal of administrative barriers are essential for reshaping the conservation paradigm. Using spatial analysis and multiscale geographically weighted regression, this study revealed the spatial patterns of 619 traditional villages and how environmental, socioeconomic, and historical–cultural factors shape the spatial heterogeneity. Villages clustered within the Yellow River Basin and the Haihe River Basin, forming an agglomeration belt and three high-density cores. Distance to rivers was a key factor in village siting, with 70.8% located within 3 km of the nearest river. Village density exhibited a U-shaped relationship with distance to roads, and an inverted U-shaped relationship with distance to county-level administrative centers. The interaction between intangible cultural heritage density and average annual precipitation showed the strongest explanatory power, with positive local regression coefficients exceeding 95% and 72%, respectively. Traditional villages constitute an evolving human–environment system in which water resources underpin spatial patterns and intangible cultural heritage sustains endogenous cultural vitality. These findings provide a theoretical framework for graded conservation and resource coordination at the river basin scale. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
22 pages, 6508 KB  
Article
Calculation and Intelligent Prediction of Long-Term Subgrade Settlement on Soft Soil Interlayer Foundations Under Secondary Consolidation in the Yellow River Floodplain
by Yong Lu, Ang Zheng, Xianjin Xu, Tao Lei, Zihan Sang, Lei Zhang, Zhaoyun Sun, Zhanyong Yao and Kai Yao
Eng 2025, 6(11), 320; https://doi.org/10.3390/eng6110320 - 10 Nov 2025
Viewed by 119
Abstract
Highways constructed on stratified foundations with thick soft soil interlayers in the Yellow River floodplain of Shandong Province have experienced long-term settlement. However, accurately predicting subgrade settlement caused by the secondary consolidation of soft soils remains a major engineering challenge. In this study, [...] Read more.
Highways constructed on stratified foundations with thick soft soil interlayers in the Yellow River floodplain of Shandong Province have experienced long-term settlement. However, accurately predicting subgrade settlement caused by the secondary consolidation of soft soils remains a major engineering challenge. In this study, PLAXIS 3D numerical simulation was combined with a neural network model to predict the long-term temporal and spatial settlement behavior of highway subgrades. The results show that the soft soil creep (SSC) constitutive model better represents the consolidation process of the soft soil interlayer than the soft soil (SS) model. A decrease in permeability will prolong the dissipation time of excess pore water pressure and the settlement stabilization time, leading to an increase in the proportion of post-construction settlement in the total settlement. The final settlement increases linearly with the thickness of the soft soil interlayer and embankment height, while it decreases following a power-law function with increasing interlayer burial depth. By comprehensively considering the combined effects of multiple factors, a genetic algorithm–optimized backpropagation neural network (GA-BP) model was developed. The testing dataset achieved a root mean square error (RMSE) of 0.01488 m, a mean absolute percentage error (MAPE) of 7.0562%, and a coefficient of determination (R2) of 0.9706, demonstrating the model’s ability to achieve intelligent full-period and full-section settlement prediction for subgrades with soft soil interlayers. Overall, this study developed an intelligent framework for predicting long-term settlement in subgrades with soft soil interlayers, offering practical guidance for evaluation and timely settlement control. Full article
(This article belongs to the Special Issue Advanced Numerical Simulation Techniques for Geotechnical Engineering)
Show Figures

