Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = consequent pole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2368 KB  
Article
Experimental Evaluation of a Line-Start Consequent-Pole Surface Permanent-Magnet Motor with Simple Rotor Design Strategies for Performance Improvement
by Yuichi Yokoi, Yasuhiro Miyamoto and Tsuyoshi Higuchi
Machines 2025, 13(11), 1003; https://doi.org/10.3390/machines13111003 - 31 Oct 2025
Viewed by 394
Abstract
The line-start permanent-magnet (LSPM) motor combines the direct-on-line starting of induction motors with the high efficiency of permanent-magnet (PM) synchronous motors, but conventional interior PM designs are difficult to manufacture and surface PM (SPM) designs often suffer from limited starting torque and reduced [...] Read more.
The line-start permanent-magnet (LSPM) motor combines the direct-on-line starting of induction motors with the high efficiency of permanent-magnet (PM) synchronous motors, but conventional interior PM designs are difficult to manufacture and surface PM (SPM) designs often suffer from limited starting torque and reduced efficiency. This paper investigates consequent-pole SPM designs, in which the number of magnets is reduced by half while maintaining equal magnet volume, enabling simple rotor construction and improved starting performance. A prototype is manufactured and tested, confirming smooth synchronization under load. Efficiency is constrained by the non-sinusoidal flux distribution of the consequent-pole structure. Rotor design strategies enlarging the air gap near the iron poles are analyzed, and a finite element method analysis shows improved torque and efficiency without loss of starting capability. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

22 pages, 5253 KB  
Article
Torque Ripple Reduction and Efficiency Enhancement of Flared-Type Consequent-Pole Motors via Asymmetric Air-Gap and Structural Optimization
by Keun-Young Yoon and Soo-Whang Baek
Appl. Sci. 2025, 15(21), 11520; https://doi.org/10.3390/app152111520 - 28 Oct 2025
Cited by 1 | Viewed by 429
Abstract
The consequent-pole interior permanent-magnet (CPM) motor is a promising alternative for minimizing rare-earth magnet usage while supporting high-speed operation. However, rotor flux asymmetry often leads to distorted back-electromotive force waveforms and increased torque ripple. This study investigated a flared-type CPM motor that employs [...] Read more.
The consequent-pole interior permanent-magnet (CPM) motor is a promising alternative for minimizing rare-earth magnet usage while supporting high-speed operation. However, rotor flux asymmetry often leads to distorted back-electromotive force waveforms and increased torque ripple. This study investigated a flared-type CPM motor that employs ferrite magnets arranged in a flared configuration to enhance flux concentration within a compact rotor. To address waveform distortion, structural modifications such as bridge removal and an asymmetric air-gap design were implemented. Three rotor parameters—polar angle, asymmetric air-gap length, and rotor opening length—were optimized using Latin hypercube sampling combined with an evolutionary algorithm. Finite element method analyses conducted under no-load and rated-load conditions showed that the optimized model achieved a 77.8% reduction in torque ripple, a 43.4% decrease in cogging torque, and a 0.5% improvement in efficiency compared with the basic model. Stress analyses were performed to examine the structural bonding strength and rotor deformation of the optimized model under high-speed operation. The results revealed a 5.5× safety margin at four times the rated speed. The proposed approach offers a cost-effective and sustainable alternative to rare-earth magnet machines for high-efficiency household appliances, where vibration reduction, cost stability, and energy efficiency are critical. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 4625 KB  
Article
Design of Intersect Consequent Pole Rotor for a Radial-Flux IPMSM to Reduce Rare-Earth Magnet Usage
by Yun-Ha Song, Si-Woo Song, Do-Hyeon Choi, Su-Bin Jeon and Won-Ho Kim
Actuators 2025, 14(10), 482; https://doi.org/10.3390/act14100482 - 3 Oct 2025
Viewed by 524
Abstract
Interior Permanent Magnet Synchronous Motors (IPMSMs) are widely used in the electrification sector; however, reliance on rare-earth magnets imposes constraints stemming from supply instability and mining-related environmental impacts, raising sustainability concerns. To address these issues, this study investigates an IPMSM employing a consequent [...] Read more.
Interior Permanent Magnet Synchronous Motors (IPMSMs) are widely used in the electrification sector; however, reliance on rare-earth magnets imposes constraints stemming from supply instability and mining-related environmental impacts, raising sustainability concerns. To address these issues, this study investigates an IPMSM employing a consequent pole (CP) structure, in which one permanent magnet pole is replaced by iron. Because flux asymmetry in CP IPMSMs can cause torque ripple and associated vibration and noise, we propose an Intersect Consequent Pole (ICP) rotor geometry and evaluate it against a conventional IPMSM under identical stator conditions. The proposed ICP topology reduces permanent magnet usage and provides a rare-earth-reduced design alternative that addresses the vibration/noise trade-off, with a particular focus on electric power steering (EPS) applications. Electromagnetic characteristics and performance were analyzed using finite element analysis (FEA) and verified via FEA-based comparisons. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

