Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = constant-roll inflation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1412 KB  
Article
Sustaining Quasi De-Sitter Inflation with Bulk Viscosity
by Sayantani Lahiri and Luciano Rezzolla
Symmetry 2024, 16(2), 194; https://doi.org/10.3390/sym16020194 - 6 Feb 2024
Cited by 3 | Viewed by 1472
Abstract
The de-Sitter spacetime is a maximally symmetric Lorentzian manifold with constant positive scalar curvature that plays a fundamental role in modern cosmology. Here, we investigate bulk-viscosity-assisted quasi de-Sitter inflation, that is the period of accelerated expansion in the early universe during which [...] Read more.
The de-Sitter spacetime is a maximally symmetric Lorentzian manifold with constant positive scalar curvature that plays a fundamental role in modern cosmology. Here, we investigate bulk-viscosity-assisted quasi de-Sitter inflation, that is the period of accelerated expansion in the early universe during which H˙H2, with H(t) being the Hubble expansion rate. We do so in the framework of a causal theory of relativistic hydrodynamics, which takes into account non-equilibrium effects associated with bulk viscosity, which may have been present as the early universe underwent an accelerated expansion. In this framework, the existence of a quasi de-Sitter universe emerges as a natural consequence of the presence of bulk viscosity, without requiring introducing additional scalar fields. As a result, the equation of state, determined by numerically solving the generalized momentum-conservation equation involving bulk viscosity pressure turns out to be time dependent. The transition timescale characterising its departure from an exact de-Sitter phase is intricately related to the magnitude of the bulk viscosity. We examine the properties of the new equation of state, as well as the transition timescale in the presence of bulk viscosity pressure. In addition, we construct a fluid description of inflation and demonstrate that, in the context of the causal formalism, it is equivalent to the scalar field theory of inflation. Our analysis also shows that the slow-roll conditions are realised in the bulk-viscosity-supported model of inflation. Finally, we examine the viability of our model by computing the inflationary observables, namely the spectral index and the tensor-to-scalar ratio of the curvature perturbations, and compare them with a number of different observations, finding good agreement in most cases. Full article
(This article belongs to the Special Issue Exact Solutions in Modern Cosmology with Symmetry/Asymmetry)
Show Figures

Figure 1

17 pages, 17309 KB  
Article
Rolling Tires on the Flat Road: Thermo-Investigation with Changing Conditions through Numerical Simulation
by Thanh-Cong Nguyen, Khanh-Duy Do Cong and Cong-Truong Dinh
Appl. Sci. 2023, 13(8), 4834; https://doi.org/10.3390/app13084834 - 12 Apr 2023
Cited by 7 | Viewed by 2951
Abstract
A crucial material comprising a pneumatic tire is rubber. In general, the tire, or more specifically, the hysteresis effects brought on by the deformation of the part made of rubber during the procedure, heat up the part. In addition, the tire temperature depends [...] Read more.
A crucial material comprising a pneumatic tire is rubber. In general, the tire, or more specifically, the hysteresis effects brought on by the deformation of the part made of rubber during the procedure, heat up the part. In addition, the tire temperature depends on several factors, including the inflation pressure, automobile loading, car speed, road tire, the environmental conditions, and the tire geometry. This work focuses on using simulations to calculate the temperature and generated heat flow distributions of a rolling tire with constant velocity using the finite element method. For the sake of simplicity, it is assumed that the only components of the tire are rubber, body-ply, bead wire, and the rim. While the other components are believed to be made of a linear elastic material, the nonlinear mechanical behavior of the rubber is characterized by a Mooney–Rivlin model. Investigations are conducted into the combined effects of vehicle loads and inflation pressure. Hysteresis energy loss is used as a bridge to link the strain energy density to the heat source in rolling tires, and their temperature and heat flow distributions may be determined by steady-state thermal analysis. Thanks to the state-of-the-art computing method, the time required for connected 3D dynamic rolling tire simulations is reduced. The simulation outcomes demonstrate that the maximum temperature in this paper is attained with high weights, high velocities, and low inner inflated pressures. Overall, the maximum temperature is increased with the rise of all three variables. Moreover, the rise of the friction coefficient between the tread and road surface moves the high-temperature area towards the tread/sidewall connection area. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

