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Abstract: We study the constant-roll tachyon inflation with large and small η. In previous studies,
only the constant-roll tachyon inflation with small η is consistent with the observations. We find
that the duality between the constant-roll tachyon inflation with large and small η may exist. The
apparent duality suggests that the constant-roll tachyon inflationary model with large η may also be
consistent with the observations. By fitting the spectral tilde ns and tensor to scalar ratio r, which is a
measure of primordial gravitational waves with the observations, we get small and large η in this
range −0.01629 ≤ ηH ≤ −0.00079 and 3.00081 ≤ ηH ≤ 3.01621 at the 2σ C.L for N = 60 efolds.
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1. Introduction

The WMAP [1], and Planck [2] observations indicate that the inflation era in the
early universe is one of the most critical parts of standard cosmology. Inflation not only
solves the horizon, flatness, and monopole problems but also plays an essential role in
the generation of super-horizon fluctuations, which are considered to be the origin of the
large-scale structures which leave imprints of the CMB [3–7]. Due to the uncertainties in
reheating physics, the amount of inflation must be large enough to solve the problems
mentioned above, which requires nearly flat potential. The temperature and polarization
measurements on the CMB anisotropy suggest spectral tilde ns = 0.9642± 0.0042 and
tensor to scalar ratio r ≤ 0.08 in 2-σ C.L [2,8].

The constant-roll inflation recently attracted much attention because cosmological
equations can be solved more easily. The model differs from the typical slow-roll infla-
tionary models, where the second slow-roll parameter η is tiny instead of constant [9,10].
In particular, when the inflationary potential becomes very flat, the inflation almost stops
rolling, we get η ≈ 3, and we call this model ultra-slow roll [11,12]. Constant roll solutions
generalize “ultra-slow-roll” dynamics, where the first slow roll parameter is small, but the
second slow roll parameter η is larger than unity. During inflation η > 1, the slow roll
parameter εH decreases with time; so, to calculate the power spectra, one can still use the
standard method of Bessel function approximation. If one can neglect the contribution of
εH , there is a duality between the constant-roll inflation and the slow-roll inflation [13,14].
On the other hand, the observational data favor ηH , which is small [15–17], and which
contradicts the duality relation.

The constant-roll inflationary models in the canonical scalar field are in line with
Planck’s 2018 data; if we do not persist, the only available scalar field is the Higgs field.
However, in Higgs field theory, the monomial potentials with quartic power are ruled out,
but quadratic and linear still have some parametric space; for details, see Refs [18,19]. In
quartic potential, tensor-to-scalar ratio r = 0.19, so the model is excluded in the 2σ C.L. In
order to make an r prediction consistent with Planck 2018 data a non-canonical scalar field
is used to drive the inflation [16,20–26].

Apart from a canonical scalar field to drive inflation, another interesting inflationary
model is tachyonic inflation. In string theory, the effective scalar field with a nonlinear
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kinetic term, which describes the tachyon condensate, also drives inflation and provides
the almost scale invariant power spectrum [27–29]. The current observation still does not
address the scalar field’s nature, so considering tachyon inflation and its physical implica-
tions is an exciting study. Tachyon inflation in the context of the slow-roll condition can be
seen in ref [25,30]. When the slow-roll approximation is violated in constant-roll inflation,
the scalar and tensor perturbations equations derived in the slow-roll approximation case
also require modification. Comparing with other non-minimal inflation models, such as
the scalar-tensor theory and derivative coupling inflation model, tachyonic inflation has
only one freedom: the constant-roll condition can fully determine the inflationary potential,
and more information of the tachyonic inflation will be obtained.

In this paper, we will study the constant-roll tachyon inflation with the second slow-
roll parameter η being a constant. Then, we study the duality between large and small η
for the constant-roll tachyon inflation, and compare the result with the Planck 2018. The
spectral tilde ns and tensor to scalar ratio r consistent with Planck required −0.01629 ≤
ηH ≤ −0.00079 and 3.00081 ≤ ηH ≤ 3.01621 at the 2σ C.L, for N = 60 efolds.

The paper is organized as follows. In Section 2, we review the constant roll of Higgs
inflation and discuss the duality property. In Section 3 we review the tachyon inflation. Sub
Section 3 contains scalar perturbation, tensor perturbation, and the discussion of duality
between the slow-roll inflation and large constant η. Here we also provide the example of
tachyon inflation in the constant-roll background and fit the observational constraints. The
conclusions are drawn in Section 4.