25 pages, 9602 KB  
Article
Magnetic Circuit Analysis and Design Optimized for Cost-Effectiveness of Surface-Inserted Rare Earth Consequent-Pole Permanent Magnet Machines
by Li Wang, Muhammad Saqlain Saeed, Zhaoyang Fu, Jinglin Liu, Xiqiao Wu and Qi Wang
Machines 2025, 13(9), 873; https://doi.org/10.3390/machines13090873 - 19 Sep 2025
Viewed by 798
Abstract
In consequent-pole permanent magnet (CPPM) machines, the configuration where PM poles and iron poles are alternately arranged causes distortion in the air-gap magnetic field. This results in significant differences in magnetic circuit characteristics compared to conventional PM machines. To address the requirements of [...] Read more.
In consequent-pole permanent magnet (CPPM) machines, the configuration where PM poles and iron poles are alternately arranged causes distortion in the air-gap magnetic field. This results in significant differences in magnetic circuit characteristics compared to conventional PM machines. To address the requirements of reducing torque ripple and enhancing average output torque, the cogging torque and optimization methods for CPPM machines were investigated. A general analytical model for cogging torque was established. This model accounts for asymmetric pole configurations and is particularly well-suited for analyzing CPPM machines. The mechanism through which the consequent-pole (CP) structure improves the utilization rate of PM material was explored, and the parameters influencing the main flux were analyzed. By replacing PMs with soft magnetic materials, the conventional topology of a 12-slot/8-pole surface-inserted PM machine with stator skewing was directly converted into a CP topology. Performance optimization was conducted based on this original scheme. This approach ensures manufacturing convenience while maximizing the sharing of identical components. Simulation results demonstrate that, compared to the benchmark machine, the optimized CPPM machine uses only 60.16% of the PM material while producing 88.19% of the electromagnetic torque, resulting in a 46.61% increase in torque generated per unit volume of PM material. Finally, the benchmark and optimized CPPM prototypes were fabricated, and their torque output capabilities were tested. The finite element simulation results and the measured data show good consistency, validating the correctness of the theoretical analysis and the effectiveness of the finite element model. This study provides a theoretical basis and engineering reference for the performance analysis and optimal design of CPPM machines. Full article
(This article belongs to the Special Issue Wound Field and Less Rare-Earth Electrical Machines in Renewables)
Show Figures