7 pages, 616 KB  
Proceeding Paper
On Cosmological Inflation in Palatini F(R,ϕ) Gravity
by Mahmoud AlHallak
Phys. Sci. Forum 2023, 7(1), 35; https://doi.org/10.3390/ECU2023-14048 - 17 Feb 2023
Cited by 2 | Viewed by 1097
Abstract
Single field inflationary models are investigated within Palatini quadratic gravity, represented by R+αR2, along with a non-minimal coupling of the form f(ϕ)R between the inflaton field ϕ and the gravity. The treatment is performed [...] Read more.
Single field inflationary models are investigated within Palatini quadratic gravity, represented by R+αR2, along with a non-minimal coupling of the form f(ϕ)R between the inflaton field ϕ and the gravity. The treatment is performed in the Einstein frame, where the minimal coupling to gravity is recovered through conformal transformation. We consider various limits of the model with different inflationary scenarios characterized as canonical slow-roll inflation in the limit αϕ˙2(1+f(ϕ)), constant-roll k-inflation for α1, and slow-roll K-inflation for α1. A cosine and exponential potential are examined with the limits mentioned above and different well-motivated non-minimal couplings to gravity. We compare the theoretical results, exemplified by the tensor-to-scalar r ratio and spectral index ns, with the recent observational results of Planck 2018 and BICEP/Keck. Furthermore, we include the results of a new study forecast precision with which ns and r can be constrained by currently envisaged observations, including CMB (Simons Observatory, CMB-S4, and LiteBIRD). Full article
(This article belongs to the Proceedings of The 2nd Electronic Conference on Universe)
Show Figures

Figure 1

9 pages, 419 KB  
Article
On the Constant-Roll Tachyon Inflation with Large and Small ηH
by Qin Fei, Waqas Ahmed and Zhen-Lai Wang
Symmetry 2022, 14(12), 2670; https://doi.org/10.3390/sym14122670 - 16 Dec 2022
Cited by 1 | Viewed by 1722
Abstract
We study the constant-roll tachyon inflation with large and small η. In previous studies, only the constant-roll tachyon inflation with small η is consistent with the observations. We find that the duality between the constant-roll tachyon inflation with large and small η [...] Read more.
We study the constant-roll tachyon inflation with large and small η. In previous studies, only the constant-roll tachyon inflation with small η is consistent with the observations. We find that the duality between the constant-roll tachyon inflation with large and small η may exist. The apparent duality suggests that the constant-roll tachyon inflationary model with large η may also be consistent with the observations. By fitting the spectral tilde ns and tensor to scalar ratio r, which is a measure of primordial gravitational waves with the observations, we get small and large η in this range 0.01629ηH0.00079 and 3.00081ηH3.01621 at the 2σ C.L for N=60 efolds. Full article
(This article belongs to the Special Issue Symmetry in Inflationary Cosmology)
Show Figures

Figure 1

18 pages, 919 KB  
Article
Cosmic Evolution of the Logarithmic f(R) Model and the dS Swampland Conjecture
by Jafar Sadeghi, Behnam Pourhassan, Saeed Noori Gashti, Elaheh Naghd Mezerji and Antonio Pasqua
Universe 2022, 8(12), 623; https://doi.org/10.3390/universe8120623 - 25 Nov 2022
Cited by 14 | Viewed by 1650
Abstract
In this paper, we study the inflationary scenario in logarithmic f(R) gravity, where the rate of inflation roll is constant. On the other hand, our gravitational f(R) model is a polynomial plus a logarithmic term. We take [...] Read more.
In this paper, we study the inflationary scenario in logarithmic f(R) gravity, where the rate of inflation roll is constant. On the other hand, our gravitational f(R) model is a polynomial plus a logarithmic term. We take advantage of constant-roll conditions and investigate the cosmic evolution of the logarithmic f(R) gravity. We present a numerical and a graphical study using the model parameters. Additionally, we obtain the corresponding potential by using the constant-roll condition. We obtain the exact value of the potential satisfying the constant-roll conditions. Next, we challenge it with refined swampland conjecture with respect to the Planck data. Finally, we compare our results with the latest observable data. Full article
(This article belongs to the Special Issue Warm Inflation)
Show Figures