Figure 1

27 pages, 388 KB  
Article
Thermodynamics and Nonlocality in Continuum Physics
by Claudio Giorgi and Angelo Morro
Thermo 2025, 5(4), 51; https://doi.org/10.3390/thermo5040051 - 9 Nov 2025
Viewed by 97
Abstract
This paper is devoted to the modelling of nonlocality in continuum physics through constitutive functions that depend on suitable gradients. For definiteness, the attention is addressed to elastic solids, heat conductors, and magnetic solids. Models are developed where both the requirements of the [...] Read more.
This paper is devoted to the modelling of nonlocality in continuum physics through constitutive functions that depend on suitable gradients. For definiteness, the attention is addressed to elastic solids, heat conductors, and magnetic solids. Models are developed where both the requirements of the second law of thermodynamics and the balance equations are satisfied for the constitutive functions that involve gradients of strain, temperature, heat flux, and magnetization. Concerning elastic and magnetic solids, it is shown that, depending on the chosen variables, the standard symmetry property of the stress holds identically. The models so developed are free from any hyperstress tensor frequently considered in the literature. Full article
14 pages, 185 KB  
Essay
Is Raz’s Critique Correct?—Dworkin’s Interpretive Theory and the Justification of Legal Authority
by Qian Zhang
Philosophies 2025, 10(6), 123; https://doi.org/10.3390/philosophies10060123 - 5 Nov 2025
Viewed by 363
Abstract
If evaluated solely by Raz’s criteria, Dworkin’s interpretive theory of law indeed faces a crisis of authority justification. This controversy stems from their divergent understandings of the nature of authority. By drawing on Gadamer’s philosophical hermeneutics to interrogate the rational foundation of prejudice, [...] Read more.
If evaluated solely by Raz’s criteria, Dworkin’s interpretive theory of law indeed faces a crisis of authority justification. This controversy stems from their divergent understandings of the nature of authority. By drawing on Gadamer’s philosophical hermeneutics to interrogate the rational foundation of prejudice, the rational essence of authority is re-exposed. Authority is a rational and free activity, tied to recognition, and manifests as the possibility of being justified through reasoning. Dworkin’s methodological approach provides a robust justification for legal authority, which manifests in three key dimensions. First, the very act of interpretation demonstrates recognition that authority constitutes a rational activity, thereby affirming that the establishment of legal authority represents a voluntary, autonomous, and reason-governed enterprise. Second, the interpretive theory of law correlates with the be-earned character of authority across three constitutive aspects: its susceptibility to justifiability, its normative demand for justification, and its substantive realization through justificatory practices. Third, the substantive content of interpretive theory corresponds to the epistemic features of authoritative justification—including its informational properties, scope of application, communal dimensions, and capacity for adaptive rationalization. Consequently, contra Raz’s critique, Dworkin’s theoretical framework successfully provides a coherent account of legal authority’s justificatory foundations. Full article
21 pages, 4097 KB  
Article
Rheological and Thermal Properties of Salecan/Sanxan Composite Hydrogels for Food and Biomedical Applications
by Xiusheng Zhang, Haihong Yang, Guangming Zhang, Xiaoxue Yan, Jun Han, Xuesong Cao, Yan Xu and Zhiping Fan
Gels 2025, 11(10), 839; https://doi.org/10.3390/gels11100839 - 20 Oct 2025
Viewed by 402
Abstract
The rational design of advanced composite gels requires rigorous rheological analysis to decode their flow-deformation mechanisms, a prerequisite for optimizing performance in food and biomedical applications. However, systematic thermal analysis and rheological profiling of Salecan/Sanxan hydrogels remain unexplored, constituting a critical knowledge gap [...] Read more.
The rational design of advanced composite gels requires rigorous rheological analysis to decode their flow-deformation mechanisms, a prerequisite for optimizing performance in food and biomedical applications. However, systematic thermal analysis and rheological profiling of Salecan/Sanxan hydrogels remain unexplored, constituting a critical knowledge gap in this field. This study engineered Salecan/Sanxan hydrogels and systematically probed Salecan-dependent rheological and thermal properties. Through Power Law and Herschel–Bulkley model analyses, the hydrogels demonstrated composition-dependent rheological properties: yield stress (4.7–29.2 Pa), η50 (342.6–3011.4 mPa·s), and Arrhenius equation fitting revealed tunable activation energy (14,688.3–30,997.1 J·mol−1). Notably, when the gel was formulated with 3% Sanxan and 2% Salecan at a volume ratio of 1:2, its thermal-decomposition temperature rose by 9%, from 224.4 °C to 245.1 °C. Conversely, a 1:1 mixture of 2% Sanxan and 2% Salecan produced the lowest freezing point recorded (–18.3 °C), an 18% reduction compared with the control (–15.4 °C). These findings demonstrate the tunable rheological and thermal properties of Salecan/Sanxan hydrogels. By establishing that precise modulation of polymer mixing ratios can match the entire processing shear spectrum, this study not only fills a critical knowledge gap but also creates a versatile platform for designing tailor-made foods and biomedical matrices. Full article
(This article belongs to the Special Issue Food Gels: Structure and Properties (2nd Edition))
Show Figures