Figure 1

14 pages, 17898 KB  
Article
Comprehensive Analysis of Human Colorectal Cancers Harboring Polymerase Epsilon Mutations
by Louis M. Gibson, Phanithan Konda, Hunter J. Bliss, Devi D. Nelakurti, Golrokh Mirzaei, Renee A. Bouley, Jing J. Wang and Ruben C. Petreaca
Int. J. Mol. Sci. 2025, 26(15), 7208; https://doi.org/10.3390/ijms26157208 - 25 Jul 2025
Viewed by 1384
Abstract
DNA polymerase epsilon (POLe) is the leading strand replicative polymerase. POLe mutations located primarily in the proofreading domain cause replication errors and increase mutation burden in cancer cells. Consequently, POLe has been classified as a cancer driver gene. Certain POLe frameshift mutations that [...] Read more.
DNA polymerase epsilon (POLe) is the leading strand replicative polymerase. POLe mutations located primarily in the proofreading domain cause replication errors and increase mutation burden in cancer cells. Consequently, POLe has been classified as a cancer driver gene. Certain POLe frameshift mutations that affect the proofreading domain are purified in cancer cells, but point mutations in other domains have also been reported. Here we use an artificial intelligence algorithm to determine what other mutations co-occur with POLe mutations in colorectal cancers. We partitioned POLe mutations into driver, passenger, and WT (no mutation), then assessed mutations in other genes in these three groups. We found that a driver POLe mutation is not likely to associate with driver mutations in other genes. Thus, driver mutations in colorectal cancers appear to purify in a manner that is independent of POLe. Mutations that affect POLe function do not necessarily increase the frequency of driver mutations in other genes. Structural analysis shows that many POLe driver mutations affect coordination of the Mg2+ ion in the active site. Our data show that the accumulation of colorectal cancer mutations is driven by complex factors. Full article
(This article belongs to the Special Issue Exploring the Genetics and Genomics of Complex Diseases)
Show Figures

Figure 1

28 pages, 7506 KB  
Article
Impact of Plateau Grassland Degradation on Ecological Suitability: Revealing Degradation Mechanisms and Dividing Potential Suitable Areas with Multi Criteria Models
by Yi Chai, Lin Xu, Yong Xu, Kun Yang, Rao Zhu, Rui Zhang and Xiaxing Li
Remote Sens. 2025, 17(15), 2539; https://doi.org/10.3390/rs17152539 - 22 Jul 2025
Cited by 1 | Viewed by 1024
Abstract
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with [...] Read more.
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with escalating human activities have disrupted the seasonal growth cycles of grasslands, thereby intensifying degradation processes. To date, the key drivers and lifecycle dynamics of Grassland Depletion across the QTP remain contentious, limiting our comprehension of its ecological repercussions and regulatory mechanisms. This study comprehensively investigates grassland degradation on the Qinghai–Tibetan Plateau, analyzing its drivers and changes in ecological suitability during the growing season. By integrating natural factors (e.g., precipitation and temperature) and anthropogenic influences (e.g., population density and grazing intensity), it examines observational data from over 160 monitoring stations collected between the 1980s and 2020. The findings reveal three distinct phases of grassland degradation: an acute degradation phase in 1990 (GDI, Grassland Degradation Index = 2.53), a partial recovery phase from 1996 to 2005 (GDI < 2.0) during which the proportion of degraded grassland decreased from 71.85% in 1990 to 51.22% in 2005, and a renewed intensification of degradation after 2006 (GDI > 2.0), with degraded grassland areas reaching 56.39% by 2020. Among the influencing variables, precipitation emerged as the most significant driver, interacting closely with anthropogenic factors such as grazing practices and population distribution. Specifically, the combined impacts of precipitation with population density, grazing pressure, and elevation were particularly notable, yielding interaction q-values of 0.796, 0.767, and 0.752, respectively. Our findings reveal that while grasslands exhibit superior carbon sink potential relative to forests, their productivity and ecological functionality are undergoing considerable declines due to the compounded effects of multiple interacting factors. Consequently, the spatial distribution of ecologically suitable zones has contracted significantly, with the remaining high-suitability regions concentrating in the “twin-star” zones of Baingoin and Zanda grasslands, areas recognized as focal points for future ecosystem preservation. Furthermore, the effects of climate change and intensifying anthropogenic activity have driven the reduction in highly suitable grassland areas, shrinking from 41,232 km2 in 1990 to 24,485 km2 by 2020, with projections indicating a further decrease to only 2844 km2 by 2060. This study sheds light on the intricate mechanisms behind Grassland Depletion, providing essential guidance for conservation efforts and ecological restoration on the QTP. Moreover, it offers theoretical underpinnings to support China’s carbon neutrality and peak carbon emission goals. Full article
Show Figures