Figure 1

13 pages, 951 KB  
Article
Palatini f(R) Gravity and Variants of k-/Constant Roll/Warm Inflation within Variation of Strong Coupling Scenario
by Mahmoud AlHallak, Amer AlRakik, Nidal Chamoun and Moustafa Sayem El-Daher
Universe 2022, 8(2), 126; https://doi.org/10.3390/universe8020126 - 15 Feb 2022
Cited by 15 | Viewed by 2194
Abstract
We show that upon applying Palatini f(R), characterized by an αR2 term, within a scenario motivated by a temporal variation of strong coupling constant, then one obtains a quadratic kinetic energy. We do not drop this term, [...] Read more.
We show that upon applying Palatini f(R), characterized by an αR2 term, within a scenario motivated by a temporal variation of strong coupling constant, then one obtains a quadratic kinetic energy. We do not drop this term, but rather study two extreme cases: α<<1 and α>>1. In both cases, one can generate a kinematically-induced inflationary paradigm. In order to fit the Planck 2018 data, the α>>1 case, called k-inflation, requires a fine tuning adjustment with nonvanishing nonminimal coupling to gravity parameter ξ, whereas the α<<1 case, studied in the constant-roll regime, can fit the data for vanishing ξ. The varying strong coupling inflation scenario remains viable when implemented through a warm inflation scenario with or without f(R) gravity. Full article
(This article belongs to the Special Issue Modified Theories of Gravity and Cosmological Applications)
Show Figures

Figure 1

16 pages, 336 KB  
Article
The Trans-Planckian Censorship Conjecture in Different Frameworks of Viable Inflation
by Bruno Sanna and Lorenzo Sebastiani
Universe 2021, 7(4), 95; https://doi.org/10.3390/universe7040095 - 9 Apr 2021
Cited by 1 | Viewed by 2661
Abstract
We review the recently proposed Trans-Planckian Censorship Conjecture (TCC) that stems from the trans-Planckian problem of cosmological perturbations. We analyze the implications and constraints that the TCC introduces in different frameworks of viable inflation. We revisit the case of slow-roll scalar field inflation [...] Read more.
We review the recently proposed Trans-Planckian Censorship Conjecture (TCC) that stems from the trans-Planckian problem of cosmological perturbations. We analyze the implications and constraints that the TCC introduces in different frameworks of viable inflation. We revisit the case of slow-roll scalar field inflation and we investigate the cases of slow-roll f(R) and f(R,ϕ)-gravity. Finally, we consider the conjecture in the context of constant-roll scalar field inflation. Full article
(This article belongs to the Special Issue Universe: Feature Papers–Cosmology and Gravitation)
15 pages, 275 KB  
Article
Semi-Classical Einstein Equations: Descend to the Ground State
by Zbigniew Haba
Universe 2020, 6(6), 74; https://doi.org/10.3390/universe6060074 - 29 May 2020
Viewed by 2046
Abstract
The time-dependent cosmological term arises from the energy-momentum tensor calculated in a state different from the ground state. We discuss the expectation value of the energy-momentum tensor on the right hand side of Einstein equations in various (approximate) quantum pure as well as [...] Read more.
The time-dependent cosmological term arises from the energy-momentum tensor calculated in a state different from the ground state. We discuss the expectation value of the energy-momentum tensor on the right hand side of Einstein equations in various (approximate) quantum pure as well as mixed states. We apply the classical slow-roll field evolution as well as the Starobinsky and warm inflation stochastic equations in order to calculate the expectation value. We show that, in the state concentrated at the local maximum of the double-well potential, the expectation value is decreasing exponentially. We confirm the descent of the expectation value in the stochastic inflation model. We calculate the cosmological constant Λ at large time as the expectation value of the energy density with respect to the stationary probability distribution. We show that Λ γ 4 3 where γ is the thermal dissipation rate. Full article
(This article belongs to the Section Cosmology)
11 pages, 1720 KB  
Article
On the Constant-Roll Inflation with Large and Small ηH
by Qing Gao, Yungui Gong and Zhu Yi
Universe 2019, 5(11), 215; https://doi.org/10.3390/universe5110215 - 25 Oct 2019
Cited by 26 | Viewed by 3079
Abstract
We study the apparent duality between large and small η H for the constant-roll inflation with the second slow-roll parameter η H being a constant. In the previous studies, only the constant-roll inflationary models with small η H are found to be consistent [...] Read more.
We study the apparent duality between large and small η H for the constant-roll inflation with the second slow-roll parameter η H being a constant. In the previous studies, only the constant-roll inflationary models with small η H are found to be consistent with the observations. The apparent duality suggests that the constant-roll inflationary models with large η H may be also consistent with the observations. We find that the duality between the constant-roll inflation with large and small η H does not exist, because both the background and scalar perturbation evolutions are very different. By fitting the constant-roll inflationary models to the observations, we get 0.016 η H 0.0078 at the 95% C.L if we take N = 60 for the models with increasing ϵ H , in which inflation ends when ϵ H = 1 . For the models with decreasing ϵ H , we obtain 3.0135 η H 3.021 at the 68% C.L. and 3.0115 η H 3.024 at the 95% C.L. Full article
(This article belongs to the Special Issue Inflation, Black Holes and Gravitational Waves)
Show Figures

