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Abstract: We show that upon applying Palatini f (R), characterized by an αR2 term, within a scenario
motivated by a temporal variation of strong coupling constant, then one obtains a quadratic kinetic
energy. We do not drop this term, but rather study two extreme cases: α << 1 and α >> 1. In both
cases, one can generate a kinematically-induced inflationary paradigm. In order to fit the Planck
2018 data, the α >> 1 case, called k-inflation, requires a fine tuning adjustment with nonvanishing
nonminimal coupling to gravity parameter ξ, whereas the α << 1 case, studied in the constant-roll
regime, can fit the data for vanishing ξ. The varying strong coupling inflation scenario remains viable
when implemented through a warm inflation scenario with or without f (R) gravity.

Keywords: variation of constants; inflation; f (R)-gravity; k-inflation

PACS: 98.80Cq; 98.80-k

1. Introduction

In [1], we adopted a model of variations of constants in order to generate an inflationary
scenario, where the strong coupling was assumed to vary in time encoded in a scalar field
representing this variation. Although current geophysical and astronomical data preclude
any variation of constants, be it strong coupling [2], or Higgs vev [3], or electric charge [4],
no data preclude variation in very early times. In [5], a connection between variation
of constants and inflation was suggested, whereas in [6], this idea was pursued further
into a concrete model shown to be able to accommodate data in some variants involving
multiple inflaton fields. Alternatively, the single inflaton model was shown in [1] to be
viable provided one changes the gravitational sector and assumes f (R) gravity.

Usually, any model of inflation is defined by the choice of the scalar fields involved,
their kinetic terms, mutual couplings and potentials, and couplings to gravity. However,
we likewise have to specify the gravitational action with the corresponding degrees of
freedom. One example of the latter is the choice between the metric and the Palatini
formulations. The simplest extended gravitational action is given by replacing the Einstein–
Hilbert action of general relativity (GR) by a function f (R) of the Ricci scalar. Whereas both
formalisms agree in GR, they do differ in f (R) gravity. f (R) with metric formulation was
studied extensively (see [7–10] and references therein), whereas f (R) in Palatini formalism
constitutes a current hot topic, studied, for example, in [11,12] and references therein.

In our inflationary model based on couplings time variation, the addition of an αR2

term in the pure gravity Lagrangian changed the potential into an effective one, but also led
to a quadratic kinetic energy term which was dropped in [1] on the grounds that it involved
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an α-coupling which could be argued to be small perturbatively, and this allowed us to
derive formulae for the spectral index ns and the scalar-to-tensor ratio r which contrasted
with Planck data 2018 [13] separately or combined with other experiments [14]. In actuality,
the model can be considered as a special case of [15] which treated the general case of an
arbitrary potential leading also to a quadratic kinetic energy term. However, in our model
the potential is not arbitrary but dictated from new physics linking the two concepts of
“inflation” and “variation of constants”. Thus, our setup models the variation of coupling by
a scalar field with, according to Bekenstein arguments [2,4], self coupling, and, furthermore,
we assume an additional conformal invariant nonminimal coupling of the scalar field to
gravity, which in turn is given by f (R) (classically equivalent to tensor-scalar model) and
not by GR.

The aim of this work is twofold. First, we study the effect of the quadratic kinetic
energy term. For this, we take two extreme cases. The first case corresponds to α >> 1,
which makes the scalar field noncanonical per excellence. Many studies were carried
out to refine the inflationary scenario within the framework of scalar fields possessing a
noncanonical kinetic term [16–23]. In actuality, such kinematically-induced inflationary
scenarios go back to the Starobinsky model [24,25] more than four decades ago, which
considered a geometrical modification to general relativity in order to explain inflation.
Nonetheless, the Starobinsky model, when considered in the framework of the Palatini
formalism, in contrast to the metric formulation, cannot represent a model for inflation,
due to the absence of a propagating scalar degree of freedom that can play the inflaton
role [26,27]. Here, we go beyond and consider a scalar field, motivated by a nongeometrical
origin suggested by variation of constants à la Bekenstein, minimally or nonminimally
coupled to gravity with a potential whose form is dictated by Bekenstein arguments [2,4].
We find that with a nonvanishing nonminimal coupling to gravity (non-MCtG), the model
can fit the data. However, one cannot obtain closed forms of the “canonical” potential
except in some cases which we illustrate in order to show the “plateau” form of the potential
in terms of the “canonical” field which rolls slowly during inflation.