Figure 1

28 pages, 88379 KB  
Article
Identification and Fuzzy Control of the Trajectory of a Parallel Robot: Application to Medical Rehabilitation
by Elihu H. Ramirez-Dominguez, José G. Benítez-Morales, Jesus E. Cervantes-Reyes, Ma. de los Angeles Alamilla-Daniel, Angel R. Licona-Rodríguez, Juan M. Xicoténcatl-Pérez and Julio Cesar Ramos-Fernández
Actuators 2025, 14(10), 495; https://doi.org/10.3390/act14100495 - 13 Oct 2025
Viewed by 831
Abstract
A specific challenge in robotic control applications is the identification and regulation of actuators that provide mechanical traction and motion to the robot links. The design of actuator control laws, grounded in parametric identification and experimental motor characterization, enables numerical simulations to explore [...] Read more.
A specific challenge in robotic control applications is the identification and regulation of actuators that provide mechanical traction and motion to the robot links. The design of actuator control laws, grounded in parametric identification and experimental motor characterization, enables numerical simulations to explore diverse operating scenarios. This article presents the initial phases in the development of a robotic rehabilitation system, focused on the kinematic modeling of a parallelogram-configuration robot for upper-limb therapy, the fuzzy identification of its actuators, and their closed-loop evaluation using a fuzzy Parallel Distributed Compensation (PDC) controller with state feedback (Ackermann), whose poles are optimized via the Grey Wolf Optimizer (GWO) metaheuristic. This controller was selected for its congruence with the nonlinear universe of discourse defined by the identified model, a key feature for operation within specific functional ranges in medical applications. The simulation and hardware platform results provide evidence that fuzzy dynamic models constitute a valuable tool for application in rehabilitation systems. This work serves as a foundation for future physical implementations with the fully coupled robotic system, in order to ensure operational safety prior to the start of clinical trials. Full article
Show Figures

Figure 1

18 pages, 10929 KB  
Article
Influence of Activator Modulus and Water-to-Binder Ratio on Mechanical Properties and Damage Mechanisms of Lithium-Slag-Based Geopolymers
by Shujuan Zhang, Chiyuan Che, Haijun Jiang, Ruiguo Zhang, Yang Liu, Shengqiang Yang and Ning Zhang
Materials 2025, 18(20), 4695; https://doi.org/10.3390/ma18204695 - 13 Oct 2025
Viewed by 391
Abstract
The synergistic preparation of geopolymer from lithium slag, fly ash, and slag for underground construction can facilitate the extensive recycling of lithium slag. The effects of different activator moduli and water–binder ratios on the mechanical properties and damage mechanisms of the lithium-slag-based geopolymer [...] Read more.
The synergistic preparation of geopolymer from lithium slag, fly ash, and slag for underground construction can facilitate the extensive recycling of lithium slag. The effects of different activator moduli and water–binder ratios on the mechanical properties and damage mechanisms of the lithium-slag-based geopolymer were investigated by uniaxial compression tests and acoustic emission (AE) monitoring. The results show that, based on a comprehensive evaluation of peak stress, crack closure stress, plastic deformation stress, and elastic modulus, the optimal activator modulus is determined to be 1.0, and the optimal water-to-binder ratio is 0.42. At low modulus values (0.8 and 1.0) and low water–binder ratio (0.42), the AE events exhibit a steady pattern, indicating slow crack initiation and propagation within the geopolymer; with the increasing activator modulus and water-to-binder ratios, the frequency of AE events increases significantly, indicating more-frequent crack propagation and stress mutation within the geopolymer. Similarly, when the modulus is 0.8 or 1.0 and the water–binder ratio is 0.42, the sample presents a macroscopic tensile failure mode; as the modulus and water–binder ratio increase, the sample presents a tensile–shear composite failure mode. The energy evolution laws of geopolymer specimens with different activator moduli and water-to-binder ratios were analyzed, and a damage constitutive model was established. The results indicate that, with optimized mix proportions, the material can be used as a supporting material for underground spaces. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 4342 KB  
Article
Investigation into Anchorage Performance and Bearing Capacity Calculation Models of Underreamed Anchor Bolts
by Bin Zheng, Tugen Feng, Jian Zhang and Haibo Wang
Appl. Sci. 2025, 15(20), 10929; https://doi.org/10.3390/app152010929 - 11 Oct 2025
Viewed by 244
Abstract
Underreamed anchor bolts, as an emerging anchoring element in geotechnical engineering, operate via a fundamentally distinct load transfer mechanism compared with conventional friction type anchors. The accurate and reliable prediction of their ultimate bearing capacity constitutes a pivotal technological impediment to their broader [...] Read more.
Underreamed anchor bolts, as an emerging anchoring element in geotechnical engineering, operate via a fundamentally distinct load transfer mechanism compared with conventional friction type anchors. The accurate and reliable prediction of their ultimate bearing capacity constitutes a pivotal technological impediment to their broader engineering adoption. Firstly, this paper systematically elucidates the constituent mechanisms of underreamed anchor resistance and their progressive load transfer trajectory. Subsequently, in situ full-scale pull-out experiments are leveraged to decompose the load–displacement response throughout its entire evolution. The multi-stage development law and the underlying mechanisms governing the evolution of anchorage characteristics are thereby elucidated. Based on the experimental dataset, a three-dimensional elasto-plastic numerical model is rigorously established. The model delineates, at high resolution, the failure mechanism of surrounding soil mass and the spatiotemporal evolution of its three-dimensional displacement field. A definitive critical displacement criterion for the attainment of the ultimate bearing capacity of underreamed anchors is established. Consequently, analytical models for the ultimate side frictional stress and end-bearing capacity at the limit state are advanced, effectively circumventing the parametric uncertainties inherent in extant empirical formulations. Ultimately, characteristic parameters of the elasto-plastic branch of the load–displacement curve are extracted. An ultimate bearing capacity prognostic framework, founded on an optimized hyperbolic model, is established. Its superior calibration fidelity to the evolving load–displacement response and its demonstrable engineering applicability are rigorously substantiated. Full article
Show Figures