Figure 1

9 pages, 284 KB  
Article
Gauss–Bonnet Inflation and the String Swampland
by Zhu Yi and Yungui Gong
Universe 2019, 5(9), 200; https://doi.org/10.3390/universe5090200 - 15 Sep 2019
Cited by 83 | Viewed by 3483
Abstract
The swampland criteria are generically in tension with single-field slow-roll inflation because the first swampland criterion requires small tensor-to-scalar ratio while the second swampland criterion requires either large tensor-to-scalar ratio or large scalar spectral tilt. The challenge to single-field slow-roll inflation imposed by [...] Read more.
The swampland criteria are generically in tension with single-field slow-roll inflation because the first swampland criterion requires small tensor-to-scalar ratio while the second swampland criterion requires either large tensor-to-scalar ratio or large scalar spectral tilt. The challenge to single-field slow-roll inflation imposed by the swampland criteria can be avoided by modifying the relationship between the tensor-to-scalar ratio and the slow-roll parameter. We show that the Gauss–Bonnet inflation with the coupling function inversely proportional to the potential overcomes the challenge by adding a constant factor in the relationship between the tensor-to-scalar ratio and the slow-roll parameter. For the Gauss–Bonnet inflation, while the swampland criteria are satisfied, the slow-roll conditions are also fulfilled, so the scalar spectral tilt and the tensor-to-scalar ratio are consistent with the observations. We use the potentials for chaotic inflation and the E-model as examples to show that the models pass all the constraints. The Gauss–Bonnet coupling seems a way out of the swampland issue for single-field inflationary models. Full article
(This article belongs to the Special Issue Inflation, Black Holes and Gravitational Waves)
Show Figures

Figure 1

10 pages, 254 KB  
Article
Arctan-Gravity Model
by Sergey I. Kruglov
Universe 2015, 1(1), 82-91; https://doi.org/10.3390/universe1010082 - 22 May 2015
Cited by 5 | Viewed by 4191
Abstract
A new gravity model with the function F(R) = (1) arctan (βR – β2R2) instead of the Ricci scalar in the Einstein–Hilbert action, describing inflation of the Universe, is suggested and analyzed. We obtain constant curvature solutions [...] Read more.
A new gravity model with the function F(R) = (1) arctan (βR – β2R2) instead of the Ricci scalar in the Einstein–Hilbert action, describing inflation of the Universe, is suggested and analyzed. We obtain constant curvature solutions of the model in the Jordan frame. Performing the conformal transformation of the metric, the potential and the mass of a scalar degree of freedom in the Einstein frame are found. The slow-roll and cosmological parameters of the model are evaluated. It was demonstrated that the index of the scalar spectrum power law, ns, is in agreement with the PLANCK data. Full article
(This article belongs to the Special Issue Modified Gravity Cosmology: From Inflation to Dark Energy)
Show Figures

Figure 1

Back to TopTop