The second case corresponds to the perturbative regime where we restrict the anal-
ysis to first order in α. Our model in this case parallels the well-known constant-roll
k-inflation [28], and we prove that within a given limit corresponding to vanishing non-
MCtG with α small and ` large, the model is viable, and we check this numerically for both
small and large constant-roll parameter β.

Inflationary scenarios by variation of constants generically suffer from appealing to
new physics for an exit scenario during reheating [6]. A solution to this problem is provided
by warm inflation paradigm [29–31]. In this paradigm, the radiation era is accompanying
the slow-roll regime, and no need for an exit scenario. For this, our second objective is to
add the warm inflation ingredient into our varying coupling inflation scenario. We find
that with no f (R) gravity the solution is hardly viable, but with Palatini f (R), which would
correspond to new degrees of freedom, accommodation of data is easily met.

The paper is organized as follows. In Section 2, we introduce the model and illustrate
how the quadratic kinetic energy appears. In Section 3, we study the case of large α
computing the spectral parameters to be contrasted with data. Section 4 is devoted to
the study of the “canonical” potential shape when α >> 1. In Section 5, we analyze
the perturbative regime where α is small, whereas in Section 6 we prove its viability. In
Section 7, we treat the case of warm inflation in a certain weak limit. We end up with a
summary and conclusion in Section 8.
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2. Analysis of the Basic Model

Our starting point is the general four dimensional action:

S = Sφ + Sg + Sgφ (1)

where Sφ is the varying strong coupling constant action given by [6]:

Sφ ≡
∫

d4x
√
−gLφ =

∫
d4x
√
−g{−1

2
f (φ)gµν∂µφ∂νφ−V(φ)} (2)

where f (φ) = 1
`2φ2 , and V(φ) = V0

φ2 with φ embodying the strong coupling constant

variation gst(x) = gst
0 φ(x); ` is the Bekenstein length scale, and V0 = 〈G2〉T

4 encodes the
gluon field strength vacuum expectation value (vev) at inflation temperature T, whereas Sg
is the pure gravity Lagrangian including the Einstein–Hilbert action to which is added an
f (R) gravity term, taken, in our case, as a quadratic function of the Ricci scalar αR2, and
we include also a coupling term Sgφ between gravity and the field φ. Adopting units where
the Planck mass Mpl is equal to one, we have:

Sg =
∫

d4x
√
−g
[

1
2

(
R + αR2

)]
(3)

Sgφ =
∫

d4x
√
−g
[
−ξRφ2

]
(4)

with R, the Ricci scalar, constructed from the metric gµν. Note that the form of the potential
in Equation (2) is not placed by hand, but rather is dictated by the physical assumption of a
varying strong coupling constant, where gauge and Lorentz invariance impose this form
originating from the gluon condensate [5,6].

We start by making a change of variable absorbing the function f in order to obtain a
“canonical” kinetic energy term. Thus, we introduce the field h defined as φ = exp(`h), so
that we obtain the action:

S =
∫

d4x
√
−g
[

1
2

F(R) +
1
2

G(h)R− 1
2

gαβ∂αh∂βh−V(h)
]

(5)

where

V(h) = V0 exp(−2`h), G(h) = −ξ exp(2`h), F(R) = R + αR2 (6)

Instead of using at this stage the first-order cosmological perturbation theory, by per-
turbing the metric (gµν → gµν + δgµν) and keeping terms of first order in the perturbations,
we anticipate that the αR2 would contribute involved terms upon this metric change, so we
follow [15,32] and introduce an auxiliary field ψ and an action:

S =
∫

d4x
√
−g
[

1
2

G(h)R +
1
2
{

F(ψ) + F′(ψ)(R− ψ)
}
− 1

2
gαβ∂αh∂βh−V(h)

]
(7)

The equation of motion of ψ gives R = ψ, provided F′′(ψ) 6= 0. We change variable
again ψ→ λ such that (λ = F′(ψ) = 1 + 2αψ), so we obtain

S =
∫

d4x
√
−g
[

1
2
{λ + G(h)}R− 1

2
{ψλ− F(ψ(λ))} − 1

2
gαβ∂αh∂βh−V(h)

]
(8)

We carry out a conformal transformation on the metric

gαβ → Υ2gαβ = g̃αβ : Υ2 = λ + G(h) (9)
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then we obtain, in the “Metric” formulation, where the Christoffel symbols are defined in
terms of the metric and thus are not independent, and the corresponding affine connection
is defined to be the Levi–Civita one, the following [33]:

S“Metric” =
∫

d4x
√
−g̃
[

1
2

R̃− 3
4

g̃µν

(λ + G(h))2∇µ(λ + G(h))∇ν(λ + G(h))

−1
2

1
λ + G(h)

g̃αβ∂αh∂βh− Ṽ(h, λ)

]
(10)

Ṽ(h, λ) =
V(h) + W(λ)

(λ + G(h))2 (11)

where

W(λ) =
1
2
[ψλ− F(ψ(λ))] =

(λ− 1)2

8α
(12)

We see that in the “Metric” formulation, we obtain a kinetic energy term for (λ+ G(h)),
and the field λ is dynamic, i.e., its equation of motion cannot be solved algebraically.

For simplicity, then, we restrict the study from now on to the “Palatini” formulation,
where the Christoffel symbols are considered independent and are to be determined
dynamically. Remembering here that the pure gravity is not represented by a simple R
term, the connection will be different from the Levi–Civita one. Under this formulation, we
obtain (noting that

√−g = Υ−4√−g̃, gαβ = Υ2 g̃αβ and R = Υ2R̃):

S“Palatini” =
∫

d4x
√
−g̃
[

1
2

R̃− 1
2

1
λ + G(h)

g̃αβ∂αh∂βh− Ṽ(h, λ)

]
(13)

where, again, Ṽ(h, λ) is given by Equation (11), and where Equation (12) is again valid.
The equation of motion of λ can be solved algebraically to give it in terms of the field

h and its derivatives, so λ is not a new degree of freedom:

λ =
1 + G(h) + 8αV(h) + 2αG(h)(∂h)2

1 + G(h)− 2α(∂h)2 (14)

Substituting (Equation (14)) into (Equation (13)), we obtain (dropping the “Palatini”
superscript and the ∼ over the metric):

S =
∫

d4x
√
−g
[

R
2
− 1

2
1

(1 + G(h))(1 + 8αŪ)
gαβ∂αh∂βh

+
α

2
1

(1 + G(h))2(1 + 8αŪ)
(∂αh∂αh)2 − Ū

1 + 8αŪ

]
(15)

where

Ū =
V(h)

(1 + G(h))2 =
V0 exp (−2`h)

(1− ξ exp (2`h))2 . (16)

In order to obtain a “canonical” kinetic energy term, we again make the change of
variable (h→ χ) by

dh
dχ

= ±
√
(1 + G(h))(1 + 8αŪ) (17)

to obtain finally

S =
∫

d4x
√
−g
[

R
2
− 1

2
gαβ∂αχ∂βχ +

α

2
(1 + 8αŪ)(∂αχ∂αχ)2 −U

]
(18)
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where

U =
Ū

(1 + 8αŪ)
=

V0

8αV0 +
(
e`h − ξe3`h

)2 (19)

We see here that the effect of the αR2 term is manifested in two ways. First, it helps
in obtaining a “flat” effective potential U. In actuality, regardless of the form of Ū, we see
that the αR2 term leads, say when Ū(V0) increases in modulus indefinitely, to an effective
potential with a flat portion (U ∼ (8α)−1). Second, the αR2 term leads to the appearance of
squared kinetic energy (∂αχ∂αχ)2.