Figure 1

19 pages, 361 KB  
Article
Finite Time Path Field Theory and a New Type of Universal Quantum Spin Chain Quench Behavior
by Domagoj Kuić, Alemka Knapp and Diana Šaponja-Milutinović
Universe 2025, 11(7), 230; https://doi.org/10.3390/universe11070230 - 11 Jul 2025
Cited by 1 | Viewed by 647 | Correction
Abstract
We discuss different quench protocols for Ising and XY spin chains in a transverse magnetic field. With a sudden local magnetic field quench as a starting point, we generalize our approach to a large class of local non-sudden quenches. Using finite time path [...] Read more.
We discuss different quench protocols for Ising and XY spin chains in a transverse magnetic field. With a sudden local magnetic field quench as a starting point, we generalize our approach to a large class of local non-sudden quenches. Using finite time path field theory (FTPFT) perturbative methods, we show that the difference between the sudden quench and a class of quenches with non-sudden switching on the perturbation vanishes exponentially with time, apart from non-substantial modifications that are systematically accounted for. As the consequence of causality and analytic properties of functions describing the discussed class of quenches, this is true at any order of perturbation expansion and thus for the resummed perturbation series. The only requirements on functions describing the perturbation strength switched on at a finite time t=0 are as follows: (1) their Fourier transform f(p) is a function that is analytic everywhere in the lower complex semiplane, except at the simple pole at p=0 and possibly others with (p)<0; and (2) f(p)/p converges to zero at infinity in the lower complex semiplane. A prototypical function of this class is tanh(ηt), to which the perturbation strength is proportional after the switching at time t=0. In the limit of large η, such a perturbation approaches the case of a sudden quench. It is shown that, because of this new type of universal behavior of Loschmidt echo (LE) that emerges in an exponentially short time scale, our previous results for the sudden local magnetic field quench of Ising and XY chains, obtained by the resummation of the perturbative expansion, extend in the long-time limit to all non-sudden quench protocols in this class, with non-substantial modifications systematically taken into account. We also show that analogous universal behavior exists in disorder quenches, and ultimately global ones. LE is directly connected to the work probability distribution, and the described universal behavior is therefore appropriate in potential concepts of quantum technology related to spin chains. Full article
(This article belongs to the Section Field Theory)
Show Figures

Figure 1

21 pages, 9556 KB  
Article
DP600 Steel Stampability Analysis Through Microstructural Characterization by Electron Backscatter Diffraction and Nanoindentation
by Rafael Guetter Bohatch, Alex Raimundo de Oliveira, Chetan P. Nikhare, Ravilson Antonio Chemin Filho and Paulo Victor Prestes Marcondes
J. Manuf. Mater. Process. 2025, 9(7), 234; https://doi.org/10.3390/jmmp9070234 - 8 Jul 2025
Viewed by 1143
Abstract
In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry [...] Read more.
In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry has developed more efficient metal alloys. To combine vehicle mass reduction with improved performance in deformations in cases of impact, a new family of advanced steels is present, AHSS (Advanced High-Strength Steels). However, this family of steels has lower formability and greater springback compared to conventional steels; if it is not properly controlled, it will directly affect the accuracy of the product and its quality. Different regions of a stamped component, such as the flange, the body wall, and the punch pole, are subjected to different states of stress and deformation, determined by numerous process variables, such as friction/lubrication and tool geometry, in addition to blank holder force and drawbead geometry, which induce the material to different deformation modes. Thus, it is understood that the degree of work hardening in each of these regions can be evaluated by grain morphology and material hardening, defining critical regions of embrittlement that, consequently, will affect the material’s stampability. This work aims to study the formability of the cold-formed DP600 steel sheets in the die radius region using a Modified Nakazima test, varying drawbead geometry, followed by a nanohardness evaluation and material characterization through the electron backscatter diffraction (EBSD). The main objective is to analyze the work hardening in the critical blank regions by applying these techniques. The nanoindentation evaluations were consistent in die radius and demonstrated the hardening influence, proving that the circular drawbead presented the most uniform hardness variation along the profile of the stamped blank and presented lower hardness values in relation to the other geometries, concluding that the drawbead attenuates this variation, contributing to better sheet formability, which corroborates the Forming Limit Curve results. Full article
(This article belongs to the Special Issue Advances in Material Forming: 2nd Edition)
Show Figures