2. Duality in Canonical Inflation

In this section, we review the constant-roll inflation with the canonical field, and show
the duality between the small and large η. For the canonical scalar field, the action is

S =
∫

d4x
√
−g

[
M2

pl

2
R− 1

2
gµν∂µφ∂νφ−V(φ)

]
, (1)

where R is Ricci scalar, V(φ) is the potential which is a function canonical scalar field φ
and Mpl =

√
8πG is the reduced Planck mass. In this paper, we choose Mpl = c = 1. With

the Friedmann-Robertson-Walker metric, the background equations are

3H2 =
φ̇2

2
+ V(φ), (2)

dH
dφ

= − φ̇

2
, (3)

φ̈ + 3Hφ̇ +
∂V
∂φ

= 0. (4)

For the slow-roll parameters, we use the Hubble flow slow-roll parameters [31]

nβH = 2

 (H,φ)n−1H(n+1)
,φ

Hn

1/n

, (5)

where H(n)
,φ = dn H/dφn. In particular, the first two slow-roll parameters are

εH = 2
(

H,φ

H

)2
, ηH =

2H(2)
,φ

H
. (6)
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The constant-roll inflation takes one of the slow-roll parameters as a constant. Usually, the
slow-roll parameter ηH is chosen as a constant [10,32],

ηH = Constant. (7)

With the help of the background Equations (2)–(4), the slow-roll parameters can be ex-
pressed as

εH = 2
(

H,φ

H

)2
= − Ḣ

H2 , (8)

ηH =
2H(2)

,φ

H
= − φ̈

Hφ̇
= − Ḧ

2HḢ
. (9)

The scalar perturbations are governed by the Mukhanov-Sasaki equation [33,34],

v′′k +

(
k2 − z′′

z

)
vk = 0, (10)

where τ =
∫

dt/a is the conformal time, z = aφ̇/H, and vk = zζk, ζk is the scalar per-
turbation in the Fourier space and a “prime" means the derivative with respect to the
conformal time τ. To the first order of εH and keeping ηH as a constant, Equation (10) can
be expressed as

v′′k +

(
k2 − ν2 − 1/4

τ2

)
vk = 0, (11)

where [32]

ν ≈ 1
2
|2ηH − 3|+

(2η2
H − 9ηH + 6)εH

|2ηH − 3| . (12)

Regarding ν as a constant, Equation (11) can be transferred to the Bessel equation. By this
method, the power spectrum of the scalar perturbation is

Pζ =
k3

2π2 |ζk|2 =
22ν−3

2εH

[
Γ(ν)

Γ(3/2)

]2

(1 + εH)
1−2ν

(
H
2π

)2( k
aH

)3−2ν

. (13)

The scalar spectral tilt is [32,35]

ns − 1 =
d ln Pζ

d ln k
≈ 3− |2ηH − 3| −

2(2η2
H − 9ηH + 6)εH

|2ηH − 3| . (14)

In the same way, we can obtain the power spectrum of the tensor perturbation, and the
tensor to scalar ratio is [32,35]

r ≈ 23−|2ηH−3|
(

Γ[3/2]
Γ[|2ηH − 3|/2]

)2

16εH . (15)

If we neglect the contribution of εH in Equations (14) and (15), there exists a duality between
ηH = α and ηH = 3− α as discussed in Refs. [13,14], where α is a small constant.

3. Duality in Tachyon Inflation

In this section, we review the tachyon inflation. The action of the tachyon field is

ST = −
∫

d4x
√
−g V(T)

√
1 + gµν∂µT∂νT. (16)
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The background equations are where T stands for the tachyon field, and V(T) is the
potential. The background equations are

H2 =
1
3

V√
1− Ṫ2

, (17)

T̈
1− Ṫ2 + 3HṪ +

V,T

V
= 0, (18)

Ḣ = −3
2

H2Ṫ2. (19)

Similar to the canonical inflation, for the tachyon inflation, we also define the Hubble flow
slow-roll parameters [26,36],

nβH =
2

3H2

(
(H,T)

n−1H(n+1)

Hn

)1/n

, (20)

where H(n) = dn H/dTn. Compared to the canonical definition (5), extra 1/H2 factor is
added for the tachyon field. The first two slow-roll parameters are

εH =
2

3H2

(
H,T

H

)2
, (21)

ηH =
2H,TT

3H3 . (22)

Just like the constant condition (7) in canonical inflation, for the tachyon inflation, we also
take the slow-roll parameter ηH as a constant,