Figure 1

24 pages, 9495 KB  
Article
Overall Slip Failure of a Rubble Mound Breakwater Core Under Solitary Waves: A Numerical Investigation
by Chao Liu, Honghu Li, Dongsheng Jeng, Wei Chen, Longxiang Zhou and Weiyun Chen
J. Mar. Sci. Eng. 2025, 13(10), 1940; https://doi.org/10.3390/jmse13101940 - 10 Oct 2025
Viewed by 372
Abstract
The stability of rubble mound breakwaters is highly affected by extreme wave loading. While extensive research has been devoted to wave-induced scour and liquefaction around breakwaters, comprehensive stability evaluations of the rubble mound breakwater core remain limited. This study develops a numerical framework [...] Read more.
The stability of rubble mound breakwaters is highly affected by extreme wave loading. While extensive research has been devoted to wave-induced scour and liquefaction around breakwaters, comprehensive stability evaluations of the rubble mound breakwater core remain limited. This study develops a numerical framework to investigate the stability of rubble mound breakwaters subjected to solitary wave loading. Wave motion is modeled using the Navier–Stokes equations, wave-induced pore pressure is computed based on Darcy’s law, and soil behavior is represented through the Mohr–Coulomb constitutive model. The numerical model is validated against experimental data. To assess structural stability, the strength reduction method is employed to calculate the Factor of Safety (FOS) during wave propagation, with the minimum FOS serving as the stability criterion. Furthermore, the influence of key parameters, including wave height, soil shear strength, wave–current interaction, berm dimensions, and slope gradient, on breakwater stability is systematically analyzed. Full article
Show Figures