Figure 1

15 pages, 3196 KB  
Article
Design and Analysis of Consequent Pole Axial Flux Motors for Reduced Torque Ripple and Magnet Consumption
by Si-Woo Song, Seung-Heon Lee and Won-Ho Kim
Processes 2025, 13(7), 2139; https://doi.org/10.3390/pr13072139 - 4 Jul 2025
Cited by 2 | Viewed by 1291
Abstract
With growing demand for high-performance and high-efficiency motors, Axial Flux Permanent Magnet Motors (AFPMs) have received significant attention. These motors typically use rare-earth magnets due to their high magnetic and energy density. However, rare-earth magnets face challenges such as limited availability and price [...] Read more.
With growing demand for high-performance and high-efficiency motors, Axial Flux Permanent Magnet Motors (AFPMs) have received significant attention. These motors typically use rare-earth magnets due to their high magnetic and energy density. However, rare-earth magnets face challenges such as limited availability and price volatility, prompting research into reducing magnet usage. This study aims to reduce magnet consumption by applying a Consequent Pole (CP) structure to AFPMs. While CP structures improve magnet efficiency, they also introduce significant back-EMF ripple. To address this, an Intersect Consequent Pole (ICP) structure is proposed, which reduces ripple through alternating magnet placement within the rotor. Since ICP implementation is difficult in single-rotor AFPMs, a double-rotor, single-stator configuration was used. Simulation results show that the proposed design effectively reduces magnet usage and back-EMF ripple, demonstrating its potential for maintaining high performance with reduced rare-earth dependency. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 1057 KB  
Article
Crash Severity in Collisions with Roadside Light Poles: Highlighting the Potential of Passive Safe Pole Solutions
by Višnja Tkalčević Lakušić, Marija Ferko and Darko Babić
Infrastructures 2025, 10(7), 163; https://doi.org/10.3390/infrastructures10070163 - 30 Jun 2025
Viewed by 1754
Abstract
This paper investigates crash severity in single-vehicle road crashes involving collisions with roadside light poles in Croatia. Due to the absence of detailed object-type classifications in the official crash database, media reports were used to identify relevant incidents in combination with the official [...] Read more.
This paper investigates crash severity in single-vehicle road crashes involving collisions with roadside light poles in Croatia. Due to the absence of detailed object-type classifications in the official crash database, media reports were used to identify relevant incidents in combination with the official state database, resulting in 38 crashes identified between 2016 and March 2025. Descriptive analysis and crosstabulation were applied to explore patterns in crash outcomes. A CHAID decision tree analysis was then applied in an exploratory capacity to highlight possible predictors of injury or fatal outcomes, acknowledging the limitations of the small sample size. Results showed that the speed limit was the only variable significantly associated with crash severity, with all crashes above 50 km/h resulting in injuries or fatalities. The findings highlight the importance of speed management and support the potential for implementing passively safe poles to reduce the consequences of such crashes. The study also discusses the performance of different pole types in line with EN 12767:2019, defines risk zones, and proposes solutions for the example locations. The results offer future research implications and valuable insights for road safety improvement, especially in areas with frequent pole collisions. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