ηH = Constant. (23)

On the other hand, we can define the horizon flow slow-roll parameters [37],

ε0 =
H0

H
, εi+1 = −d ln |εi|

dN
, (24)

where N is the e-folding numbers. With the help of the background Equations (17) and (18),
we can obtain the relation between the Hubble flow slow-roll parameters and the horizon
flow slow-roll parameters,

εH = ε1, ηH = 2ε1 −
1
2

ε2. (25)

From background equations and the slow-roll parameter, we can obtain the number of
e-folds before the end of inflation,

N =
∫ t f

t
H(t)dt = ±

√
3
2

∫ Tf

T

H√
ε1

dT, (26)

where t is the cosmic time, and the subscript f denotes the end of inflation, the ± sign is
the same as the sign of Ṫ.

3.1. The Scalar Perturbation

In the flat gauge δT(x, t) = 0, using the canonically normalized field v = zζ, the
gravitational action plus the tachyon action for the curvature perturbation δgij = a2(1 +
2ζ)δij becomes

S =
∫

d3xdτ
1
2

[
v′2 − c2

s (∂iv)2 +
z′′

z
v2
]

, (27)
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where the effective sound speed is c2
s = 1− 2ε1/3 [27], and

z =

√
3aṪ√

1− Ṫ2
. (28)

The Mukhanov-Sasaki equation is [29],

v′′k +

(
c2

s k2 − z′′

z

)
vk = 0. (29)

To solve it, we need transfer it to the Bessel equation form

v′′k +

(
c2

s k2 − ν2 − 1/4
τ2

)
vk = 0. (30)

Assuming that ν is a constant, the power spectrum of the scalar perturbation for the tachyon
inflation can be obtained by the Bessel method, and the result is

Pζ =
k3

2π2 |ζk|2 =
22ν−3

2csε1

[
Γ(ν)

Γ(3/2)

]2(
1 +

ε1

1− ε2

)1−2ν( H
2π

)2( csk
aH

)3−2ν
∣∣∣∣∣
csk=aH

. (31)

The scalar tilt is

ns − 1 =
d ln Pζ

d ln k
= 3− 2ν. (32)

For the constant-roll condition (23), to the first order of ε1, the value of ν in Equation (30)
is

ν ≈ 1
2
|3− ηH |+

(16η3
H − 40η2

H − 15η + 27)ε1

3|3− ηH |(2ηH + 1)
. (33)

Substituting Equation (33) into Equation (32) , we obtain [26]

ns ≈ 4− |3− 2ηH |+
(−32η3

H + 80η2
H + 30ηH − 54)ε1

3|3− 2ηH |(2ηH + 1)
, (34)

3.2. The Tensor Perturbation

For the tensor perturbation δgij = a2γij, to the second order, the gravitational action
plus the tachyon action becomes

S =
1
8

∫
d4x
[

a3(γ̇ij)
2 − a(γij,k)

2
]
, (35)

where γij = ∑s=+,× es
ijγ

s. Similar to the scalar perturbation, the power spectrum is

PT = 22µ

[
Γ(µ)

Γ(3/2)

]2(
1 +

ε1

1− ε2

)1−2µ( H
2π

)2( k
aH

)3−2µ

, (36)

where

µ2 =
1
4
+

a′′

a
τ2. (37)

Combining Equations (31) and (36), to the first order of ε1, we obtain the tensor-to-
scalar ratio

r = 22(µ−ν)+4
[

Γ(µ)
Γ(ν)

]2

ε1. (38)

For the constant-roll condition (23), to the first order of ε1, the value of µ in Equation (37)
is

µ ≈ 3
2
+

3− 2ηH
3(1 + 2ηH)

ε1. (39)
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Substituting it into Equation (38), we obtain the tensor-to-scalar ration with the constant-roll
condition [26],

r ≈ 23−|3−2ηH |
(

Γ[3/2]
Γ[|3− 2ηH |/2]

)2

16ε1. (40)

3.3. The Duality and Observation

The condition of small ηH of the tachyon inflation can be expressed as

ηH = α, (41)

where |α| � 1 is small, and this situation is also the slow-roll inflation. Substituting the
small ηH condition (41) into the scalar tilt (34) and tensor-to-scalar ratio (40), we get

ns − 1 = 2α− 4ε1, (42)

r = 16ε1. (43)

On the other hand, the large ηH condition is

ηH = 3− α, (44)

and this situation is called ultra-slow-roll inflation. By using this condition, the scalar tilt
and tensor-to-scalar ratio becomes

ns − 1 = 2α− 54
7

ε1, (45)

r = 16ε1. (46)