Figure 1

3 pages, 162 KB  
Comment
Comment on Cimmelli, V.A. Interpretation of Second Law of Thermodynamics in Extended Procedures for the Exploitation of the Entropy Inequality: Korteweg Fluids and Strain-Gradient Elasticity as Examples. Entropy 2024, 26, 293
by Samuel Paolucci
Entropy 2025, 27(10), 1050; https://doi.org/10.3390/e27101050 - 10 Oct 2025
Viewed by 230
Abstract
In a recent paper (Entropy 2024, 26, 293), Cimmelli makes use of the constitutive equation of Korteweg fluids to justify the introduction of an extended method to the classical Coleman–Noll procedure. He states that this constitutive equation is incompatible with the second law [...] Read more.
In a recent paper (Entropy 2024, 26, 293), Cimmelli makes use of the constitutive equation of Korteweg fluids to justify the introduction of an extended method to the classical Coleman–Noll procedure. He states that this constitutive equation is incompatible with the second law of thermodynamics and that while several different proposals can be found in the literature to circumvent such a problem, all of them modify the energy balance or entropy flux. Here we note that such statements are not completely true. Full article
16 pages, 296 KB  
Article
Nonlocal Internal Variable and Superfluid State in Liquid Helium II
by Vito Antonio Cimmelli
Mathematics 2025, 13(19), 3134; https://doi.org/10.3390/math13193134 - 1 Oct 2025
Viewed by 230
Abstract
We present a model of superfluidity based on the internal variable theory. We consider a two-component fluid endowed with a scalar internal variable whose gradient is the counterflow velocity. The restrictions imposed by the second law of thermodynamics are obtained by applying a [...] Read more.
We present a model of superfluidity based on the internal variable theory. We consider a two-component fluid endowed with a scalar internal variable whose gradient is the counterflow velocity. The restrictions imposed by the second law of thermodynamics are obtained by applying a generalized Coleman–Noll procedure. A set of constitutive equations of the Landau type, with entropy, entropy flux and stress tensor depending on the counterflow velocity, is obtained. The propagation of acceleration waves is investigated as well. It is shown that the first-and-second sound waves may propagate along the system with speeds depending on the physical parameters of the two fluids. First sound waves may propagate in the same direction or in the opposite direction of the counterflow velocity, depending on the concentration of normal and superfluid components. The speeds of second sound waves have the same mathematical form of those propagating in dielectric crystals. Full article
(This article belongs to the Section E4: Mathematical Physics)
20 pages, 2968 KB  
Article
Tensile Modeling PVC Gels for Electrohydraulic Actuators
by John Albert Faccinto, Jongcheol Lee and Kwang J. Kim
Polymers 2025, 17(19), 2641; https://doi.org/10.3390/polym17192641 - 30 Sep 2025
Viewed by 414
Abstract
Polyvinyl chloride (PVC)-dibutyl adipate (DBA) gels are a fascinating dielectric elastomer actuator showing promise in soft robotics. When actuated with high voltages, the gel deforms towards the anode. A recent application of PVC gels in electrohydraulic actuators motivates elastic and hyperelastic constitutive relationships [...] Read more.
Polyvinyl chloride (PVC)-dibutyl adipate (DBA) gels are a fascinating dielectric elastomer actuator showing promise in soft robotics. When actuated with high voltages, the gel deforms towards the anode. A recent application of PVC gels in electrohydraulic actuators motivates elastic and hyperelastic constitutive relationships for tensile loading modes. PVC gels with plasticizer-to-polymer weight ratios of 2:1, 4:1, 6:1, and 8:1 w/w were evaluated. PVC gels exhibit a linear elastic region up to 25% strain. The elastic modulus decreased with increasing plasticizer content from 288.8 kPa, 56.1 kPa, 24.7 kPa, to 11 kPa. Poisson’s ratio also decreased with increasing plasticizer content from 0.42, 0.43, 0.39, to 0.35. We suggest that the decrease in polymer concentration facilitates a weakly interconnected polymer network susceptible to chain slippage that hinders the network response, thus lowering Poisson’s ratio. Our work suggests that PVC gels can be treated as isotropic and incompressible for large strains and hyperelastic modeling; however, highly plasticized gels tend to act less incompressible at small strains. The power scaling law between the elastic modulus and plasticizer weight ratio showed high agreement, making the elastic modulus deterministic for any plasticizer content. The Neo–Hookean, Mooney–Rivlin, Yeoh, Gent, Ogden, and extended tube hyperelastic constitutive models are investigated. The Yeoh model shows the highest feasibility when evaluated up to 3.5 stretch, showing a maximum normalized root-mean-square-error of 6.85%. Together, these findings establish a constitutive basis for PVC-DBA gels, incorporating small strain elasticity, large strain non-linear behavior, and network analysis while providing suggestive insight into the network structure required for accurately modeling the EPIC. Full article
(This article belongs to the Special Issue Polymeric Materials in Optoelectronic Devices and Energy Applications)
Show Figures

Figure 1

18 pages, 4069 KB  
Article
Dynamic Response of Adjacent Tunnels to Deep Foundation Pit Excavation: A Numerical and Monitoring Data-Driven Case Study
by Shangyou Jiang, Wensheng Chen, Rulong Ma, Xinlei Lv, Fuqiang Sun and Zengle Ren
Appl. Sci. 2025, 15(19), 10570; https://doi.org/10.3390/app151910570 - 30 Sep 2025
Viewed by 332
Abstract
Urban deep excavations conducted near operational tunnels necessitate stringent deformation control. This study investigates the Baiyun Station excavation by employing a three-dimensional finite-element model based on the Hardening Soil Small-strain (HSS) constitutive law, calibrated using Phase I field monitoring data on wall deflection, [...] Read more.
Urban deep excavations conducted near operational tunnels necessitate stringent deformation control. This study investigates the Baiyun Station excavation by employing a three-dimensional finite-element model based on the Hardening Soil Small-strain (HSS) constitutive law, calibrated using Phase I field monitoring data on wall deflection, ground settlement, and tunnel displacement. Material parameters for the HSS model derived from the prior Phase I numerical simulation were held fixed and used to simulate the Phase II excavation, with peak errors of less than 5.8% for wall deflection and less than 2.9% for ground settlement. The model was subsequently applied to evaluate the impacts of Phase II excavation. The key contribution of this study is a monitoring-driven HSS modeling framework that integrates staged excavation simulation with field-based calibration, enabling quantitative assessment of tunnel responses—including settlement troughs, bow-shaped wall deflection patterns, and the distance-decay characteristics of lining displacement—to support structural safety evaluations and protective design measures. The results demonstrate that the predicted deformations and lining stresses in adjacent power and metro tunnels remain within permissible limits, offering practical guidance for excavation control in densely populated urban areas. Full article
Show Figures