In [1], α was taken to be small in such a way to neglect the quadratic kinetic energy
term. In fact, upon perturbing the metric, the (αδg) term would give higher-order terms,
whereas the α(∂βχ∂βχ)2 would give, in the slow-roll inflationary era, contributions of order
αχ̇4, which is subdominant compared to the α-correction in U. Thus, in [1], one could apply
the shortcut “potential method”, using U as an effective potential. We intend now to refine
this analysis, and consider the effect of the quadratic kinetic energy, keeping first order in α
when α is small, and studying, in addition, the case where α is large. We point out here that
although we do not explicitly present the Einstein/ f (R) field equations, we use known
formulae for the spectral observables (nS, r) in the different limits under consideration,
which were derived using first-order cosmological perturbation theory in solving the field
equations [1].

3. k-Inflation: Case α >> 1

Under the assumption

1 � α(1 + 8αŪ)(∂αχ∂αχ) (20)

our k-inflation model features a single scalar field with the action

S =
∫

d4x
√
−g
[

R
2
+

α

2
(1 + 8αŪ)(∂αχ∂αχ)2 −U

]
(21)

Introducing the “standard” field ϕ defined by

∂ϕ

∂χ
= [2α(1 + 8αŪ)]

1
4 (22)

we obtain a “standard” form for the k-inflation Lagrangian

L =
R
2
+ p(ϕ, X) : p(ϕ, X) = X2 −U(ϕ), X =

1
2

∂α ϕ∂α ϕ (23)

S =
∫

d4x
√
−g
[

R
2
+ (

1
2

∂α ϕ∂α ϕ)2 −U
]

(24)

The spectral index nS and the tensor-to-scalar ratio are given now by [34]:

ns − 1 =
1
3
(4η − 16ε) , r = 16csε (25)

where

ε =
1
2

3
1
5
(U,ϕ)

4
3

U
5
3

, η = 3
1
5

(U,ϕ),ϕ

U
2
3 (U,ϕ)

2
3

(26)

c2
s =

p,X
2X(p,X),X+p,X

= 1
3 (27)
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where the comma (,) means differentiation with respect to what follows it. However, one
should note that in order to compute the derivative with respect to the “standard” field ϕ,
one should differentiate U with respect to h, which is known from Equation (19) and using
Equations (17) and (22), to get

dh
dϕ

=

(
(1− ξe2`h)2 + 8αV0e−2`h

2α

) 1
4

(28)

U,ϕ =
dU
dh

dh
dϕ

, (29)

(U,ϕ),ϕ =
d2U
dh2 (

dh
dϕ

)2 + U,h
dh
dϕ

d
dh

(
dh
dϕ

) (30)

The input parameters are (V0, `, α, ξ) and the initial values of the “original” inflaton
field h at the start of inflation. However, one can show analytically that the model is able to
fit the data for some regions in the parameter space. In actuality, we obtain the following
analytic formulae:

1− ns =
4`4/3(3ξe4`h(44αV0ξ−7)+e2`h(2−112αV0ξ)+12αV0+21ξ4e10`h−59ξ3e8`h+57ξ2e6`h)

3√α 3√V0((3−3ξe2`h)(3ξe2`h−1))
2/3
(8αV0+ξ2e6`h−2ξe4`h+e2`h)

2/3 (31)

y ≡ ξe2`h

=
`4/3(12−112y+132y2)

((3−3ξe2`h)(3ξe2`h−1))
2/3 +O

(
1

αV0

)
(32)

ξ = 0
=

8`4/3(6αV0+e2`h)
32/3 3√α 3√V0(8αV0+e2`h)

2/3 (33)

r =
16`4/3e2`h(1−ξe2`h)

4/3
(3ξe2`h−1)

