# Semi-Classical Einstein Equations: Descend to the Ground State

## Abstract

**:**

## 1. Introduction

## 2. The Semi-Classical Einstein Equations

## 3. Stochastic Equations for Slow-Roll Inflation

## 4. Expectation Value of the Energy-Momentum in the Semi-Classical Approximation

## 5. Expectation Value of the Energy-Momentum with the Stochastic Slow Roll Approximation

## 6. Fokker–Planck Equation and Its Stationary Probability Distribution

## 7. Summary and Conclusions

## Funding

## Conflicts of Interest

## References

- Mukhanov, V.F.; Chibisov, G.V. Quantum fluctuations and a non-singular Universe. J. Exp. Theor. Phys. Lett.
**1981**, 33, 532–535. [Google Scholar] - Hawking, S.W. The development of irregularities in a single bubble inflationary Universe. Phys. Lett. B
**1982**, 115, 295–297. [Google Scholar] [CrossRef] - Starobinsky, A.A. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B
**1982**, 117, 175–178. [Google Scholar] [CrossRef] - Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Phys. Rep.
**1992**, 215, 203–333. [Google Scholar] [CrossRef] [Green Version] - Guth, A. Inflationary Universe: A possible solution of the horizon and flatness problems. Phys. Rev. D
**1981**, 23, 347. [Google Scholar] [CrossRef] [Green Version] - Guth, A.; Pi, S.-Y. Quantum mechanics of the scalar field in the new inflationary universe. Phys. Rev. D
**1985**, 32, 1899. [Google Scholar] [CrossRef] [Green Version] - Albrecht, A.; Ferreira, P.; Joyce, M.; Prokopec, T. Inflation and squeezed quantum states. Phys. Rev. D
**1994**, 50, 4807. [Google Scholar] [CrossRef] [Green Version] - Polarski, D.; Starobinsky, A.A. Semiclassicality and decoherence of cosmological perturbations. Class. Quant. Grav.
**1996**, 13, 377. [Google Scholar] [CrossRef] [Green Version] - Callan, C.G.; Coleman, S. Fate of the false vacuum.II.First quantum corrections. Phys. Rev. D
**1977**, 16, 1762. [Google Scholar] [CrossRef] - Coleman, S.; de Lucia, F. Gravitational effects on and of vacuum decay. Phys. Rev. D
**1980**, 21, 3305. [Google Scholar] [CrossRef] [Green Version] - Patrascioiu, A. Complex time and the Gaussian approximation. Phys. Rev. D
**1981**, 24, 496. [Google Scholar] [CrossRef] - Perico, E.L.D.; Lima, J.A.S.; Basilakos, S.; Sola, J. Complete cosmic history with a dynamical Λ = Λ(H) term. Phys. Rev. D
**2013**, 88, 063531. [Google Scholar] [CrossRef] [Green Version] - Overduin, J.M.; Cooperstock, F.I. Evolution of the scale factor with a variable cosmological term. Phys. Rev. D
**1998**, 58, 043506. [Google Scholar] [CrossRef] [Green Version] - Weinberg, S. The cosmological constant problem. Rev. Mod. Phys.
**1989**, 61, 1. [Google Scholar] [CrossRef] - Berera, A.; Fang, L.-Z. Thermally induced density perturbations in the inflation era. Phys. Rev. Lett.
**1995**, 74, 1912. [Google Scholar] [CrossRef] [Green Version] - Bhattacharya, K.; Mohanty, S.; Rangarayan, R. Temperature of the inflaton and duration of inflation from Wilkinson microwave anisotropy probe data. Phys. Rev. Lett.
**2006**, 96, 121302. [Google Scholar] [CrossRef] [Green Version] - Hänggi, P.; Talkner, P.; Borkovec, M. Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys.
**1990**, 62, 251. [Google Scholar] [CrossRef] - Starobinsky, A.A. Stochastic de Sitter (inflationary) stage in the early universe, in Current Topics in Field Theory, Quantum Gravity and Strings. In Lecture Notes in Physics; Vega, H.J., Sanchez, N., Eds.; Springer: Berlin, Germany, 1986; Volume 246. [Google Scholar]
- Berera, A.; Moss, I.G.; Ramos, R.O. Warm inflation and its microphysical basis. Rep. Progr. Phys.