Figure 1

36 pages, 9959 KB  
Article
Design and Validation of Elastic Dies for Enhanced Metal Powder Compaction: A FEM and Experimental Study
by Dan Cristian Noveanu and Simona Noveanu
Materials 2025, 18(19), 4491; https://doi.org/10.3390/ma18194491 - 26 Sep 2025
Viewed by 513
Abstract
Metal powder compaction in rigid dies often suffers from high ejection forces, non-uniform density, and accelerated tool wear. We investigate an elastic-sleeve die concept in which a conical shrink-fit sleeve provides controllable radial confinement during pressing and elastic relaxation during extraction. An extensive [...] Read more.
Metal powder compaction in rigid dies often suffers from high ejection forces, non-uniform density, and accelerated tool wear. We investigate an elastic-sleeve die concept in which a conical shrink-fit sleeve provides controllable radial confinement during pressing and elastic relaxation during extraction. An extensive experimental program on Fe-based and 316L powders, carried out in parallel with finite element analyses (SolidWorks Simulation version 2021; Marc Mentat 2005), quantified the roles of taper angle (α = 1–4°), axial pretension (Δh = 0.5–1.5 mm), and friction. Contact pressure increased from ≈52 MPa at α = 1° to ≈200 MPa at α = 3°, with negligible gains beyond 3°. For 316L, relative density reached ρ ≈ 0.889 at 325 kN with Δh = 1.5 mm; Fe–Cu–C achieved ρ ≈ 0.865 under identical conditions. The experimental results provided direct validation of the FEM, with calibrated viscoplastic simulations reproducing density–force trends within ≈±5% (mean density error ≈ 4.6%), while mid-stroke force differences (≈15–20%) reflected rearrangement/friction effects not captured by the constitutive law. The combined evidence identifies an optimal window of α ≈ 3° and Δh ≈ 1.0–1.5 mm that maximizes contact pressure and densification without overstressing the sleeve. Elastic relaxation of the sleeve facilitates extraction and suggests reduced ejection effort compared with rigid dies. These findings support elastic dies as a practical route to improved densification and tool life in powder metallurgy. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

19 pages, 1545 KB  
Article
Study on an Evaluation Model for Regional Water Resource Stress Based on Water Scarcity Footprint
by Lu Qiao, Xue Bai, Yan Bai, Jialin Liu, Lingsi Kong and Lan Zhang
Water 2025, 17(18), 2768; https://doi.org/10.3390/w17182768 - 18 Sep 2025
Viewed by 536
Abstract
Under the multiple pressures of intensifying global climate change disruption and rapid economic growth, China has become one of the countries facing the most serious water scarcity problems. Based on the ISO 14046 standard and the framework of water scarcity footprint theory, this [...] Read more.
Under the multiple pressures of intensifying global climate change disruption and rapid economic growth, China has become one of the countries facing the most serious water scarcity problems. Based on the ISO 14046 standard and the framework of water scarcity footprint theory, this study will break through the static limitations and lack of dimensions of traditional characteristic factors (i.e., water stress) and construct a water stress evaluation index system that combines nature, economy, and society. The results indicate that in recent years, regional water stress in China has exhibited significant spatiotemporal variations and spatial clustering, primarily driven by composite factors, with an overall decreasing trend. Among them, Shanghai is the highest-pressure area and Shaanxi is the lowest-pressure area, which is mainly due to the spatial projection of the coupling effect of multi-dimensional factors. In addition, the obstacle degree analysis method shows that indicators such as the utilization rate of water resource development constitute cross-regional constraints. To this end, all regions should make efforts to regulate and control the water use structure, introduce water-saving technologies, and strengthen water-saving publicity according to their needs. Therefore, this study not only provides a scientific basis for in-depth understanding of the distribution law and influencing mechanism of water stress but also provides an important reference for the rational allocation and sustainable use of water resources by upgrading the characteristic factors to system control signals. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

Back to TopTop