4/3

6√3 3√α 3√V0(8αV0+ξ2e6`h−2ξe4`h+e2`h)
2/3 (34)

ξ = 0
= 16`4/3e2`h

6√3 3√α 3√V0(8αV0+e2`h)
2/3 (35)

Thus, enforcing the Bekenstein hypothesis ` > 1, which means in our adopted units
the absence of any length scale shorter than Planck length, we see that for (ξ = 0) one
cannot accommodate the data requiring (0 < 1− ns << 1 and 0 < r << 1). However,
in the limit (αV0 >> 1), one can adjust the parameter (y = ξe2`h) around the roots of
(12− 112 + 132y2) and obtain the data fit. In actuality, the two roots (0.125792, 0.722693) of
the latter polynomial are less than one, which implies that h at the start of inflation was
negative. Physically, this means that the strong coupling gst was less than its current value
(φ < 1).

Figure 1, indeed, shows that there are acceptable points, colored in blue, for the
following scanning:

` ∈ [1, 3], α ∈ [10, 20], e2`h ∈ [0.723031, 0.723035], V0 ∈ [0.5, 2], ξ = 1. (36)
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Figure 1. Kinematically derived inflation, in a model of varying strong coupling constant
(gst(x) = gst

0 φ(x)), with f (R) gravity via αR2 term and non-MCtG −ξRφ2 term. The blue points
correspond to the limit where α >> 1, and we imposed ξ = 1. The red points correspond to the limit
α >> 1 and αŪ >> 1 with ξ 6= 0. The green (pink) points correspond to the limit α << 1 with ξ = 0
and a vanishing (nonvanishing) constant-roll parameter β. The yellow (sky blue) points correspond
to warm inflation scenario with (without) f (R) gravity. The models are contrasted to Planck 2018,
separately or combined with other experiments, contour levels of spectral parameters (ns, r). All
acceptable points correspond to ` > 1.

4. The “Plateau” Shape: Case α >> 1

From Equation (19), we see that in the limit where

1 << 8αŪ ⇔ (1− ξe2`h)2e2`h << 8αV0 (37)

the effective potential shows a “plateau” form (U(h) ∼ 1
8α ), and our objective in this section

is to study the shape of this plateau in terms of the “canonical” field ϕ, which is the field to
roll slowly along the effective potential.

In actuality, one would like, starting from the known potential U(h) given in Equa-
tion (19), to find an analytic expression of the potential in terms of the “canonical” field
ϕ. However, it is not possible in general to do this, as we cannot carry out analytically the
following integral, originating from Equations (17) and (22), let alone invert it to express h
in terms of ϕ:

ϕ = (2α)1/4
∫ dh[

(1− ξe2`h)2 + 8αV0e2`h
]1/4 (38)

Even in the case of MCtG (ξ = 0), and although one can, in principle, carry out
the above integration, the resulting expression involving hypergeometric functions is
not invertible.

However, in the limit of Equation (37), one can carry out analytically the integration
and obtain

e`h =

√
V0

2
(`ϕ)2 (39)

and we see that the effective potential is given as

U(ϕ) =

[
8α +

`4 ϕ4

4

(
1− ξ

V0

4
`4 ϕ4

)2
]−1

(40)
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In the left part (A) of Figure 2, we plot the shape of effective potential, and find that it
has one local maximum (minimum) at ϕ0 = 4

√
4/(V0ξ)`−1 (ϕ0/ 4

√
3). We see that the limit

of Equation (37) is equivalent to

`2 ϕ2
∣∣∣1− (ϕ/ϕ0)

4
∣∣∣ <<

√
32α (41)

Thus, we see that as long as the field, during its slow rolling along the plateau from
ϕ = 0, does not meet the local minimum, then the slow-roll condition is satisfied and
the inflationary solution is consistent. In the right part (B) of Figure 2, we draw the same
plateau in the case of MCtG. However, the solution is not viable for ` > 1.