**2009**, 72, 026901. [Google Scholar] [CrossRef] [Green Version] - Vilenkin, A. Birth of inflationary universes. Phys. Rev. D
**1983**, 27, 2848. [Google Scholar] [CrossRef] - Ramos, R.O.; da Silva, L.A. Power spectrum for inflation models with quantum and thermal noises. J. Cosmol. Astropart. Phys.
**2013**, 2013, 32. [Google Scholar] [CrossRef] - Haba, Z. Stabilization of Starobinsky-Vilenkin stochastic inflation by an environmental noise. Int. J. Mod. Phys. D
**2019**, 28, 1950085. [Google Scholar] [CrossRef] [Green Version] - Haba, Z. Stochastic inflation with quantum and thermal noise. Eur. Phys. J. C
**2018**, 78, 596. [Google Scholar] [CrossRef] - Haba, Z. Slow-roll versus stochastic slow-roll inflation. Eur. Phys. J. C
**2019**, 79, 906. [Google Scholar] [CrossRef] [Green Version] - Starobinsky, A.A. Multicomponent de Sitter (inflationary) stages and the generation of perturbations. J. Exp. Theor. Phys. Lett.
**1985**, 42, 152. [Google Scholar] - Vennin, V.; Starobinsky, A.A. Correlation functions in stochastic inflation. Eur. Phys. J. C
**2015**, 75, 413. [Google Scholar] [CrossRef] [Green Version] - Birrel, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Mamaev, S.G.; Mostepanenko, V.M. Isotropic cosmological models determined by vacuum quantum effects. Sov. Phys. JETP
**1980**, 78, 20–27. [Google Scholar] - Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B
**1980**, 91, 99–102. [Google Scholar] [CrossRef] - Starobinsky, A.A.; Yokoyama, J. Equilibrium state of self-interacting scalar field in the de Sitter background. Phys. Rev. D
**1994**, 50, 6357. [Google Scholar] [CrossRef] [Green Version] - Ikeda, N.; Watanabe, S. Stochastic Differential Equations and Diffusion Processes; North Holland: Amsterdamm, The Netherlands, 1981. [Google Scholar]
- Berera, A. Thermal properties of an inflationary universe. Phys. Rev. D
**1996**, 54, 2519. [Google Scholar] [CrossRef] [Green Version] - Haba, Z. Statistical physics of the inflaton decaying in an inhomogeneous random environment. Adv. High. Energy. Phys.
**2018**, 2018, 7204952. [Google Scholar] [CrossRef] - Assadullahi, H.; Firouzjahi, H.; Noorbala, M.; Vennin, V.; Wands, D. Multiple fields in stochastic inflation. J. Cosmol. Astropart. Phys.
**2016**, 2016, 43. [Google Scholar] [CrossRef] - Risken, H. The Fokker-Planck Equation; Springer: Berlin, Germany, 1989. [Google Scholar]
- Bardeeen, J.M.; Steinhardt, P.J.; Turner, M.S. Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D
**1983**, 28, 679. [Google Scholar] - Martin, J.; Ringeval, C.; Vennin, V. Encyclopedia Inflationaris. arXiv
**2013**, arXiv:1303.3787. [Google Scholar] - Kehagias, A.; Dizgah, A.M.; Riotto, A. Remarks on the Starobinsky model of inflation and its descendants. Phys. Rev. D
**2014**, 89, 043527. [Google Scholar] [CrossRef] [Green Version] - Ketov, S.V.; Starobinsky, A.A. Inflation and non-minimal scalar curvature coupling in gravity and supergravity. J. Cosmol. Astropart. Phys.
**2012**, 2012, 22. [Google Scholar] [CrossRef] [Green Version] - Vennin, V.; Assadullahi, H.; Firouzjahi, H.; Noorbala, M.; Wands, D. Critical number of fields in stochastic inflation. Phys. Rev. Lett.
**2017**, 118, 031301. [Google Scholar] [CrossRef] [Green Version] - Nelson, E. Dynamical Theories of Brownian Motion; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Krauss, L.M.; Dent, J. Late time behavior of false vacuum decay: Possible implications for cosmology and metastable inflating states. Phys. Rev. Lett.
**2008**, 100, 171301. [Google Scholar] - Stachowski, A.; Szydlowski, M.; Urbanowski, K. Quantum mechanical look at the radioactive-like decay of metastable dark energy. Eur. Phys. J. C
**2017**, 77, 357. [Google Scholar] [CrossRef] [Green Version] - Gradshtein, I.S.; Ryzhik, I.M. Tables of Initegrals, Series and Products; Nauka: Moscow, Russia, 1971. (In Russian) [Google Scholar]
- Eckmann, J.-P.; Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys.
**1985**, 57, 617–656. [Google Scholar] - Haba, Z. A relation between diffusion, temperature and the cosmological constant. Mod. Phys. Lett. A
**2016**, 31, 1650146. [Google Scholar] - Linde, A.D. Quantum creation of an open inflationary universe. Phys. Rev. D
**1998**, 58, 083514. [Google Scholar] [CrossRef] [Green Version]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Haba, Z.
Semi-Classical Einstein Equations: Descend to the Ground State. *Universe* **2020**, *6*, 74.
https://doi.org/10.3390/universe6060074

**AMA Style**

Haba Z.
Semi-Classical Einstein Equations: Descend to the Ground State. *Universe*. 2020; 6(6):74.
https://doi.org/10.3390/universe6060074

**Chicago/Turabian Style**

Haba, Zbigniew.
2020. "Semi-Classical Einstein Equations: Descend to the Ground State" *Universe* 6, no. 6: 74.
https://doi.org/10.3390/universe6060074