17 pages, 2876 KB  
Article
Research on the Oil Cooling Structure Design Method of Permanent Magnet Synchronous Motors for Electric Vehicles
by Shijun Chen, Cheng Miao, Xinyu Chen, Wei Qian and Songchao Chu
Energies 2025, 18(12), 3134; https://doi.org/10.3390/en18123134 - 14 Jun 2025
Viewed by 2190
Abstract
Permanent magnet synchronous motors for electric vehicles (EVs) prioritize high power density and lightweight design, leading to elevated thermal flux density. Consequently, cooling methods and heat conduction in stator windings become critical. This paper proposes a compound cooling structure combining direct oil spray [...] Read more.
Permanent magnet synchronous motors for electric vehicles (EVs) prioritize high power density and lightweight design, leading to elevated thermal flux density. Consequently, cooling methods and heat conduction in stator windings become critical. This paper proposes a compound cooling structure combining direct oil spray cooling on stator windings and housing oil channel cooling (referred to as the winding–housing composite oil cooling system) for permanent synchronous motors in EVs. A systematic design methodology for oil jet nozzles and housing oil channels is investigated, determining the average convective heat transfer coefficient on end-winding surfaces and the heat dissipation factor of the oil channels. Finite element analysis (FEA) was employed to simulate the thermal field of a 48-slot 8-pole oil-cooled motor, with further analysis on the effects of oil temperature and flow rate on motor temperature. Based on these findings, an optimized oil-cooled structure is proposed, demonstrating enhanced thermal management efficiency. The results provide valuable references for the design of cooling systems in oil-cooled motors for EV applications. Full article
(This article belongs to the Special Issue Advances in Permanent Magnet Motor and Motor Control)
Show Figures

Figure 1

16 pages, 48638 KB  
Article
Epitaxial Growth of Ni-Mn-Ga on Al2O3(112¯0) Single-Crystal Substrates by Pulsed Laser Deposition
by Manuel G. Pinedo-Cuba, José M. Caicedo-Roque, Jessica Padilla-Pantoja, Justiniano Quispe-Marcatoma, Carlos V. Landauro, Víctor A. Peña-Rodríguez and José Santiso
Surfaces 2025, 8(2), 35; https://doi.org/10.3390/surfaces8020035 - 30 May 2025
Cited by 1 | Viewed by 3503
Abstract
Magnetic shape memory alloys have attracted considerable attention due to their multifunctional properties. Among these materials, Ni-Mn-Ga alloys are distinguished by their ability to achieve up to 10% strain when exposed to a magnetic field, a characteristic predominantly observed in single-crystal samples. Consequently, [...] Read more.
Magnetic shape memory alloys have attracted considerable attention due to their multifunctional properties. Among these materials, Ni-Mn-Ga alloys are distinguished by their ability to achieve up to 10% strain when exposed to a magnetic field, a characteristic predominantly observed in single-crystal samples. Consequently, it is essential to develop nanomaterials with a crystal structure closely resembling that of a single crystal. In this study, an epitaxial Ni-Mn-Ga thin film was fabricated using Pulsed Laser Deposition on an Al2O3 (112¯0) single-crystal substrate. The crystal structure was characterised through X-ray diffraction methodologies, such as symmetrical 2θω scans, pole figures, and reciprocal space maps. The results indicated that the sample was mainly in a slightly distorted cubic austenite phase, and some incipient martensite phase also appeared. A detailed microstructural analysis, performed by transmission electron microscopy, confirmed that certain regions of the sample exhibited an incipient transformation to the martensite phase. Regions closer to the substrate retained the austenite phase, suggesting that the constraint imposed by the substrate inhibits the phase transition. These results indicate that it is possible to grow high crystalline quality thin films of Ni-Mn-Ga by Pulsed Laser Deposition. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Figure 1

16 pages, 3565 KB  
Article
Multi-Object Feature Extraction in Resonance Region Based on Short-Time Matrix Pencil Method
by Zeying Zhao, Xiaochuan Wu and Weibo Deng
Remote Sens. 2025, 17(8), 1429; https://doi.org/10.3390/rs17081429 - 17 Apr 2025
Viewed by 602
Abstract
As an intrinsic characteristic of the target, the pole characteristic of the resonant region is solely determined by the target itself and remains invariant with respect to external factors such as the incident direction and polarization of electromagnetic waves. Consequently, it serves as [...] Read more.
As an intrinsic characteristic of the target, the pole characteristic of the resonant region is solely determined by the target itself and remains invariant with respect to external factors such as the incident direction and polarization of electromagnetic waves. Consequently, it serves as a critical foundation for target identification. The Matrix Pencil Method (MPM) is currently a widely adopted technique for extracting target poles; however, it typically processes single targets. When multiple targets produce time-domain echoes in the echo signal, the MPM fails to distinguish between individual targets, leading to extracted pole information that does not adequately represent the relevant characteristics of each target. In this paper, we propose a Short-Time Matrix Pencil Method (STMPM), which introduces sliding time windows to differentiate multiple targets in time-domain echoes. By analyzing the variations in poles across each sliding time window, the STMPM can accurately extract the poles corresponding to each target. Full article
Show Figures