As a matter of fact, one can compute the observable parameters (ns, r) using the
effective potential expression in this limit (Equation (40)), and we find with the combination
(z = ξV0 ϕ4`4) the following

1− ns = `4/33−2/3 48− 112z + 33z2

(8− 8z + 3z2/2)2/3 (42)

r = 22/33−1/68`16/3 ϕ4 (16− 16z + 3z2)4/3

512α + `4 ϕ4(−4 + z)2 (43)

We see here that for ξ = 0, one cannot meet 0 < 1− ns ∼ (12/ 3
√

9)`4/3 << 1 for ` > 1,
whereas for z ∼ 4/33(14±

√
97 (roots of the numerator of (1− ns)) and having α quite

large, one can satisfy (0 < 1− ns << 1, 0 < r << 1). The red points in Figure 1 represent
acceptable points generated upon scanning the parameters as follows.

z ∈ [0.48, 0.52], ` ∈ [1, 2], ϕ ∈ [1, 20], α ∈ [400, 500]. (44)

(A) (B)

Figure 2. Plateau shape in the limit of Equation (37). Scenario (B) with ξ = 0 fits data provided ` < 1.
(A) max ≡ ϕ0 = ( 4

V0ξ )
1/4`−1. min ≡ ϕ03−1/4; (B). ξ = 0.

5. Constant-Roll k-Inflation. Case α << 1

In contrast to the preceding sections, we now take the perturbative limit α << 1,
and we work up to first order in α. We shall consider a specific type of k-inflation called
“constant-roll” inflation, where one slow-roll parameter (ε2) related to the time second
derivative of the inflation is assumed constant, equaling β. Following [28], our model,
which has the following action,

S =
∫

d4x
√
−g/2 f (R, χ, X) (45)

where

X =
1
2

∂µχ∂µχ =
χ̇2

2
, f (R, χ, X) =

(
R− 2X + 4αX2 − 2U

)
(46)
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will involve the slow-roll parameters defined as

ε1 ≡
Ḣ
H2 , ε2 = β ≡ χ̈

Hχ̇
, ε3 ≡

Ḟ
2HF

= 0, ε4 ≡
Ė

2HE
(47)

where

F = f,R = 1 , E ≡ − F
2X

(X f,X + 2X2 f,XX) = 1− 12αX (48)

At the horizon crossing time instance, we have

ε1 = −3
4

χ̇2 + αχ̇4

U(χ)
, ε4 =

6
√

3αχ̇χ̈√
U(1 + 6αχ̇2)

(49)

with real solutions given by

χ̇ =
6(β + 1)(β + 3)4αU − (81∆ + 9

√
S)2/3

311/6(β + 1)4α
√

U(81∆ + 9
√

S)1/3
, χ̈ = β

√
U
3

(50)

S = (β + 1)3(4α)3U2
[

81(β + 1)4αU2
,χ +

8
3
(β + 3)3U

]
, ∆ = 16(β + 1)2α2U,χU (51)

The spectral parameters are given as

ns = 1 + 2
2ε1 − ε2 + ε3 − ε4

1 + ε1
= 1 + 2

2ε1 − β− ε4

1 + ε1
(52)

r = 4

[
Γ(3/2)

Γ(3/2 + ε2)2ε2
c3/2+ε2

A

√
3χ̇
√

1 + 6αχ̇2
√

U

]2

(53)

c2
A =

f,X

f,X + 2X f,XX
=
−1 + 2αχ̇2

−1 + 6αχ̇2 (54)

The free input parameters here are (α, ξ, V0) and (`, h), which a priori determine χ, and
also β of order unity expressing the constant-roll condition. However, note that we need to
express U,χ using Equations (17) and (19).

U,χ =
dU
dh

dh
dχ

,
dh
dχ

= ±

√
1− ξe2`h +

8αV0e−2`h

1− ξe2`h (55)

and even in the case of MCtG (ξ = 0), where we obtain an analytic expression of χ in terms
of h:

χ =
∫ dh√

1 + 8αV0e−2`h
=

e−`h
√

8αV0 + e2`h log(e`h +
√

8αV0 + e2`h)

`
√

1 + 8αV0e−2`h
(56)

one cannot invert it, so U(χ) is not obtained in a closed form.