If ε1 can be neglected, Equation (42) is equal to Equation (45), and Equation (43) is equal to
Equation (46). Therefore, the scalar tilde and tensor-to-scalar ratio are the same between
the small and large ηH . This denotes that there exists a duality between the slow-roll and
the ultra slow-roll tachyon inflation

Combining the constant condition (23) and the relation (25), we can obtain the slow
parameter ε1,

ε1(N) =
ηH exp(2ηH N)

2 exp(2ηH N) + C1
, (47)

where C1 is the integration constant. For the slow-roll condition with ηH � 1, the inflation
can exit gracefully. In this case, the integration constant can be determined by the condition
ε1(N = 0) = 1, and the slow parameter (48) becomes

ε1(N) =
ηH exp(2ηH N)

2 exp(2ηH N) + ηH − 2
. (48)

For the ultra-slow roll condition with εH ≈ 3, the slow-roll parameter ε1 decreases along
with the time, the inflation cannot exit, and the integration constant C1 cannot be deter-
mined in this situation. Because the inflation cannot exit, the e-folds Nultra before the end
of inflation cannot be defined well. In this situation, the e-folds Nultra and the integration
constant C1 are defined to make the slow-roll parameter ε1 the same as Equation (48)
where the difference is that ηH is replaced by 3− ηH in consideration of the ultra-slow-roll
condition.

Substituting Equation (48) into scalar tilt (34) and tensor-to-scalar ratio (40), and
comparing them with the Planck 2018 [2,8] observational data, we can obtain the constraints
on the slow-roll parameter ηH , and the results are displayed in Figures 1 and 2. Figure 1
shows the parametric space corresponding to a small ηH case. In the left panel, we show the
contours for ns and r. The inner contour shows the bounds of Planck 2018 68% confidence
level, whereas the outer contour represents the region with a 95% confidence level. The red
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and green on the color maps are the regions that correspond to observational constraints
on the constant-roll inflationary models. In the right panel, we present the plot between ηH
and N where N represents the number of e-folding. Figure 2 shows the results for the large
η case. The color coding here is the same as in Figure 1. From the figures, we can see the
duality between the constant-roll tachyon inflation with large and small ηH exit.

Figure 1. (Left panel) shows the marginalized 68%, and 95% confidence level contours for ns and r
from Planck 2018 and the observational constraints on the constant-roll inflationary models whereas
the (Right panel) shows observational constraints on ηH and N for 68% (red) and 95% (green) C.L.s,
respectively for small ηH .

Figure 2. (Left panel) shows the marginalized 68%, and 95% confidence level contours for ns and r
from Planck 2018 and the observational constraints on the constant-roll inflationary models whereas
the (Right panel) shows observational constraints on ηH and N for 68%(red) and 95% (green) C.L.s,
respectively for large ηH .

In Figure 3, we compare the difference of ns and r between the tachyon inflation
models with large η and small η, where the e-folds are N = 60. The black line corresponds
to the result of the tachyon inflation with small ηH , and the green dots are the results from
the tachyon inflation with large ηH . The tachyon inflation models with large and small ηH
giving almost the same scalar tilt ns and tensor-to-scalar ratio r. In Figure 3, to give the
same pair of ns and r, the small ηs and the large ηl almost satisfy ηs + ηl ≈ 3 for the whole
black line, which is the robust evidence of the duality between the large and small η.
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N=60

N=50

0.950 0.955 0.960 0.965 0.970 0.975 0.980
0.00

0.02

0.04
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0.08

0.10

0.12

0.14

ns

r 0
.0
02

Planck 2018

Figure 3. The difference of ns and r between the tachyon inflation models with large η and small η.
The black line is the results from the tachyon inflation with small η, and the green dots are the results
from the large η.

4. Conclusions

To conclude, we have investigated the constant-roll tachyon inflation with large
and small η. We neglect the contribution of the first slow-roll parameter εH , which is a
reasonable assumption for the constant roll inflationary models with εH decreasing during
inflation. In that case, a duality exists for the expressions of ns and r for small and large η.
We also use observational data to constrain the constant-roll inflationary models. By fitting
the spectral tilde ns and tensor to scalar ratio r, with the observations, we get small and
large η in this range −0.01629 ≤ η ≤ −0.00079 and 3.00081 ≤ η ≤ 3.01621 at the 2σ C.L for
N = 60 e-folding.
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