Figure 1

16 pages, 5146 KB  
Article
Comparative Study of Dual-Stator Permanent Magnet Machines with Different PM Arrangements and Rotor Topologies for Aviation Electric Propulsion
by Minchen Zhu, Lijian Wu, Dongliang Liu, Yiming Shen, Rongdeng Li and Hui Wen
Machines 2025, 13(4), 273; https://doi.org/10.3390/machines13040273 - 26 Mar 2025
Viewed by 1561
Abstract
The dual-stator permanent magnet (DSPM) machine has proved to have high space utilization and a redundant structure, which can be beneficial to improving the fault tolerance and torque density performance. In this paper, three types of DSPM machines are proposed and compared, where [...] Read more.
The dual-stator permanent magnet (DSPM) machine has proved to have high space utilization and a redundant structure, which can be beneficial to improving the fault tolerance and torque density performance. In this paper, three types of DSPM machines are proposed and compared, where two sets of armature windings are wound in both inner/outer stators, producing more than one torque component compared with single-stator PM machines. The machine topology and operating principle of three DSPM machines are analyzed first. Next, feasible stator/rotor-pole number combinations are compared and determined. Furthermore, based on the finite-element (FE) method, both the electromagnetic performances of three DSPM machines under open-circuit and rated-load conditions after optimization are compared, aimed at generating maximum torque at fixed copper loss. The FE analyses indicate that the dual-stator consequent-pole permanent magnet (DSCPPM) machine generates maximum torque per PM volume, together with relatively high efficiency, which makes it a potentially hopeful candidate for low-speed and high-torque applications. In addition, a thermal analysis is carried out to confirm the validity of the design scheme. Finally, in order to verify the FE predictions, a prototype DSCPPM machine is manufactured and experimentally tested. Full article
Show Figures

Figure 1

23 pages, 12851 KB  
Article
Optimal Design, Electromagnetic–Thermal Analysis and Application of In-Wheel Permanent Magnet BLDC Motor for E-Mobility
by Yucel Cetinceviz
Appl. Sci. 2025, 15(6), 3258; https://doi.org/10.3390/app15063258 - 17 Mar 2025
Cited by 4 | Viewed by 1377
Abstract
In this paper, a 96 V, 2.5 kW, 36-slot, and 32-pole brushless direct-current (BLDC) motor is designed, analyzed, and tested in the laboratory and on the prototype vehicle to provide the required output performance for an electric vehicle (EV) according to the rated [...] Read more.
In this paper, a 96 V, 2.5 kW, 36-slot, and 32-pole brushless direct-current (BLDC) motor is designed, analyzed, and tested in the laboratory and on the prototype vehicle to provide the required output performance for an electric vehicle (EV) according to the rated operating conditions. Applications for in-wheel electric drivetrains have the potential to deliver high efficiency and high torque. Consequently, in-wheel motor topology is proposed for small EVs, and the sizing equations, including primary, stator, and rotor dimensions, are developed step by step for the preliminary design. Then, a multi-goal function is introduced to obtain optimum motor design. This motor has an outer-rotor-type construction. In addition, a concentrated winding arrangement is used, which ensures low-end winding and thus low copper loss. Then, multiphysics using the coupled electromagnetic–thermal analysis is carried out. Elective analysis using the finite element method, a motor prototype, and experimental studies verifies the design effectively. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

Back to TopTop