6. Viability of the Constant-Roll k-Inflation: Case α << 1

We show now the existence of viable points which fit the data. For this, we need a
search strategy to reduce the number of input parameters, since our objective is limited to a
proof of existence with no claim to exhaustive covering of all acceptable points; otherwise,
scanning over the formulae of Equations (49)–(54), which are far from simple analytical
formulae, is not a trivial task.

Let us take the case of MCtG (ξ = 0) which, with our limit case (α << 1), leads to

χ ' h, Ū = V ' U, U,χ ∼ `U (57)
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For the sake of showing the existence of acceptable solutions, if we assume that the
constant slow-roll parameter ε2 = β is quite small, to imply dropping of χ̈, then ε4 is
negligible as well. In order to meet the requirements (α << 1, ` > 1), we shall scan over
the one-dimensional sub-parameter space parameterized as

α = Λ−n, ` = Λm, V0 = Λ, χ ∼ h = `−1 = Λ−m (58)

with (n, m > 0). Noting that e`h is of order O(1), we obtain for Λ large

χ̇ =
O(Λ1−n)−

(
O(Λ−2n+m+2) +O(Λ1−3n/2)

√
O(Λ2+2m−n) +O(Λ)

)2/3

O(Λ1/2−n)
(
O(Λ2+m−2n) +O(Λ1−3n/2)

√
O(Λ2+2m−n) +O(Λ)

)1/3 (59)

Then, in order to obtain the following quantities small

1− ns ≈ −
4ε1

1 + ε1
, ε1 = − 3

4
χ̇2+αχ̇4

U , r ≈ 12χ̇2

U
(60)

we need to enforce

0 < n < 1 , 0 < m <
1− n

4
(61)

Numerically, we checked the viability of the model for vanishing and nonvanishing
β parameter. By taking the following six choices, the obtained points for the upper four
(lower two) choices corresponding to vanishing (nonvanishing) constant-roll parameters,
represented in Figure 1 by green (pink) dots, do fit the data:

β = 0, Λ = 106, n = 0.5, m = 0.1 ⇒ (1− ns, r) = (0.0280827, 0.112981), (62)

β = 0, Λ = 105.8, n = 0.5, m = 0.1 ⇒ (1− ns, r) = (0.032229, 0.12977), (63)

β = 0, Λ = 106.1, n = 0.5, m = 0.1 ⇒ (1− ns, r) = (0.0262134, 0.10542), (64)

β = 0, Λ = 104.44, n = 0.6, m = 0.001 ⇒ (1− ns, r) = (0.0298586, 0.120145) (65)

β = 1, Λ = 104.44, n = 0.6, m = 0.1 ⇒ (1− ns, r) = (0.0288759, 0.0566994) (66)

β = 10, Λ = 3× 104, n = 0.6, m = 0.1 ⇒ (1− ns, r) = (0.0288759, 0) (67)

which proves the viability of the model.

7. Warm Inflation Variant

As mentioned earlier, the varying coupling inflation variants generally call for new
physics in order to treat the reheating process and to provide for an exit scenario. This
problem can be addressed in the warm inflation paradigm where the perturbations are
generated thermally from a dissipative term characterized by a decay rate parameter Γ,
which is sufficiently strong compared to Hubble parameter H characterized by the ratio:

Q =
Γ

3H
(68)

Here, the radiation is close to thermal equilibrium, and both the particle production
rate and dissipation rate are controlled by Γ. The radiation takes place in parallel to the
slow-roll regime, and there is no need for a specific exit scenario.

We readdress our Bekenstein-like scenario within the warm inflation paradigm assum-
ing non-MCtG and f (R) gravity embodied in the potential of Equation (19), whereupon
placing α = 0 = ξ, we switch back to the original scenario of [6]. We shall also restrict our
study to the weak dissipative regime Q << 1, remembering that Q = 0 corresponds to the
cold inflation.
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The temperature during inflation is given by [35,36]

T =

(
Γ0U2

ϕ

36H3Cγ

)1/3

(69)

where

Γ = Γ0T , Cγ =
π2

30
g∗ (70)

with ϕ as the canonical inflaton field, and we shall always take g∗ = 228.75, representing
the number of relativistic degrees of freedom of radiation of created massless modes,
evaluated within minimal supersymmetric standard model at temperatures higher than
the electroweak phase transition. In order to compute the derivatives with respect to ϕ in
terms of the derivatives with respect to h, we, as usual, use Equation (28).

Using the approximation

H =

√
U
3

, (71)

we have the slow-roll parameters given by

εV =
1
2

(
Uϕ

U

)2
, βV =

(
ΓϕUϕ

ΓU

)
, ηV =

(
Uϕϕ

U

)
, (72)

Two parameters interfere to represent corrections due to the nontrivial occupation
number (n∗) and to thermal effects (ω) given by:

n∗ =
1

e
H
T − 1

, ω =
2πΓ0T2

3H2 (73)

and, finally, we obtain, in the limit ω << 1, the expressions for the observables:

ns − 1 = −6εV + 2ηV + ω

(
15εV − 2ηV − 9βV

4

)
, r =

16εV

(1 + Q)2(1 + 2n∗ + ω)
(74)

Numerically, we find that upon switching off modification of gravity (i.e., α = 0 = ξ),
the value of r is generically large, and one needs to fine-tune and adjust the parameters in
order to find acceptable points, whereas switching on α helps generically to reduce r and
one can fit the data easier. In Figure 1, we designate two points in yellow and the other two
ones in sky blue fitting the data corresponding to α = 0 and α 6= 0, respectively, with the
following choice of parameters.

α = 0, ξ = 0, Γ0 = 41.02× 1010−7
, V0 = 2, ` = 1.5, h = 11⇒ (ns, r) = (0.965929, 0.105719), (75)

α = 0, ξ = 0, Γ0 = 41.04× 1010−7
, V0 = 2, ` = 1.5, h = 11⇒ (ns, r) = (0.973216, 0.105702), (76)

α = 1000, ξ = 0, Γ0 = 1, V0 = 1, ` = 1, h = 1.05⇒ (ns, r) = (0.964472, 0.0202682), (77)

α = 1000, ξ = −0.002, Γ0 = 1, V0 = 1, ` = 1, h = 1⇒ (ns, r) = (0.963546, 0.0202916), (78)

8. Summary and Conclusions
We continued in this letter the work of [1] on the inflationary model generated by varying

strong coupling constant, and studied here the effect of the quadratic kinetic energy term which
appears upon introducing an f (R) gravity, represented by an αR2 term in the pure gravity Lagrangian.
We investigated in Palatini formalism two extreme cases corresponding first to (α >> 1), which
represents thus a highly noncanonical k-inflation, and second to (α << 1), where we kept terms to
first order in α and examined a specific type of the k-inflation, namely the constant-roll inflation. In
both cases, we showed the viability of the model for some choices of the free parameters in regards to
the spectral parameters (ns, r) when compared to the results of Planck 2018 separately and combined
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with other experiments. However, the k-inflation required a non-MCtG and fine-tuned adjustment in
order to accommodate data, whereas the constant-roll is able to accommodate data even in the MCtG
situation, irrespective of the value of the constant-roll parameter β. This amendment of inflationary
models, which were thought before not to fit the data, by assuming f (R) gravity and/or nonminimal
coupling to gravity, is a strong hint that this may be applicable to inflationary models other than the
one studied in this work.

Finally, we readdressed the same model, à la Bekenstein within warm inflation scenario, which
potentially is devoid of the exit scenario complications. In a specific limit, the weak limit corre-
sponding to small parameters Q and ω, the model is able to accommodate data especially when
supplemented with f (R) gravity.
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